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MATRIX GROUPS OVER RINGS

B. SURY

Abstract. This write-up is in the nature of an exposition of some work

dealing with matrix groups over rings and their various decomposition theo-

rems. The topic of matrix groups over rings like the integers is too general

and too vast to allow a reasonable survey; so, we give an overview of some

topics related to factorization. We discuss two types of related questions on

matrix groups over rings here: (i) generating certain matrix groups by ab-

stract subgroups like cyclic groups and implications on the structure of the

ambient group; and (ii) ‘finite width’ factorization into unipotent subgroups

over rings.

1. Introduction.

Groups of matrices are ubiquitous in mathematics via their various avataars:

Lie groups - if we work over R or C, arithmetic subgroups - over integers and

other number rings, finite simple groups - over finite fields, representation the-

ory - over any ring. The existence of decompositions/factorizations into special

types of pieces (for instance, Iwasawa, Cartan, Bruhat, Langlands,...) have tra-

ditionally played key roles. For example, Bruhat decomposition which arose in

the theory of linear algebraic groups has proved useful in diverse contexts like

numerical stability, and coding theory. In the paper ( [19]), it is shown that for

certain classes of matrices that have an exponential growth factor when Gaussian

elimination with partial pivoting is applied, Bruhat decomposition has at most

linear growth. In the paper ([17]), the authors present a new Bruhat decompo-

sition design for constructing full diversity unitary space-time constellations for

any number of antennas. The so-called Langlands decomposition of a parabolic

subgroup is behind the “philosophy of cusp forms” due to Harish-Chandra (a pre-

cursor to Langlands’s program) where the discrete groups take the backstage and

inducing representations via the Langlands decomposition take center stage. So,

generating matrix groups via special kinds of elements is useful. These are trickier
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and more subtle over rings which are not fields. In the next section, we describe

a few of the applications where matrix groups over rings play a key role. The

examples are chosen for their diversity. Following that, in section 3, we describe

the more recent factorization theorems and their proofs.

2. Matrix groups over rings - some old applications

In this section, we briefly describe some of our earlier results on matrix groups

over rings which are related to number theoretic and combinatorial group-theoretic

questions. These examples are selected purely to demonstrate the diversity of

applications that matrix groups over various rings have on other topics.

2.1. Salem numbers. A question due to D. H. Lehmer (which is still open from

1933) asks if there is a positive constant c > 1 such that for any integer coefficient

polynomial, the product of the absolute values of its roots is strictly > c unless the

polynomial has only roots of unity as roots. Lehmer’s computations revealed that

the “worst” polynomials in this respect correspond to reciprocal polynomials with

one real root τ > 1 and other roots being 1
τ , τ2, τ2, · · · , τd, τd for |τi| = 1. Such

algebraic integers τ are known as Salem numbers - named after Raphael Salem who

studied some of their properties. We can reformulate this question (see [25]) for the

above subclass of polynomials in terms of the subgroups of SL(2,R); the question

is equivalent to asking if there is a neighbourhood U of the identity matrix such

that every arithmetic subgroup Γ with no elements of finite order other than the

identity and such that the quotient SL(2,R)/Γ is compact, satisfies Γ∩U = {I}.
2.2. Generating a family of subgroups. Here is an example to show how

combinatorial-type properties may have bearing on deeper properties of the group.

We proved (see [31]) the following theorem.
Theorem 2.1. For any fixed n ≥ 3, there is a number N(n) depending only on n

so that every group of the form

Ker(SLn(Z)→ SLn(Z/kZ))

can be generated by N(n) elements for every k > 1. One may also wrote out a

description of generators for each k.

Recently, Detinko, Flannery and Hulpke used the generators to give an algo-

rithm (see [7]) to decide whether a subgroup of SLn(Z) (for n > 2) has finite index

- in general, such problems are undecidable. In the above-mentioned paper, we

had also given an example to show that there is no bound like N(n) if we allow

all normal subgroups of finite index. Very recently, Mark Shusterman proved a

result bounding rank of a group in terms of its index where he elaborates on our

example to show that his result is close to optimal.

2.3. Infinitely presented matrix groups. The following matrix group over a

ring is an example of certain phenomena dealing with factorization, generation

and finite presentation (see [26]).
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Theorem 2.2. Let p be a prime. We consider the ring Z[1/p] of rational numbers

whose denominators can only be divisible by powers of p. Let

G =

{1 a b

0 pn c

0 0 1

 : a, b, c ∈ Z[1/p], n ∈ Z
}

has the remarkable properties. Then,

(a) G = C1C2 · · ·C12 where Ci’s are cyclic groups (not necessarily distinct (that

is, G has bounded generatios of degree ≤ 12);

(b) the commutator subgroup [G,G] is not finitely generated;

(c) G is not finitely presented.

Indeed, if x = diag(1, p, 1), y12 = I + E12, y23 = I + E23 ∈ G, then1 apk bpl

0 pn cpm

0 0 1

 = xn−kya12x
m−n+kyc23x

n−mxByA12x
−By23x

By−A12 x−B

where A,B are defined by bpl − acpm−n+k = Ap−B .

The commutator subgroup ofG is the unipotent group

{1 a b

0 1 c

0 0 1

} is infinitely

generated; indeed, even its abelianization is infinitely generated. The fact that G

is not finitely presentable follows from a criterion due to Bieri and Strebel.

2.4. Matrix groups over finite rings and elementary number theory. El-

ementary number-theoretic identities often fall out when one looks at natural

actions of matrix groups over finite rings (note that finite rings have stable rank 1

- our factorization theorems in the next section deal with rings of stable rank 1).

For instance, the identity∑
t1∈(Zn)∗,t2,··· ,tr∈Zn

GCD(n, t1 − 1, t2, · · · , tr) = φ(n)σr−1(n)

can be derived (see [24]) by applying the so-called Cauchy-Frobenius-Burnside

lemma to the group

G = {


t1 t2 t3 · · · tr

0 1 0 · · · 0
...

...
...

...
...

0 0 0 · · · 1

 : t1 ∈ (Zn)∗, ti ∈ Zn ∀i > 1}

acting naturally on (Zn)r. More generally, the action of the full upper triangular

subgroup Ur of GL(r,Zn) yields:∑
A∈Ur

r∏
k=1

dk = n(r
2)φ(n)rdr(n)
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where A = (aij),

dk = GCD

(
n,

na1,k
(n, a1,1 − 1, a1,2, · · · , a1,k−1)

,

na2,k
(n, a22 − 1, a23, · · · , a2,k−1)

, · · · , nak−1,k
(n, ak−1,k−1 − 1)

)
and d1(n) =

∑
d|n d, dk =

∑
d|n dk−1(d).

2.5. Finite matrix groups as capable groups. Matrix groups over finite fields

provide natural and easy examples of certain phenomena which occur in finite

groups. For instance we have the following theorem (see [23]).

Theorem 2.3. If A is a finite abelian capable group (that is, A ∼= G/Z(G) for

some group G) where the center Z(G) of G is cyclic, then A ∼= B × B for an

abelian group B; in particular, the order of A is a perfect square. Further, this

property of A is not necessarily true if Z(G) is not cyclic.

Thus, it is of interest to find simple examples where Z(G) is not cyclic where

G/Z(G) has non-square order. In loc. cit., we constructed the following example.

Example. Let F be a finite field and E ⊂ F be a proper subfield. Consider the

group

G =

{1 a c

0 1 b

0 0 1

 : b, c ∈ F ; a ∈ E
}
.

If we denote a typical element of G by g(a, b, c), then

g(a, b, c)g(a′, b′, c′) = g(a+ a′, b+ b′, ab′ + c+ c′).

Further, g(a, b, c)−1 = g(−a,−b, ab − c). Now, note that g(a, b, c) ∈ Z(G) if and

only if ab′ = a′b for all a′ ∈ E, b′ ∈ F . Thus, some g(a, 0, c) ∈ Z(G) if and only

if ab′ = 0 for all b′ ∈ F ; that is, if and only if a = 0. On the other hand, if

some g(a, b, c) ∈ Z(G) with b 6= 0, then g(a, b, c)g(1, 0, 0) = g(1, 0, 0)g(a, b, c) gives

0 = b, a contradiction. Thus

Z(G) = {g(0, 0, c) : c ∈ F} and G/Z(G) ∼= E ⊕ F.
Note that the finite, abelian, capable group G/Z(G) can have non-square order -

for instance, if E has p elements and F has p2 elements then Z(G) is not cyclic.

2.6. Matrix groups as monodromy groups of polynomials. The problem of

finiteness of number of solutions of Diophantine equations of the form f(x) = g(y)

where f, g are integer polynomials leads to questions on their monodromy groups

which can be fruitfully answered by analyzing certain matrix groups which are

isomorphic to finite dihedral groups. Work of Yuri Bilu showed (see [4]) that

one may reduce the problem to determining the possible quadratic factors of the

polynomial f(X)−g(Y ). Over an algebraically closed field K of any characteristic,

the latter question is answered in the following manner.
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Let x be transcendental over K, and set t = f(x). If f(X)−g(Y ) has an irreducible

factor of degree 2, then K(x) has a quadratic extension L, the function field of

this quadratic factor. Then L/K(t) is Galois. The Galois group is generated by

two involutions, hence it is dihedral. The intermediate field K(x) is the fixed

field of one of the involutions. By Lüroth’s Theorem, KL is a rational field K(z).

So Gal(K(z)/K(t)) is a subgroup of Gal(L/K(t)). Also, the index is at most 2.

The group of K-automorphisms of K(z) is PGL2(K) acting as linear fractional

transformations of z. Thus, to determine factors of degree at most 2 of f(X)−g(Y ),

we have to determine the cyclic and dihedral subgroups of PGL2(K), and analyze

the cases which give pairs f, g such that f(X)− g(Y ) has a quadratic factor over

K. We may show (see [11]):

Proposition. Let K be an algebraically closed field of characteristic p, and ρ ∈
PGL2(K) be an element of finite order n. Then one of the following holds:

(a) p does not divide n, and ρ is conjugate to

(
1 0

0 ζ

)
, where ζ is a primitive

n-th root of unity.

(b) n = p, and ρ is conjugate to

(
1 1

0 1

)
.

Using this, we may deduce the following (loc. cit.). First, we introduce two

notations. For u, v ∈ K[X], write u ∼ v if and only if there are linear polynomials

L,R ∈ K[X] with u(X) = L(v(R(X))). Also, for a ∈ K, the Dickson polynomial

Dn(X, a) is defined by Dn(z + a/z, a) = zn + (a/z)n. It turns out that we have

the following theorem.

Theorem 2.4. Let f, g ∈ K[X] be non-constant polynomials over a field K, such

that f(X) − g(Y ) ∈ K[X,Y ] has a quadratic irreducible factor q(X,Y ). If the

characteristic p of K is positive, then assume that at least one of the polynomials

f, g cannot be written as a polynomial in Xp. Let deg f = n. Then there are

f1, g1,Φ ∈ K[X] with f = Φ◦f1, g = Φ◦g1 such that q(X,Y ) divides f1(X)−g1(Y ),

and one of the following holds

(a) max(degf1,degg1) = 2 and q(X,Y ) = f1(X)− g1(Y ).

(b) There are α, β, γ, δ ∈ K with g1(X) = f1(αX+β), and f1(X) = h(γX+δ),

where h(X) is one of the following polynomials.

(i) p does not divide n, and h(X) = Dn(X, a) for some a ∈ K. If a 6= 0,

then ζ + 1/ζ ∈ K where ζ is a primitive n-th root of unity.

(ii) p ≥ 3, and h(X) = Xp − aX for some a ∈ K.

(iii) p ≥ 3, and h(X) = (Xp + aX + b)2 for some a, b ∈ K.

(iv) p ≥ 3, and h(X) = Xp − 2aX
p+1
2 + a2X for some a ∈ K.

(v) p = 2, and h(X) = X4 + (1 + a)X2 + aX for some a ∈ K.
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(c) n is even, p does not divide n, and there are α, β, γ, a ∈ K such that

f1(X) = Dn(X+β, a), g1(X) = −Dn((αX+γ)(ξ+1/ξ), a). Here ξ denotes

a primitive 2n-th root of unity. Furthermore, if a 6= 0, then ξ2+1/ξ2 ∈ K.

(d) p ≥ 3, and there are quadratic polynomials u(X), v(X) ∈ K[X], such that

f1(X) = h(u(X)) and g1(X) = h(v(X)) with h(X) = Xp−2aX
p+1
2 +a2X

for some a ∈ K.

The theorem excludes the case that f and g are both polynomials in Xp. The

following theorem handles this case; a repeated application of it reduces to the

situation of the Theorems

Theorem 2.5. Let f, g ∈ K[X] be non-constant polynomials over a field K, such

that f(X)− g(Y ) ∈ K[X,Y ] has an irreducible factor q(X,Y ) of degree at most 2.

Suppose that f(X) = f0(Xp) and g(X) = g0(Xp), where p > 0 is the characteristic

of K. Then one of the following holds:

(a) q(X,Y ) divides f0(X)− g0(Y ), or

(b) p = 2, f(X) = f0(X2), g(X) = f0(aX2 + b) for some a, b ∈ K, and

q(X,Y ) = X2 − aY 2 − b.

2.7. Bounded generation and finite width. The matrix groups over integers

like SLn(Z) are finitely generated and even have finite presentations. However,

a remarkable refinement of the first property came to the fore in the work of

A.S.Rapinchuk. This is known as bounded generation. An abstract group G is

said to be boundedly generated of degree ≤ n if there exists a sequence of (not

necessarily distinct) elements g1, · · · , gn such that

G =< g1 >< g2 > · · · < gn >

that is,
G = {ga11 ga22 · · · gann : ai ∈ Z}.

A free, non-abelian group (and therefore, SL2(Z) also) is not boundedly generated.

On the other hand, a group like SLn(Z) for n ≥ 3, is boundedly generated by

elementary matrices (an elementary proof of this can be given using Dirichlet’s

theorem on primes in arithmetic progressions). It turns out that this difference is

an indicator of a deeper attribute called the congruence subgroup property; viz.,

every subgroup of finite index in SLn(Z) for n ≥ 3 contains a subgroup of the

form

Ker(SLn(Z)→ SLn(Z/kZ))

This was revealed in the work of V.P.Platonov & A.S.Rapinchuk ([21]) and also

in the work of A.Lubotzky ([16]).

Matrix groups which are finitely generated have an abundance of subgroups

of finite index. More precisely, they are residually finite - that is, the intersection

of all subgroups of finite index is the trivial group. In this case, it is beneficial to

define a topology using as a basis the subgroups of finite index - residual finiteness
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guarantees this is Hausdorff. The completion with respect to this topology is

known as the profinite completion; this is a compact group in which the original

group embeds.

A finitely generated group for which the normal subgroups which have indices

powers of a (fixed) prime p intersect in the identity, is said to be residually-p. The

corresponding profinite completion is called the pro-p completion. In general, a

profinite group is formed by putting together a tower of finite groups by a limiting

process; a classical example is that of Galois group of the algebraic closure. Notions

involved in the theory of finite groups and many properties find resonance in the

theory of profinite groups and the topology available in the latter theory makes it

possible to deduce properties of abstract, discrete groups.

A profinite group G is said to be boundedly generated as a profinite group if there

exists a sequence of (not necessarily distinct) elements g1, · · · , gn such that
G = < g1 >< g2 > · · ·< gn >

where the ‘bar’ denotes closure.

It follows from Lazard’s deep work on p-adic Lie groups (see [12]) and the solution

to the restricted Burnside problem that a pro-p group has bounded generation

(as a profinite group) if and only if it is a p-adic compact Lie group; this can be

thought of as an analogue of Hilbert’s 5th problem for the p-adic case.

If an abstract group has bounded generation, then so do its pro-p completions for

each prime p (as does the full profinite completion). Therefore, we have a nice

sufficient criterion for an abstract group to have a faithful linear representation -

viz., if it has bounded generation and is virtually residually-p. We can use this

idea to show that the automorphism group of a free group does not have bounded

generation (see [26]).

The question of existence of bounded generation for matrix groups over number-

theoretic rings has rather deep connections with other properties. The profinite

completion of an arithmetic group is boundedly generated if, and only if, it has the

congruence subgroup property - this was proved independently by V. P. Platonov

& A. S. Rapinchuk and by A. Lubotzky (see [21]) and [16]). Lubotzky also conjec-

tured that the congruence subgroup property holds for an S-arithmetic group if,

and only if, it can be embedded as a closed subgroup of SLn(A) - a so-called adelic

group. This was proved in [22], where we also conjectured that finitely generated

closed subgroups of adelic groups have bounded generation. Then M.Liebeck &

L.Pyber proved ([15]) that if G is a subgroup of GLn(K) where K is of character-

istic p which is large compared to n, and if G is generated by elements of orders

powers of p, then G is a product of 25 Sylow p-subgroups. They used it to prove

our conjecture mentioned above.

It is still an intriguing open question as to whether the property of bounded

generation for an S-arithmetic group Γ equivalent to bounded generation for its
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profinite completion (which is, as mentioned earlier, equivalent to the congruence

subgroup property holding good for Γ). The answer is perhaps in the negative and

certain arithmetic subgroups of Sp(n, 1) could provide counter-examples. More-

over, this is a subtle question specific to arithmetic groups and not for more general

profinite groups because the group
∏
r≥1 PSLn(F2r ) is boundedly generated group

as a profinite group but none of its discrete subgroups is boundedly generated.

O.Tavgen proved bounded generation of arithmetic groups in rank > 1 groups

(see [33]). However, bounded generation for co-compact arithmetic lattices is still

an open question in general excepting the case of quadratic forms (see [8]); note

here that there are no unipotent elements.

A notion related to but weaker than bounded generation is that of finite width

wirh respect to a subset defined as follows.

A group G has finite width with respect to a subset E if there exists a positive

integer n such that each element of G can be expressed as g = e1e2 · · · er with

r ≤ n and ei ∈ E.

If we look at rings R that are finitely generated as abelian groups, then

SL(n,R) has bounded generation if it has finite width with respect to the set

of all elementary matrices Xij(t) with t ∈ R and i 6= j.

More generally, for any commutative ring R, one could look at the question

of finite width for elementary group En(R) which may be a proper subgroup of

SL(n,R). It is not difficult to check that En(R) has this property if and only if

K1(n,RN)→ K1(n,R)N is injective, where the K-group K1 is the quotient of GL

by E.
3. Finite unipotent width over stable rank 1 rings

We describe some results on finite width obtained in collaboration with Vavilov

and Smolensky. The following problem arises in several independent contexts. It

addresses Chevalley groups which we will describe shortly.

Problem. For a commutative ring R, find the shortest factorization

G = UU−UU− . . . U± of an elementary Chevalley group E(Φ, R), in terms of

the unipotent radical U = U(Φ, R) of the standard Borel subgroup B = B(Φ, R),

and the unipotent radical U− = U−(Φ, R) of the opposite Borel subgroup B− =

B−(Φ, R).

There are following two problems here.

• first, to establish the existence of such factorizations, and

• second, to estimate their length.

We can prove the following theorem for rings of stable rank 1 ( [28]).

Theorem 3.1. Let Φ be a reduced irreducible root system and R be a commutative

ring such that the stable rank of R is 1. Then the elementary Chevalley group

E(Φ, R) admits a uni-triangular factorisation

E(Φ, R) = U(Φ, R)U−(Φ, R)U(Φ, R)U−(Φ, R)
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of length 4. Further, 4 is the minimum possible for such a result to hold good if R

has a nontrivial unit.

Here, a commutative ring has stable rank 1, if for all x, y ∈ R, which generate

R as an ideal, there exists a z ∈ R such that x+ yz is invertible. In this case we

write sr(R) = 1. Examples of ring of stable rank 1 are semilocal rings, and the

ring of ALL algebraic integers.

The same method allows us to prove (see [29]) the following theorem.

Theorem 3.2. With R as above, the elementary Chevalley group E(Φ, R) admits

a Gauss decomposition

E(Φ, R) = (T (Φ, R) ∩ E(Φ, R))U(Φ, R)U−(Φ, R)U(Φ, R).

Conversely, if Gauss decomposition holds for some elementary Chevalley group,

then sr(R) = 1.

Actually, a corollary of this last theorem is the following statement which also

shows theorem 3.1 holds at least in the weaker form with length 5.

Corollary 3.3. Let Φ be a reduced irreducible root system and R be a commutative

ring such that sr(R) = 1. Then any element g of the elementary Chevalley group

E(Φ, R) is conjugate to an element of

U(Φ, R)H(Φ, R)U−(Φ, R).

In the 1960’s, N. Iwahori & H. Matsumoto, E. Abe & K. Suzuki, and M. Stein

discovered (see [1], [2], [10], [30]) that Chevalley groups G = G(Φ, R) over a

semilocal ring admit the remarkable Gauss decomposition G = TUU−U , where

T = T (Φ, R) is a split maximal torus, whereas U = U(Φ, R) and U− = U−(Φ, R)

are unipotent radicals of two opposite Borel subgroups B = B(Φ, R) and B− =

B−(Φ, R) containing T . It follows from the classical work of Hyman Bass and

Michael Stein that for classical groups Gauss decomposition holds under weaker

assumptions such as sr(R) = 1 or asr(R) = 1. Later N. Vavilov noticed that

condition sr(R) = 1 is necessary for Gauss decomposition to be valid. In our

theorems, we show that for the elementary group E(Φ, R), the condition sr(R) = 1

is also sufficient for Gauss decomposition to hold good. In other words, E =

HUU−U , where H = H(Φ, R) = T ∩ E. This surprising result pinpoints the fact

that stronger conditions on the ground ring, such as being semi-local, asr(R) = 1,

sr(R,Λ) = 1, etc., were only needed to guarantee that for simply connected groups

G = E, rather than to verify the Gauss decomposition itself. Our method of proof

is an elaboration of a beautiful idea of O. Tavgen ([32]).

Results equivalent to writing matrices in terms of upper and lower triangular ma-

trices have been proved piece-meal in various situations by programmers working

on computational linear algebra and others ([20],[13], [5], [3], [9], [27], [34]). So,

results such as the above unitriangular factorization admit potential applications

in computational linear algebra, wavelet theory, computer graphics and Control
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theory. For instance, the one-dimensional shears correspond to transvections that

are standard in the study of matrix groups over rings.

3.1. Number rings-finite width. Number-theoretic rings are usually more com-

plicated. Over the ring Z[1/p], we prove (see [28]):

Theorem 3.4. Let p be a prime. The elementary Chevalley group E
(

Φ,Z
[
1
p

])
admits unitriangular factorisation

E

(
Φ,Z

[
1

p

])
=

(
U

(
Φ,Z

[
1

p

])
U−
(

Φ,Z
[

1

p

]))3

of length 6.

The theorem is deduced from the one below for SL2 which we can prove in the

following slightly stronger form.

Lemma 3.5.

SL2

(
Z

[
1

p

])
= UU−UU−U = U−UU−UU−.

From this factorization, we deduce explicitly that SL2(Z[ 1p ]) has bounded

generation. This is known earlier (see [14]), but the bounded generation was

deduced either using generalized Riemann Hypothesis or deep analytic results like

Vinogradov’s three primes theorem or an indirect model-theoretic proof is given

where there was no information on the degree of bounded generation.

Such factorizations can be treated by relating them to division chains (see

[6]) in the ring Z[ 1p ]. Note that expressing a matrix in the group SL(2, R) over

a Euclidean ring R as a product of elementary matrices is equivalent to studying

continued fractions. Existence of arbitrary long division chains in Z shows that the

group SL(2,Z) cannot have bounded width in elementary generators. If

(
A C

B D

)
is in SL2(Z[ 1p ]), then we have the following lemma.

Lemma 3.6. A = Q1B +R1, B = Q2R1 +R2 R1 = Q3R2 + 1.

Thus (
1 0

−R2 1

)(
1 −Q3

0 1

)(
1 0

−Q2 1

)(
1 −Q1

0 1

)(
A C

B D

)
=

(
1 ∗
0 1

)

3.2. Number rings - explicit bounded generation. Using the above theorem,

for the matrices T =

(
p−1 0

0 p

)
, U1 =

(
1 1

0 1

)
and V1 =

(
1 0

1 1

)
, we can

deduce unconditionally the following theorem.

Theorem 3.7. Let p be a prime number. Then SL2(Z[ 1p ]) has bounded generation

of degree at the most 11. In fact, we have

SL2(Z[1/p]) = {T a1U b11 T a2V
c1
1 T a3U b21 T

a4V c21 T a5U b31 T
a6 : ai, bi, ci ∈ Z}.
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One should note that this is not completely straightforward from the above uni-

triangular factorization theorem because one can show that the group SL2(Z[1/p])

cannot have bounded generation with respect to only unipotent matrices!

Let us mention in passing that some matrix groups over rings of polynomials

are finitely generated but are not boundedly generated. For instance, the group

of 2 × 2 matrices

(
tm tnf(t)

0 1

)
where f is any polynomial with integer coeffi-

cients and m,n are any integers, is an infinite group (it can be identified with the

wreath product of Z by Z) and it has an infinitely generated abelian subgroup,

but is itself generated by just two matrices

(
t 0

0 1

)
and

(
1 1

0 1

)
. One can prove

by combinatorial methods that the above matrix group does not have bounded

generation. In fact, we have (see [18]) the following result.

If A and B are groups then A oB has bounded generation if and only if A has

bounded generation and B is finite.

4. Elementary Chevalley groups over rings
We now proceed to introduce the Chevalley groups and the elementary sub-

groups occurring in the statements of our theorems 1 and 2.

Let Φ be a reduced irreducible root system of rank l, W = W (Φ) be its

Weyl group and P be a lattice intermediate between the root lattice Q(Φ) and the

weight lattice P(Φ). Further, we fix an order on Φ and denote by Π = {α1, . . . , αl},
Φ+ and Φ− the corresponding sets of fundamental, positive and negative roots,

respectively.

It is classically known that with these data one can associate the Chevalley

group G = GP(Φ, R) for any ring R; this is the group of R-points of an affine

groups scheme GP(Φ,−) - the Chevalley-Demazure group scheme. The group is

said to be simply connected (res. adjoint) if P is the weight lattice (resp. root

lattice). Since our results do not depend on the choice of the lattice P, we will

usually assume that P = P(Φ) and omit any reference to P in the notation. Thus,

G(Φ, R) will denote the simply connected Chevalley group of type Φ over R.

Fix a split maximal torus T (Φ,−) of the group scheme G(Φ,−) and set T =

T (Φ, R). Fix isomorphisms xα : R 7→ Xα. Here, the elements xα(ξ); ξ ∈ R, α ∈ Φ

are called root unipotents and, the root groups Xα comprised of these elements

when ξ varies in R, are interrelated by the Chevalley commutator formulae. The

root subgroups Xα, α ∈ Φ generate the elementary subgroup E(Φ, R) of G(Φ, R).

Let α ∈ Φ and ε ∈ R∗. Set hα(ε) = wα(ε)wα(1)−1, where wα(ε) =

xα(ε)x−α(−ε−1)xα(ε). The elements hα(ε) are called semisimple root elements.

For a simply connected group one has

T = T (Φ, R) = 〈hα(ε), α ∈ Φ, ε ∈ R∗〉.

One also defines H(Φ, R) = T (Φ, R)∩E(Φ, R). Let N = N(Φ, R) be the algebraic
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normalizer of the torus T = T (Φ, R), i. e. the subgroup, generated by T = T (Φ, R)

and all elements wα(1), α ∈ Φ. The factor-group N/T is canonically isomorphic

to the Weyl group W , and for each w ∈W we fix its preimage nw in N .

The theorems 1 and 2 stated above generalize and strengthen results which were

proved piecemeal over finite fields by several authors with a much simpler, uniform

proof. Recall the statements again in the following form.

Theorem 4.1. E(Φ, R) admits a Gauss decomposition

E(Φ, R) = H(Φ, R)U(Φ, R)U−(Φ, R)U(Φ, R).

Conversely, if Gauss decomposition holds for some elementary Chevalley group,

then sr(R) = 1.

Corollary 4.2. ( to Theorem 1). We have a unitriangular factorisation

E(Φ, R) = U(Φ, R)U−(Φ, R)U(Φ, R)U−(Φ, R)

of length 4. Further, 4 is the minimum possible for such a result to hold good if R

has a nontrivial unit.

The proofs rely on a beautiful idea of Oleg Tavgen on rank reduction (see [32]);

we use the fact that for systems of rank ≥ 2 every fundamental root falls into

the subsystem of smaller rank obtained by dropping either the first or the last

fundamental root. One needs to study elementary parabolic subgroups then. We

just discuss a toy case first.

4.1. Toy case of theorem 3.1. The following lemma is this Toy case.

Lemma 4.3. Let R be a commutative ring of stable rank 1. Then

SL(2, R) = U(2, R)U−(2, R)U(2, R)U−(2, R).

In particular, SL(2, R) = E(2, R).

The toy case is the only place where the stability condition on R is invoked. To

deduce the general theorem, we use only the theory of linear algebraic groups. Let

us prove the toy case above.

proof. Let us trace how many elementary transformations one needs to bring an

arbitrary matrix g =

(
a b

c d

)
∈ SL(2, R) to the identity. We will not introduce

new notation at each step, but rather replace the matrix g by its current value,

as is common in computer science. Obviously, its entries a, b, c, d should be also

reset to their current values at each step.

Step 1. Multiplication by a single lower elementary matrix on the right allows

to make the element in the South-West corner invertible.

Indeed, since the rows of the matrix are unimodular, one has cR + dR = R and

since sr(R) = 1, there exists such an z ∈ R, that c+ dz ∈ R∗. Thus,

gt21(z) =

(
a+ bz b

c+ dz d

)
.
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Step 2. We (can) assume that c ∈ R∗; then, multiplication by a single upper

elementary matrix on the right allows to make the element in the South-East

corner equal to 1. Indeed,

gt12(c−1(1− d)) =

(
a b+ ac−1(1− d)

c 1

)
.

Step 3. We (can) assume that d = 1; so, multiplication by a single lower ele-

mentary matrix on the right allows to make the element in the South-West corner

equal to 0. Indeed,

gt21(−c) =

(
a− bc b

0 1

)
.

Since det(g) = 1, the matrix on the right hand side is equal to t12(b). Bringing

all elementary factors to the right hand side, we see that any matrix g with de-

terminant 1 can be expressed as a product of the form t12(∗)t21(∗)t12(∗)t21(∗), as

claimed in the lemma.
4.2. A concrete case of theorem 3.2. We discuss a special concrete case. If

N(n,R) is the group of monomial matrices over any commutative ring R, then we

have the following result.

Proposition 4.4. Let R be an arbitrary commutative ring. Then one has the

following inclusion N(n,R) ⊆ U(n,R)U−(n,R)U(n,R)U−(n,R).

Proof. Let g = (gij) ∈ N(n,R). Let us argue by induction on n ≥ 2.

Case 1. First, let gnn = 0. Then, there exists a unique 1 ≤ r ≤ n − 1 such that

a = grn 6= 0 and a unique 1 ≤ s ≤ n− 1 such that b = gns 6= 0, all other entries in

the s-th and the n-th columns are equal to 0. Since g is invertible, automatically

a, b ∈ R∗. The matrix gtsn(b−1) differs from g only in the position (n, n), where

now we have 1 instead of 0. Consecutively multiplying the resulting matrix on the

right by tns(−b) and then by tsn(b−1), we get the matrix h, which differs from g

only at the intersection of the r-th and the n-the rows with the s-th and the n-th

columns, where now instead of

(
0 a

b 0

)
one has

(
−ab 0

0 1

)
.

Observe, that the determinant of the leading submatrix of order n− 1 of the

matrix h equals 1, and thus we can apply induction hypothesis and obtain for that

last matrix the desired factorisation in the group SL(n− 1, R). This factorisation

does not affect the last row and the last column. We have shown

gtsn(b−1)tns(−b)tsn(b−1) = u1u
−
1 u2u

−
2 ,

where these matrices have no role in the n-th row and column. As they normalize

the tsn’s and the tns’s, the proof can be completed in this case; this is where the

general root system requires a carefully proved normalization result stated below

as key lemma.

Case 2. Let b = gnn 6= 0. Take arbitrary 1 ≤ r, s ≤ n−1 for which a = grs 6= 0.

Again, automatically a, b ∈ R∗. As in the previous case, let us concentrate on the
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r-th and the n-th rows and the s-th and the n-th columns. Since there are no

further non-zero entries in these rows and columns, any additions between them

do not change other entries of the matrix, and only affect the submatrix at the

intersection of the r-th and the n-th rows with the s-th and the n-th columns.

Now, multiplying g by tns(b
−1)tsn(1− b)tns(−1)tns(−b−1(1− b)) on the right, we

obtain the matrix h, where this submatrix, which was initially equal to

(
a 0

0 b

)
,

will be replaced by

(
ab 0

0 1

)
. At this point the proof can be finished in exactly

the same way as in the previous case.

4.3. Towards the proof - elementary parabolics. The main role in the proofs

in general is played by Levi decomposition for elementary parabolic subgroups.

Denote by mk(α) the coefficient of αk in the expansion of α with respect to the

fundamental roots

α =
∑

mk(α)αk, 1 ≤ k ≤ l.

Fix any r = 1, . . . , l - in fact, in the reduction to smaller rank it suffices to employ

only terminal parabolic subgroups, even only the ones corresponding to the first

and the last fundamental roots, r = 1, r = l.

Denote by

S = Sr =
{
α ∈ Φ, mr(α) ≥ 0

}
the r-th standard parabolic subset in Φ. As usual, the reductive part ∆ = ∆r and

the special part Σ = Σr of the set S = Sr are defined as

∆ =
{
α ∈ Φ, mr(α) = 0

}
, Σ =

{
α ∈ Φ, mr(α) > 0

}
.

The opposite parabolic subset and its special part are defined similarly as

S− = S−r =
{
α ∈ Φ, mr(α) ≤ 0

}
, Σ− =

{
α ∈ Φ, mr(α) < 0

}
.

Obviously, the reductive part of S−r equals ∆.

Denote by Pr the elementary maximal parabolic subgroup of the elementary

group E(Φ, R). By definition

Pr = E(Sr, R) =
〈
xα(ξ), α ∈ Sr, ξ ∈ R

〉
.

By the Levi decomposition

Pr = Lr i Ur = E(∆, R) i E(Σ, R).

Recall that

Lr = E(∆, R) =
〈
xα(ξ), α ∈ ∆, ξ ∈ R

〉
,

whereas

Ur = E(Σ, R) =
〈
xα(ξ), α ∈ Σ, ξ ∈ R

〉
.

A similar decomposition holds for the opposite parabolic subgroup P−r , whereby

the Levi subgroup is the same as for Pr, but the unipotent radical Ur is replaced

by the opposite unipotent radical U−r = E(−Σ, R). As a matter of fact, we use

Levi decomposition in the following form. It will be convenient to slightly change
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the notation and write U(Σ, R) = E(Σ, R) and U−(Σ, R) = E(−Σ, R).

Lemma 4.5. (Key Lemma) The group
〈
Uσ(∆, R), Uρ(Σ, R)

〉
, where σ, ρ = ±1,

is the semidirect product of its normal subgroup Uρ(Σ, R) and the complementary

subgroup Uσ(∆, R).

In other words, the subgroup U±(∆, R) normalizes each of the groups U±(Σ, R)

so that, in particular, one has the following four equalities for products

U±(∆, R)U±(Σ, R) = U±(Σ, R)U±(∆, R).

Furthermore, the following four obvious equalities for intersections hold

U±(∆, R) ∩ U±(Σ, R) = 1.

In particular, one has the following decompositions

U(Φ, R) = U(∆, R) i U(Σ, R), U−(Φ, R) = U−(∆, R) i U−(Σ, R).

5. Idea of proofs of theorems 1 and 2

Start with the following result which is easy, well known, and very useful.

Lemma 5.1. The elementary Chevalley group E(Φ, R) is generated by unipotent

root elements xα(ξ), α ∈ ±Π, ξ ∈ R, corresponding to the fundamental and

negative fundamental roots.

Proof. Indeed, every root is conjugate to a fundamental root by an element

of the Weyl group, while the Weyl group itself is generated by the fundamental

reflections wα, α ∈ Π. Thus, the elementary group E(Φ, R) is generated by the

root unipotents xα(ξ), α ∈ Π, ξ ∈ R, and the elements wα(1), α ∈ Π. It remains

only to observe that wα(1) = xα(1)x−α(−1)xα(1).

Further, let B = B(Φ, R) and B− = B−(Φ, R) be a pair of opposite Borel

subgroups containing T = T (Φ, R), standard with respect to the given order.

Recall that B and B− are semidirect products B = T i U and B− = T i U−, of

the torus T and their unipotent radicals

U = U(Φ, R) =
〈
xα(ξ), α ∈ Φ+, ξ ∈ R

〉
,

U− = U−(Φ, R) =
〈
xα(ξ), α ∈ Φ−, ξ ∈ R

〉
.

Recall that a subset S in Φ is closed , if for any two roots α, β ∈ S whenever

α + β ∈ Φ, already α + β ∈ S. For closed S, define E(S) = E(S,R) to be the

subgroup generated by all elementary root unipotent subgroups Xα, α ∈ S:

E(S,R) = 〈xα(ξ), α ∈ S, ξ ∈ R〉.

In this notation, U and U− coincide with E(Φ+, R) and E(Φ−, R), respectively.

The groups E(S,R) are particularly important in the case where S ∩ (−S) = ∅.

In this case E(S,R) coincides with the product of root subgroups Xα, α ∈ S, in

some/any fixed order.

Again, let S ⊆ Φ be a closed set of roots; then S can be decomposed into a

disjoint union of its reductive = symmetric part Sr, consisting of those α ∈ S, for
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which −α ∈ S, and its unipotent part Su, consisting of those α ∈ S, for which

−α 6∈ S. The set Sr is a closed root subsystem, whereas the set Su is special.

Moreover, Su is an ideal of S (i.e., if α ∈ S, β ∈ Su and α + β ∈ Φ, then

α+ β ∈ Su).

Levi decomposition shows that the group E(S,R) decomposes into the semidi-

rect product E(S,R) = E(Sr, R) i E(Su, R) of its Levi subgroup E(Sr, R) and

its unipotent radical E(Su, R).

5.1. Reduction to smaller rank. As mentioned earlier, the proofs depend on

the reduction of rank as in the following theorem.

Theorem 5.2. Let Φ be a reduced irreducible root system of rank l ≥ 2, and R

be a commutative ring.

(a) Suppose that for subsystems ∆ = ∆1,∆l the elementary Chevalley group

E(∆, R) admits unitriangular factorisation

E(∆, R) = (U(∆, R)U−(∆, R))L.

Then the elementary Chevalley group E(Φ, R) admits unitriangular factorisation

E(Φ, R) = (U(Φ, R)U−(Φ, R))L.

of the same length 2L.

(b) Suppose that for subsystems ∆ = ∆1,∆l the elementary Chevalley group

E(∆, R) admits the Gauss decomposition

E(∆, R) = H(∆, R)U(∆, R)U−(∆, R)) · · ·U±(∆, R)

of length L. Then, the elementary Chevalley group E(Φ, R) admits the Gauss

decomposition

E(Φ, R) = H(Φ, R)U(Φ, R)U−(Φ, R)) · · ·U±(Φ, R)

of the same length L.

Clearly, Theorem 2 immediately follows from Theorem 5.2 and the rank 1 case;

so, it only remains to prove Theorem 5.2.

Observation. If Y is a subset in E(Φ, R) and if X is a symmetric generating set

satisfying XY ⊆ Y , then clearly Y = G.

Therefore, to prove (a), we will prove XY ⊆ Y with X =
{
xα(ξ) | α ∈ ±Π, ξ ∈ R

}
and Y = (U(Φ, R)U−(Φ, R))L. The proof of (b) is similar with the same X and

Y = H(Φ, R)U(Φ, R)U−(Φ, R) · · ·U±(Φ, R).

Proof of Theorem 5.2. As we noted, the group G is generated by the funda-

mental root elements X =
{
xα(ξ) | α ∈ ±Π, ξ ∈ R

}
. Thus, to prove (a), it suffices

to prove that XY ⊆ Y where Y = (U(Φ, R)U−(Φ, R))L.

Fix a fundamental root unipotent xα(ξ). Since rk(Φ) ≥ 2, the root α belongs

to at least one of the subsystems ∆ = ∆r, where r = 1 or r = l, generated by all

fundamental roots, except for the first or the last one, respectively. Set Σ = Σr

and express U±(Φ, R) in the form

U(Φ, R) = U(∆, R)U(Σ, R), U−(Φ, R) = U−(∆, R)U−(Σ, R).
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We see that
Y = (U(∆, R)U−(∆, R))L(U(Σ, R)U−(Σ, R))L.

Since α ∈ ∆, one has xα(ξ) ∈ E(∆, R), so that the inclusion xα(ξ)Y ⊆ Y imme-

diately follows from the assumption. This completes the proof of theorem 5.2 (a).

The proof of (b) is entirely similar with

Y = H(Φ, R)U(Φ, R)U−(Φ, R) . . . U±(Φ, R).

Remarks. To prove theorems 1 and 2, in theorem 5 above, one needs the decom-

position of E(∆, R) only for subsystems ∆ whose union contains all the funda-

mental roots. These subsystems do not have to be terminal as in theorem 5.
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[2] Abe, E. and Suzuki, K., On normal subgroups of Chevalley groups over commutative rings.
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