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1 Introduction

Questions on counting often involve finding integer solutions† of equa-
tions of the form f(x) = g(y) for integral polynomials f, g. For instance,
for fixed but distinct natural numbers m, n, a natural question is how
often

(

x
m

)

=
(

y
n

)

or, more generally, whether the Diophantine equation

a
(

x
m

)

+ b
(

y
n

)

= c for some integers a, b, c with ab 6= 0, has only finitely many
integer solutions. Stoll & Tichy proved more generally that if a, b, c ∈ Q

and ab 6= 0, then for m > n ≥ 3, the above equation has only finitely
many integral solutions x, y. Independently, Rakaczki established a more
precise finiteness result on this binomial equation and extended this result
to more general equations (see Acta Arith. 110(2003), 339-360 and Peri-
odica Math. Hungar. 49(2004), 119-132). Another natural example comes
from counting lattice points in generalized octahedra. The number of inte-
gral points on the n-dimensional octahedron |x1| + |x2| + · · · + |xn| ≤ r is
given by the expression pn(r) =

∑n
i=0 2i

(

n
i

)(

r
i

)

and the question of whether
two octahedra of different dimensions m, n can contain the same number
of integral points becomes equivalent to the solvability of pm(x) = pn(y)
in integers x, y. This question was treated by Bilu, Stoll & Tichy who
showed that when m > n ≥ 2, the above equation has only finitely many
integral solutions. One more result of this kind proved by Stoll & Tichy
is that for the sequences of classical orthogonal polynomials pm(x) like
the Laguerre, Legendre and Hermite polynomials, an equation of the form
apm(x) + bpn(y) = c with a, b, c ∈ Q and ab 6= 0 and m > n ≥ 4 has only
finitely many solutions in integers x, y. The above results and many others
appearing in the last 5 or 6 years have been made possible by a beautiful
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theorem of Bilu & Tichy recalled below. To motivate it, let us start more
generally, for a polynomial F (x, y) ∈ Z[x, y], with the basic question of de-
ciding if F (x, y) = 0 has only finitely many solutions with x, y in Z. When
F (x, y) is absolutely irreducible, then a celebrated 1929 theorem due to
Siegel shows the finiteness of the number of integer solutions except when
the (projective completion of the) curve defined by F (x, y) = 0 has genus 0
and at most 2 points at infinity. This theorem generalizes also to S-integers
in algebraic number fields but is, unfortunately, ineffective. To determine
finiteness or otherwise of the integral solutions of any given F (x, y) = 0
using Siegel’s theorem, one splits F (x, y) into irreducible factors in Q[x, y],
and for each factor which is irreducible over Q̄ one finds the genus and the
number of points at infinity. Then, for each of those factors which have
genus 0 and ≤ 2 points at infinity, one can try to determine whether the
number of integral solutions is finite or not. The other most successful way
of tackling the problem of finiteness is the usage of Baker’s 1960’s method of
linear forms in logarithms. In several of the classical problems, F (x, y) has
the special form f(x) − g(y). In this case, there are nice results answering
the sub-problems which rise while attempting to apply Siegel’s theorem.
For instance, Ehrenfeucht (1958) proved:

If (deg f, deg g) = 1, then f(X) − g(Y ) is irreducible.
There are some cases when one can observe that f(X)− g(Y ) is reducible.
For instance, note that if f, g, F are arbitrary polynomials with deg F > 0,
then f1(X)−g1(Y ) is a factor of f(X)−g(Y ) where f(X) = F (f1(X)) and
g(Y ) = F (g1(Y )). Over C, Tn(X)+Tn(Y ) is a product of quadratic factors
(and a linear factor if n is odd) where Tn(X) is the Chebychev polynomial.
In general, Fried & MacRae (1969) proved:

f(X) − g(Y ) has a factor of the form f1(X) − g1(Y ) if, and only if,
there is F (T ) ∈ C[T ] such that

f(T ) = F (f1(T )) , g(T ) = F (g1(T )).

Fried had made a deep study of the factors of f(X) − g(Y ). He proved in
1973 that given f, g there are f1, f2, g1, g2 in Z[X ] such that:

(i) f(X) = f1(f2(X)), g(X) = g1(g2(X)),

(ii) Splitting fields of f1(X) − t and of g1(X) − t over Q(t) (where t is a
new indeterminate) are the same, and

(iii) the irreducible factors of f(X) − g(Y ) are in bijection with those of
f1(X) − g1(Y ).

Davenport, Fried, Lewis, Runge, Schinzel and Siegel are some people who
have made fundamental contributions to the question of irreducibility of
f(X) − g(Y ). In 2000, Y.Bilu & R.Tichy [5] obtained for the equation
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f(x) = g(y) with f ∈ Q[x], g ∈ Q[y], a remarkable theorem which makes
Siegel’s theorem much more explicit (although still ineffective). The Bilu-
Tichy theorem produces a set F of five families of pairs of polynomials
(called standard pairs) over Q, such that any pair (f, g) of polynomials
over Q for which the curve f(x) = g(y) has genus zero and at most two
points at infinity, is a pair in F upto a linear change of variables. Moreover,
they show that each pair (f, g) for which f(x) = g(y) has infinitely many
solutions can be determined from standard pairs. The theorem (recalled
as Theorem 3.1 below) has already been used in the last 5 or 6 years by
several authors to study the finiteness question for equations of the form
f(x) = g(y) where f and/or g are from an infinite sequence of polynomi-
als. In principle, whenever one has enough information about the possible
decompositions f(x) = f1(f2(x)), one can use the Bilu-Tichy theorem to
prove finiteness results for solutions of equations of the form f(x) = g(y).
See [2], [3], [6], [9], [10], [11], [12], [13] for some of these results. In all the
examples referred to, we have an equation of the form f(x) = g(y) where
f, g are from an explicit infinite sequence of polynomials. In fact, if {fm}
and {gn} are infinite sequences of polynomials with integer or rational co-
efficients, one considers for each fixed m and n, the equation fm(x) = gn(y)
for solutions in integers. Typically, the results proved are of the form that
the number of solutions is finite unless there is some restriction on m and
n. We note that due to the ineffective nature of the proofs here, if we do
not fix m, n and ask for a finiteness result, nothing is known. We mention
for instance the famous (and unproved as yet) conjecture Erdős made in
1975:

For every λ ∈ Q, the number of integral solutions (x, y, m, n) of

x(x + 1) · · · (x + m − 1) = λy(y + 1) · · · (y + n − 1)

with y ≥ x + m, min(m, n) ≥ 3, m > 1, n > 1 is finite.

In this paper, we prove finiteness of the number of rational solutions with
bounded denominators (and point out all the exceptions) for certain equa-
tions of the form f(x) = g(y) which includes the polynomials

f(x) = 1 + x +
x2

2
+

x3

3!
+ · · · +

xn

n!

for any n ≥ 3, and the Bernoulli polynomials Bn(x), where g is an arbitrary
polynomial of degree m ≥ 3 in Q[y]. The result for the Bernoulli polyno-
mials was obtained by us in August 2004 and subsequently we learnt that
C.Rakaczki [12] has obtained it independently. Before stating the main
results, we recall three definitions.



4 Manisha Kulkarni and B. Sury

For a polynomial P (x) ∈ C[x], a complex number c is said to be an
extremum, if P (x)− c has multiple roots. The type of c (with respect to P )
is defined to be the tuple (µ1, · · · , µs) of the multiplicities of the distinct
roots of P (x)− c. A polynomial over C is said to be indecomposable if it is
not of the form f1 ◦ f2 for complex polynomials f1, f2 of degrees ≥ 2.

We also need the definition of Dickson polynomial Dm(t, c) of degree m
given by

Dm(t, c) =

[ m
2 ]

∑

i=0

m

m − i

(

m − i
i

)

(−c)itm−2i.

The main results are:

Theorem 1.1 Let En(x) = 1 + x + x2

2! + x3

3! + · · · + xn

n! with n ≥ 3. Then,
we have:

(a) En is indecomposable for each n,

(b) for g ∈ Q[y] of degree m ≥ 3, the equation En(x) = g(y) has only
finitely many rational solutions with a bounded denominator except
in the following two cases:

(i) g(y) = En(h(y)) for some nonzero polynomial h(y) ∈ Q(y),
(ii) n = 3, m is odd, and g(x) = 1

3 + 1
6Dm(µ(x),−1), where µ is a

linear polynomial over Q.

In each exceptional case, there are infinitely many solutions.

As a matter of fact, the proof works more generally and we have:

Theorem 1.2 Let f, g be polynomials of degrees n, m respectively, with
rational coefficients. Suppose each extremum (with respect to f) has type
(1, 1, . . . , 1, 2). Then, for n, m ≥ 3, the equation f(x) = g(y) has only
finitely many rational solutions (x, y) with a bounded denominator except
in the following two cases:

(i) g(x) = f(h(x)) for some nonzero polynomial h(x) ∈ Q(x),

(ii) n = 3, m ≥ 3 and

f(x) = c0 + c1D3(λ(x), cm), g(x) = c0 + c1Dm(µ(x), c3)

for linear polynomials λ and µ over Q and ci ∈ Q with c1, c 6= 0.

In each exceptional case, there are infinitely many solutions.
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In the above statements, for polynomials with rational coefficients F, G,
the statement that the equation F (x) = G(y) has infinitely many rational
solutions with a bounded denominator means that there exists a positive
integer λ such that F (x) = G(y) has infinitely many rational solutions x, y
satisfying x, y ∈ 1

λZ.
Recall that the Bernoulli polynomials Bm(x) are defined by the gener-

ating series

tetx

et − 1
=

∞
∑

m=0

Bm(x)
tm

m!
.

Then, Bm(x) =
∑m

i=0

(

m
i

)

Bm−ix
i where Br = Br(0) is the r-th Bernoulli

number. Earlier, we had studied in [10], [11] some equations involving
Bernoulli polynomials before obtaining the general result for Bm(x) = g(y)
in 2004 (stated here as the next theorem). As mentioned above, Rakaczki
has obtained it independently. Rakaczki [12] misses the case m = 3 in the
statement below as he uses an earlier result of ours [9] where this lapse first
occurs. We regret this error. Indeed, the equation x(x + 1)(x + 2) = g(y)
does have infinitely many rational solutions with a bounded denominator
for g of any degree n ≥ 3 when g(x) = 1

33(n+1)/2 Dn(µ(x), 33) and µ(x) is a
linear polynomial over Q. This follows from the fact that

(x − 1)x(x + 1) = D3(x, 1/3) =
1

b3
D3(bx, (3d2)m)

where b = 3(m+1)/2dm.
Since Rakaczki’s proof is already published, we confine ourselves with stat-
ing the result in our form (which is somewhat different from his), outlining
one part of the proof and pointing out the exceptional cases explicitly.

Theorem 1.3 Let g(y) ∈ Q[y] have degree n ≥ 3 and let m ≥ 3. The
equation Bm(x) = g(y) has only finitely many rational solutions x, y with
any bounded denominator apart from the following exceptions:

(i) g(y) = Bm(h(y)) where h is a polynomial over Q.

(ii) m is even and g(y) = φ(h(y)), where h is a polynomial over Q, whose
square-free part has at most two zeroes, such that h takes infinitely
many square values in Z and, φ is the unique polynomial such that
Bm(x) = φ((x − 1

2 )2).

(iii) m = 3, n ≥ 3 odd and g(x) = 1
8(33(n+1)/2)

Dn(δ(x), 33).

(iv) m = 4, n ≥ 3 odd and g(x) = 1
22(n+3) Dn(δ(x), 24) − 1

480 .

(v) m = 4, n ≡ 2 mod 4 and g(x) = −β−n/2

64 Dn(δ(x), β) − 1
480 .
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Here δ is a linear polynomial over Q and β ∈ Q∗. Furthermore, in each
of the exceptional cases, there are infinitely many solutions with a bounded
denominator.

2 Indecomposability of En

We start with a simple observation which gives a sufficient condition for
indecomposability of a complex polynomial. This has already been observed
by others in some form or the other (for example, see Stoll [13, Lemma 3.3],
or [6, Lemma 3]).

Observation Let f be any complex polynomial and suppose f = g ◦ h
for complex polynomials g, h of degrees ≥ 2. Then, if α ∈ C is so that
g′(α) = 0, then the polynomial h(x)−α divides both f(x)−g(α) and f ′(x).
In particular, if f(x) ∈ C[x] satisfies the condition that any extremum λ ∈ C

has the type (1, 1, · · · , 1, 2), then f is indecomposable over C.

Proof The former statement implies the latter one. For, it implies that
if f(x) = G1(G2(x)) is a decomposition of f(x) with deg G1, G2 > 1, then
there exists λ ∈ C such that deg gcd (f(x)−λ, f ′(x)) ≥ deg G2. But, then
the type of λ (with respect to f) cannot be (1, 1, . . . , 1, 2).

So, we prove the former statement. Evidently, for any α ∈ C, the
polynomial h(x)−α divides f(x)−g(α). Moreover, if α is such that g′(α) =
0, then consider any root θ of h(x)−α. Suppose its multiplicity is a. Then,
since the multiplicity of θ in h′(x) is a − 1 and since g′(h(θ)) = g′(α) = 0,
it follows that (x − θ)a divides f ′(x) = g′(h(x))h′(x). This concludes the
proof.

�

Remark 2.1 The proof shows the following refined version holds for poly-
nomials over Q. If f(x) ∈ Q[x] is so that each extremum λ ∈ Q̄ of degree
≤ degf

2 − 1 has type (1, 1, . . . , 1, 2), then f is indecomposable over Q.

In order to prove indecomposability of En’s using the above lemma, the
key result needed is the following:

Proposition 2.2 Each extremum of the polynomial

En(x) = 1 + x +
x2

2!
+

x3

3!
+ · · · +

xn

n!

has the type (1, 1, . . . , 1, 2). In particular, En(x) is indecomposable for all n.
Moreover, En has only simple roots for any n.
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Proof Note that E′
n+1 = En for any n ≥ 0. Therefore, it is clear that,

for each n ≥ 0, the roots of En are simple, for En+1(α) = 0 implies

E′
n+1(α) = En(α) = En+1(α) − αn+1/(n + 1)! = −αn+1/(n + 1)! 6= 0.

Now, let λ be a complex number such that En+1(x)−λ has a multiple root
α. Then En(α) = 0 and λ = En+1(α) = αn+1/(n + 1)!. If β is another
multiple root of En+1(x) − λ, then αn+1 = βn+1. This implies that there
exists θ 6= 1 with θn+1 = 1 such that En has two roots α, αθ. We show
that this is impossible.

Note that n must be > 1. Let ζ be a primitive (n + 1)-th root of unity.
Then θ = ζi for some 0 < i ≤ n. It is a well-known result of Schur that
En is irreducible over Q and that the Galois group of its splitting field
K is An or Sn according as to whether 4 divides n or not. Now, write
K = Q(α, αθ, α3, . . . , αn) for the splitting field of En.

Firstly, let n 6≡ 0 mod 4. We shall use the fact that the Galois group
contains the n-cycle σ = (α, αζi, α3, . . . , αn). Since σ(ζi) must be a power
of ζ, it follows that each αj with 3 ≤ j ≤ n must be αζk for some k.
Thus, the set {α, αζi, α3, . . . , αn} of all the roots of En is the set of all αζr

(0 ≤ r ≤ n) with one αζm missing for some 1 ≤ m ≤ n. Now, the sum of
the roots of En gives

−n =
∑

r 6=m

αζr = −αζm.

Therefore, α = nζ−m. The product of all roots of En gives

(−1)nn! = αnζn(n+1)/2−m = nnζn(n+1)/2−m−mn = nnζn(n+1)/2.

Hence 1 = |ζn(n+1)/2| = n!/nn, which is impossible for n > 1.
Now, let 4|n. Then, the Galois group, which is An, contains each (n−1)-

cycle of the form (α, αζi, αi1 , . . . , αin−3) where αi1 , . . . , αin−3 are any n− 3
among α3, . . . , αn. Therefore, each αj with 3 ≤ j ≤ n is of the form αζk

for some k and, the argument above goes through as it is. This proves the
proposition.

�

3 The Bilu-Tichy Theorem

For the proofs of our theorems here, the main tool used is the following
remarkable result due to Y. Bilu and R. Tichy:

Theorem 3.1 ([5]) For non-constant polynomials f, g over Q, the follow-
ing are equivalent:
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(a) The equation f(x) = g(y) has infinitely many rational solutions in
x, y with a bounded denominator.

(b) We have f = φ ◦ f1 ◦ λ and g = φ ◦ g1 ◦ µ where λ, µ are linear
polynomials over Q, φ is some polynomial over Q, and (f1(x), g1(x))
is a standard pair over Q such that the equation f1(x) = g1(y) has
infinitely many rational solutions x, y with a bounded denominator.

Standard pairs are defined as follows. In what follows, a and b are
nonzero elements of some field, m and n are positive integers, and p(x) is
a nonzero polynomial.

Standard pairs

A standard pair of the first kind is

(xt, axrp(x)t) or (axrp(x)t, xt)

where 0 ≤ r < t, (r, t) = 1 and r + deg p > 0.
A standard pair of the second kind is

(x2, (ax2 + b)p(x)2) or ((ax2 + b)p(x)2, x2).

A standard pair of the third kind is

(Dk(x, at), Dt(x, ak))

where (k, t) = 1.
A standard pair of the fourth kind is

(a−t/2Dt(x, a),−b−k/2Dk(x, a))

where (k, t) = 2.
A standard pair of the fifth kind is

((ax2 − 1)3, 3x4 − 4x3) or (3x4 − 4x3, (ax2 − 1)3).

In the course of our proof, we need some basic facts about Dickson
polynomials. These are summarised in the following result due to Bilu:

Theorem 3.2 ([1])

(a) The Dickson polynomial Dl(x, 0) has exactly one extremum 0; it is of
type (l).

(b) If a 6= 0 and l ≥ 3 then Dl(x, a) has exactly the two extrema ±2a
l
2 .

If l is odd, then both are of type (1, 2, 2 . . . , 2).

If l is even, then 2a
l
2 is of type (1, 1, 2, . . . , 2) and −2a

l
2 is of type

(2, 2, . . . , 2).
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4 Finiteness for En(x) = g(y)

Deduction of Theorem 1.1 from Theorem 1.2

By Proposition 2.2, En satisfies the hypothesis of Theorem 1.2. As

E3(x) =
1

3
+

1

6
D3(x + 1,−1),

it is easy to check that the case (ii) of Theorem 1.2 gives the exceptional
case (ii) of Theorem 1.1.

Proof of Theorem 1.2 Assume that the equation f(x) = g(y) has in-
finitely many rational solutions with a bounded denominator. Then by the
Bilu-Tichy Theorem 3.1, f(x) = φ(f1(λ(x))) and g(y) = φ(g1(µ(y))) where
λ(x), µ(x) ∈ Q[x] are linear polynomials, φ(x) ∈ Q[X ] and (f1(x), g1(x)) is
a standard pair over Q such that f1(x) = g1(y) has infinitely many rational
solutions with a bounded denominator. As f(x) is indecomposable, either
deg φ(x) = n and deg f1(x) = 1, or deg φ(x) = 1 and deg f1(x) = n.

Firstly, let us suppose that deg φ = n. Clearly, then φ(x) = f(δ(x)) for
some linear polynomial δ(x) = u + vx ∈ Q[x]. Then, g(x) = f(h(x)) where
h = δ ◦ g1 ◦ µ. This is the exceptional case (i) of the theorem.

Now, suppose deg φ = 1. In this case, we have deg f1 = n and deg g1 =
deg g = m. Let φ(x) = φ0 + φ1x for some rational numbers µ and λ.

Case (i) Suppose the standard pair (f1, g1) is of the first kind. Then, we
have either f1(x) = xt and g1(x) = axrp(x)t, or f1(x) = axrp(x)t and
g1(x) = xt. So t ≥ 3 in either situation since t = m or t = n. In the first
situation, we have f(x) − φ0 = φ1λ(x)t which contradicts the hypothesis
on f . We consider the second situation now. Then,

f(x) − φ0 = φ1aλ(x)rp(λ(x))t.

Once again, this implies r ≤ 2. Further, since t ≥ 3, degree of p must be
zero. In other words, n = r ≤ 2, a contradiction of our assumption that
n ≥ 3. Hence (f1, g1) can not be a standard pair of the first kind.

Case (ii) Suppose the standard pair (f1, g1) is of the second kind. Then
(f1, g1) = (x2, (ax2 + b)p(x)2) or with the pair switched. But this will
imply that either m = 2 or n = 2 which contradicts our assumption that
m, n ≥ 3. Therefore (f1, g1) cannot be of the second kind.

Case (iii) If (f1, g1) is of the fifth kind, then (n, m) = (6, 4) or (4, 6) and
(f1(x), g1(y)) = ((αx2 − 1)3, 3x4 − 4x3), or with the pair switched. We
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give the proof when (m, n) = (4, 6) and a similar argument works when
(m, n) = (6, 4).

Let (m, n) = (4, 6). Then,

f(x) = φ0 + φ1(α(rx + s)2 − 1)3.

This again contradicts the assumption on f . Hence (f1, g1) cannot be a
standard pair of the fifth kind.

Case (iv) Suppose the standard pair (f1, g1) is of the third kind. Then
f1(x) = (Dn(x, am) and f(x)− φ0 = φ1Dn(δ(x), am) where δ(x) is a linear
polynomial in Q[x]. By assumption, we know that for any complex number
λ, the polynomial f(x) − λ can have at most one multiple root. If a = 0,
then f(x)−φ0 = φ1δ(x)n, which is not possible as n ≥ 3. Therefore, a 6= 0
and f1(x) = Dn(x, am). By Theorem 3.2, Dn(x, am) has two extrema
and, therefore, f(x) also has two extrema. If n is an odd integer then,
by Theorem 3.2, both extrema are of the type (1, 2, 2, . . . , 2), but every
extremum of f has type (1, 1, . . . , 1, 2). Thus, we must have n = 3. When
n = 3, we get the exceptional case (ii) of the theorem. Since the equation

D3(x, am) = Dm(y, a3)

has infinitely many rational solutions x, y with a bounded denominator for
any a ∈ Q∗, it follows that f(x) = g(y) also does. If n is even, then by
Theorem 3.2, there is an extremum of the type (2, 2, . . . 2). But, since any
extremum of f must have the type (1, 1, . . . , 1, 2), this case cannot occur.
Therefore (f1, g1) can not be of the third kind.

Case (v) Suppose the standard pair (f1, g1) is of the fourth kind. Then
(f1, g1) = (a−n/2Dn(x, a),−b−m/2Dm(x, a)) where gcd (m, n) = 2.
As a 6= 0, and as n is even and > 3, Dn(x, a) has an extremum of the type
(2, 2, . . . , 2) which cannot happen for f . This means (f1, g1) cannot be of
the fourth kind also. This completes the proof of Theorem 1.2.

�

5 Finiteness for Bm(x) = g(y)

As mentioned in the introduction, Theorem 1.3 has been independently
proved by C. Rakaczki [12]. The decomposition of Bernoulli polynomials
has been investigated in [2] where they prove:

Theorem 5.1 ([2]) Let m ≥ 2. Then,
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(i) Bm is indecomposable if m is odd and,

(ii) if m = 2k, then any nontrivial decomposition of Bm is equivalent to
Bm(x) = φ((x − 1

2 )2) for a (unique) polynomial φ over Q.

Outline of Proof of Theorem 1.3

Let us assume that Bm(x) = g(y) has infinitely many rational solutions
with a bounded denominator. Before proceeding further, we recall that

Bm(x) =

m
∑

i=0

(

m

i

)

Bm−ix
i

and that B′
m(x) = mBm−1(x). Further, it is known due to results of Brill-

hart [4] and Inkeri [8] that the Bernoulli polynomial Bm has only simple
roots if m > 3 is odd, and has no rational roots if m > 2 is even. If
the equation Bm(x) = g(y) has infinitely many solutions, the Bilu-Tichy
Theorem 3.1 gives Bm(x) = φ ◦ f1 ◦ λ(x) and g(x) = φ ◦ g1 ◦ µ(x) where
λ, µ are linear polynomials over Q and (f1, g1) is a standard pair over Q

such that f1(x) = g1(y) has infinitely many rational solutions with bounded
denominator. From Theorem 5.1, we know that the only nontrivial decom-
position of Bm up to equivalence has f1(x) = (x − 1

2 )2. Therefore, there is
a trichotomy:

(a) deg φ = m, or

(b) m = 2d, deg φ = d and Bm(x) = φ(λ(x − 1
2 )2), or

(c) deg φ = 1.

The cases (a) and (b) easily lead to cases (i) and (ii), respectively of the
Theorem. In case (c), using the Bilu-Tichy theorem, the standard pairs of
types 2, 3, 4 and 5 are easily dealt with. Among them, the exceptional
cases (iii), (iv) and (v) arise, and they correspond to standard pairs of the
3rd, 3rd and 4th kinds, respectively. The final case of standard pairs of the
first kind detailed below requires some additional results and our proof is
quite different from Rakaczki’s.

Suppose there are linear polynomials λ(x), µ(x) ∈ Q[x], and a standard
pair (f1, g1) of the first kind such that Bm(x) = φ ◦ f1 ◦ λ(x), g(y) =
φ ◦ g1 ◦ µ(y) and φ(x) = φ0 + φ1x for some rational numbers φ0, φ1 with
φ1 6= 0. Then, we have either

Bm(rx + s) = φ0 + φ1x
m

for some r, s ∈ Q with r 6= 0, or

Bm(ux + v) = φ0 + φ1axrp(x)t
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where r < t, (r, t) = 1 and r+deg p(x) > 0. Suppose

Bm(rx + s) = φ0 + φ1x
m

Then coefficient of xm−2 is zero on the right hand side. On the left hand

side, the coefficient of xm−2 is m(m−1)
12 rm−2(6s2 − 6s+1). Equating this to

zero, we get 6s2 − 6s + 1 = 0 for a rational number s, which is impossible.
Hence f1(x) cannot be xm.

Now suppose f1(x) = axrp(x)t and g1(x) = xt. Note that t = deg g ≥ 3.

Suppose m is even. Then

Bm(ux + v) = φ0 + φ1axrp(x)t.

deg p > 0 as we have already seen that Bm(x) = φ0 + φ2x
m is impossible

for any rational number φ2. Now the derivative B′
m(x) = mBm−1(x) and

from the above equality, every root of p(x) is a multiple root of Bm−1(x)
with multiplicity at least (t − 1). But as m − 1 is odd, Bm−1(x) has only
simple roots by a result of Brillhart [4]. Therefore t = 2; but then deg
g = 2, which is a contradiction. Therefore when m is even f1(x) cannot be
of the type axrp(x)t.

Suppose m is odd. Now f1(x) = axrp(x)t where r, t as above and
g1(x) = xt. Then

g(x) = φ0 + φ1µ(x)t

and
Bm(x) = φ0 + φ1aλ(x)

r
p(λ(x))t.

Thus, for some rational numbers u, v we get, Bm(ux+v) = φ0+φ1axrp(x)t

and m = td+ r where d is the degree of the polynomial p. Since the degree
of g is at least three, we get t ≥ 3. Now by looking at the derivative of
Bm(ux + v), we have

umBm−1(ux + v) = φ1a[rxr−1p(x)t + tp(x)t−1xrp′(x)]

So every root of p is a multiple root of Bm−1 of multiplicity (t− 1). There-
fore, taking derivative again, it follows that every root of p is a root of
Bm−2 of multiplicity at least t− 2. As m− 2 is odd, Bm−2 has only simple
roots; therefore, t ≤ 3. Hence t = 3. Note also that p must have only
simple roots and all its roots are irrational since it is true of Bm−1 by
the result of Inkeri [8] quoted in the beginning of the proof. Therefore,
Bm(rx + s) = φ0 + φ1axrp(x)3 and m = 3d + r. Now as r < t = 3, we
get r = 1 or 2. If r = 2, then Bm(ux + v) = φ0 + φ1ax2p(x)3. By taking
the derivative, it follows that mBm−1 has at least one rational root. But
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we know that, if Bk has a rational root then k must be odd by Inkeri’s
result [8] quoted above. In our case, this gives a contradiction since m− 1
is even. Let r = 1. Then Bm(x) − φ0 = λ(x)p(x)3 for a linear polynomial
λ(x) and a polynomial p(x) of degree (m − 1)/3 over Q. As every root of
p(x) is a multiple root of Bm(x) − φ0 with multiplicity ≥ 3, such a root is
also a root of Bm−1(x) and of Bm−2(x). From this discussion, it follows
that p has no rational roots (since this is true for Bm−1), and all its roots
are simple (since this is true for Bm−2). We show now that it is impossible
for an equality

Bm(x) − φ0 = λ(x)p(x)3

of polynomials to hold where λ is linear and Bm(α) = φ0 and Bm−1(α) = 0.
To show this, we note that since x = 0, 1

2 , 1 are zeroes of Bm(x). Hence,
writing λ(x) = c0 + c1x, we have

−φ0 = c0p(0)3 = (c0 + c1/2)p(1/2)3 = (c0 + c1)p(1)3.

Note that Bm−1(α) = φ0 6= 0 as Bm has only simple roots. As p is not zero
at rational numbers, we have

c0 + c1

2

c0
= s3,

c0 + c1

c0
= t3

for nonzero rational numbers s, t. Hence we have

t3 + 1 = 2s3

where evidently s 6= 1 6= t. The above equation is equivalent to

x3 + y3 = 2z3

in nonzero integers x, y, z which are not all equal (as t 6= 1 6= s). But, it
is well-known and easy to prove ([7], P.37), that the above equation has no
solution other than xyz = 0 or x = y = z. This completes the proof of the
theorem.
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in this work and for informing us about Rakaczki’s paper. We are also
thankful to Professor Rakaczki for some correspondence. The first author
is indebted to the Indian Statistical Institute, Bangalore for all facilities
and help provided during this research. Thanks are due to the referee
for his/her remarks and for pointing out some references which we were
unaware of. Finally, both of us would like to express our gratitude to the
Tata Institute for having invited us to the conference; we found it a very
stimulating experience.



14 Manisha Kulkarni and B. Sury

References

[1] Y. Bilu, Quadratic Factors of f(x) − g(y), Acta Arithmetica, 90
(1999), 341–355.

[2] Y. Bilu, B. Brindza, P. Kirschenhofer, A. Pintér and R.F. Tichy, Dio-
phantine Equations and Bernoulli Polynomials With an appendix by
A. Schinzel, Compositio Math. 131 (2002), 173–180.

[3] Y. Bilu, M. Kulkarni and B. Sury, On the Diophantine equation x(x+
1) · · · (x+ m− 1)+ r = yn, Acta Arithmetica CXIII (2004), 303–308.

[4] J. Brillhart. On the Euler and Bernoulli polynomials, J. Reine. Angew.
Math. 234 (1969), 45–64.

[5] Y. Bilu and R.F. Tichy, The Diophantine Equation f(x) = g(y), Acta
Arithmetica XCV (2000), 261–288.

[6] A. Dujella and R.F. Tichy, Diophantine equations for second order
recursive sequences of polynomials, Quart. J. Math. 52 (2001), 161–
169.

[7] Y. Hellegouarch, Invitation to mathematics of Fermat-Wiles, Trans-
lated from the 2nd (2001) edition by Leila Schneps. Academic Press,
Inc., San Diego, CA 2002.

[8] K. Inkeri, Real roots of Bernoulli polynomials Am. Univ. Turku. Ser
A I 37 (1959), 20pp.

[9] M. Kulkarni and B. Sury, On the Diophantine equation x(x+1) · · · (x+
m − 1) = g(y), Indagationes Math. 14 (2003), 35–44.

[10] M. Kulkarni and B. Sury, Diophantine equations with Bernoulli poly-
nomials, Acta Arithmetica 116 (2005), 25–34.

[11] M. Kulkarni and B. Sury, A class of Diophantine equations involving
Bernoulli polynomials, Indagationes Mathematicae, 16 (2005), 51–65.

[12] C. Rakaczki, On the Diophantine equation Sm(x) = g(y), Publ. Math.
Debrecen 65 (2004), 439–460.

[13] Th. Stoll, Diophantine equations involving polynomial families,
Ph.D.Thesis, TU Graz 2003.

Manisha Kulkarni, Poornaprajna Institute of Scientific Re-

search, Davanhalli, Bangalore, India.

E-mail: manisha@isibang.ac.in

B. Sury, Statistics & Mathematics Unit, Indian Statistical

Institute, 8th Mile Mysore Road, Bangalore - 560 059, India.

E-mail: sury@isibang.ac.in


