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Many congruences in elementary number theory can be rephrased in the
language of group theory. Apart from being interesting in its own right, the
group-theoretic rephrasing often gives a more conceptual proof of a number-
theoretic result such as Fermat’s little theorem. Consider the group Z∗n of
integers less than n and co-prime to n under multiplication modulo n. The
classical Wilson’s congruence (p − 1)! ≡ −1 mod p for a prime p can be
viewed as the assertion

∏
a∈Z∗p a = p− 1. Each element cancels out with its

inverse and we are left with the product of all those elements which are their
own inverses. As p is prime, p|(a2 − 1) has the two solutions a = 1, p − 1;
hence, the product of all the elements of this group is p − 1, which gives
the Wilson congruence. The immediate question which arises after looking
at the above proof is what happens for a non-prime n when we look at the
product

∏
a∈Z∗n a. The interesting result which emerges is embodied in the

following signature lemma - so christened because it gives us the values ±1
depending on whether primitive roots mod n exist or not.

Signature lemma.
If s(n) denotes the product of all the elements of Z∗n, we have s(n) = −1
if n = 2, 4, pk, or 2pk for some odd prime p and some k ≥ 1. If n is none
of these, then s(n) = 1. In other words, by the well-known characterization
of numbers which admit primitive roots, we have s(n) = ∓1 according as to
whether Z∗n is cyclic or not.

Proof.
If Z∗n is cyclic, then for any generator a, we have

s(n) =
φ(n)∏

i=1

ai = a
∑

i
i = a(φ(n)+1)φ(n)/2 = aφ(n)/2.

In a cyclic group of even order, there is a unique subgroup of order 2 and
so −1 is the only element of order 2 in Z∗n. But, since s(n) above clearly
has order 2, it follows that s(n) = −1 when Z∗n is cyclic. Note that this also
includes the trivial group Z∗2 as 1 = −1 in it.
As we are in an abelian group, in the product s(n), all elements cancel with
their inverses except for those elements which are their own inverses. In
other words, s(n) is the product of all a ∈ Z∗n which satisfy a2 = 1.
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For a prime n, this is Wilson’s theorem.
We suppose n is arbitrary and > 2. Now, each such a in Z∗n has a unique b
for which ab = −1. Clearly, b2 = 1 as well. Moreover, as n 6= 2, b 6= a.
Hence if N(n) denotes the number of elements a such that a2 = 1, then
we have s(n) = (−1)N(n)/2. Now, clearly N(n) is the order of Z∗n/(Z∗n)2

as it is the order of the kernel of the squaring map on Z∗n. But, from
the Chinese remainder theorem, note that under the isomorphism of Z∗n
with the product of Z∗

p
ki
i

where n =
∏

i p
ki
i , the squares in Z∗n map onto

the squares in each component. Hence N(n) is a multiplicative function.
Note that N(n) is even for all n > 2 since in a group of even order, the
number of elements of exponent 2 is even. Now, we consider an arbitrary
n > 1 and the corresponding N(n). As noted above, if n =

∏r
i=1 pki

i ,
then N(n) =

∏r
i=1 N(pki

i ). Thus, if r > 1, then N(n) ≡ 0 mod 4 unless
n = 2pk for some odd prime p and some k ≥ 0. This gives clearly that
s(n) = (−1)N(n) = 1 if r > 1 unless n = 2 or 2pk for some odd prime p. In
the cases n = 2pk with k ≥ 0, we have already seen that s(n) = −1.
Finally suppose r = 1 i.e., n = pk for some prime p. If p is odd, we
have already checked that s(n) = −1. If p = 2, then s(2) = 1 = −1 and
s(4) = −1. But, in Z∗

2k with k ≥ 3, it can be seen after a little calculation
that the only elements a satisfying a2 = 1 are ±1, 2k−1 ± 1; so N(2k) = 4
for all k ≥ 3. In this case, we therefore have s(2k) = (−1)N(2k) = 1.
Thus, we have proved the claim that s(n) = 1 if Z∗n is not cyclic.

Remarks.
In what follows, perhaps a good third year undergraduate course in group
theory is desirable to fully appreciate the results. From the above signature
lemma, it becomes clear that s(n) = 1 (respectively −1) when there are
at least two (respectively, exactly one) elements of order 2. This, in turn,
is equivalent to the presence of more than one (respectively, exactly one)
subgroup of order 2 in Z∗n. Looking at the product expression Z∗

2αp
α1
1 ···pαk

k

∼=
Z∗2α × Z∗

p
α1
1
· · · × Z∗

p
αk
k

, it is clear that Z∗
2αp

α1
1 ···pαk

k

has a unique subgroup of

order 2 if, and only if, the 2-Sylow subgroup is cyclic. Thus, s(n) = −1 or 1
according as to whether the 2-Sylow subgroup is cyclic or not. This points
to the possibility of generalizing it to non-abelian groups where the 2-Sylow
subgroups are cyclic. In fact, one can prove the following generalization.
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A non-abelian generalization :
Let G be a finite (not necessarily abelian) group whose 2-Sylow subgroups
are cyclic. Let w ∈ G be any involution (that is, an element of order 2).
Then, if [G, G] denotes the commutator subgroup of G (this consists of all
finite products of elements of the form xyx−1y−1), the coset w[G,G] is a
nontrivial element of the quotient group G/[G,G] and, the product of all
the elements of G taken in any order belongs to this coset (and is, hence,
nontrivial). In particular, if G is abelian with cyclic 2-Sylow subgroup, the
product of all elements of G is the unique involution in G.

Note that the special case when G = Z∗n is cyclic gives us −1 as in the
signature lemma. We do not give the proof of this non-abelian version as
it involves a few slightly advanced tools like the Schur-Zassenhaus theorem
and also because we have been informed that it can be deduced from a
still more general result due to A.R.Rhemtulla (‘On a problem of L.Fuchs’,
Studia Scientifica Mathematica Hungarica, Vol. 4 (1969) 195-200).
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