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I. INTRODUCTION 

In [2] Bilu classified the pairs of  polynomials f ,  g over a field of characteristic 0 

such that f (X )  - g(Y) has an irreducible factor of degree 2. This note extends his 

results to arbitrary characteristic. Also, the rather specific main result of  [1] is an 

immediate consequence of the theorems below. 
The strategy is roughly as follows: A straightforward application of Galois theory 

and L/,iroth's Theorem reduces to the following situation: Let x be a transcendental 
over the base field K, and set t = f (x). Then K (x) has a quadratic extension L, such 
that L/K (t) is Galois. The Galois group is generated by two involutions, hence it is 
dihedral. The intermediate field K(x) is the fixed field of one of the involutions. 

This reduction appears already in [2], its extension to positive characteristic 
causes no problems. Let /( be an algebraic closure of  K. To proceed further Bilu 
applied ramification theoretic arguments to the extension ~;(x)/[;(t) which rely 
on Riemann's existence theorem and which don't work in positive characteristic 

without making quite restrictive assumptions on the characteristic. 

Instead, we use a different approach which avoids any use of ramification 

theoretic arguments: The field L is the function field of  the quadratic factor 

o f f ( X )  - g(Y), thus / (L  is a rational field/~(z). So Gal(/~(z)//~ (t)) is a subgroup 

of GaI(L/K(t)). Also, the index is at most 2. The group of  K-automorphisms of 
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/f (z) is PGL2(/~) (action via linear fractional transformations of  z). Thus we have 
to determine the cyclic and dihedral subgroups of  PGL2(/~), and analyze the cases 
which give pairs f, g such that f ( X )  - g (Y)  has a quadratic factor over K. 

The generalization of  [2, Theorem 1.2] is 

Theorem 1.1. Let f ,  g E K[X]  be non-constant polynomials over a f ie ld  K, such 

that f ( X )  - g (Y)  ~ K[X,  Y] has a fac tor  o f  degree at most 2. I f  the characteristic 

p o f  K is positive, then assume that at least one o f  the polynomials f ,  g cannot be 

written as a polynomial  in Xp. Then there are f l ,  gl,  ~ ~ K[X]  with f = • o f l ,  

g = ~ o gl, such that one o f  the fol lowing holds: 

(a) deg f l ,  deg gl ~< 2. 
(b) p 7~ 2, n = deg fl = deggl ~> 4 is a power  o f  2, and there are a, fl, F, a c K 

such that f l  (X) = Dn(X  + fl, a), gl (X) = - D n ( ( o t X  + F)(~ + 1/~), a). Here 

denotes a primitive (2n)th root o f  unity. Furthermore, i f  a ¢ O, then ~2 + 

1/s e2 E K. 

Conversely, in cases (a) and (b) f ( X )  - g (Y)  indeed has a factor of  degree at 
most 2. This is clear for case (a), because fl  (X) - gl (Y) is such a factor, and follows 
for case (b) from Lemma 2.8. 

If one wants to determine the cases such that f ( X )  - g (Y)  has an irreducible 
factor of  degree 2, then the list becomes longer in positive characteristic. The exact 
extension of  [2, Theorem 1.3] is 

Theorem 1.2. Let f ,  g E K[X]  be non-constant polynomials over a f ie ld  K, such 

that f ( X )  - g ( Y )  E K[X,  Y] has a quadratic irreducible fac tor  q (X ,  Y). l f  the 

characteristic p o f  K is positive, then assume that at least one o f  the polynomials  

f ,  g cannot be written as a polynomial  in X p. Then there are f l, gl,  ~ ~ K [ X ] with 

f = ~ o f l ,  g = ~ o gl such that q (X ,  Y) divides f l  (X) - gl (Y), and one o f  the 

fo l lowing holds: 

(a) max(deg f l ,  deggl) = 2 and q (X ,  Y) = f l  (X) - gj (Y). 

(b) There are or, fl, )t, ~ ~ K with gl (X) = f l  (olX + fl), and f l  (X) = h ( F X  + ~), 

where h (X)  is one o f  the fo l lowing polynomials. 

(i) p does not divide n, and h (X)  = Dn(X,  a) f o r  some a ~ K. I f  a ~ O, then 

+ 1/~ c K where ~ is apr imi t ive  nth root o f  unity. 

(ii) p ~> 3, and h (X)  = X p - a X  fo r  some a c K. 

(iii) p/> 3, and h (X)  = (X p + a X  + b)Z fo r  some a, b E K. 
t. I ~ T ~  q-1 

(iv) p ) 3 ,  a n d h ( X ) = X  p - z a A  2 + a Z X  fo r  some a E K. 

(v) p = 2, a n d h ( X )  = X 4 + (1 + a ) X  2 + a X f o r s o m e  a ~ K. 

(c) n is even, p does not divide n, and there are ol, fl, F, a ~ K such that f l  (X) = 

Dn ( X + fl, a ), g I (X) = - Dn ( ( ~ X + F ) ( ~ + 1 / ~ ), a ). Here ~ den o tes a pr im itive 

(2n)th root o f  unity. Furthermore, i f  a ¢ O, then ~2 + / 1 ~ 2  E K. 
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(d) p >~ 3, and there are quadratic' polynomials u(X),  v(X)  e K[X], such that 

f l  (X)  = h (u (X) )  and gl (X)  = h ( v (X ) )  with h ( X )  = X p - 2aX  p+TI + a2X fi~r 

some a 6 K. 

The theorems exclude the case that f and g are both polynomials  in X p. The 

following handles this case, a repeated application reduces to the situation o f  the 

theorems above. 

T h e o r e m  1.3. Let f ,  g c KIX] be non-constant polynomials over a f ie ld  K, such 

that f (X)  - g (Y)  6 K[X,  Y] has an irreducible factor q(X,  Y) o f  degree at most 2. 

Suppose that f (X)  = f o ( X  p) and g (X)  = go(XP), where p > 0 is the characteristic 

o f  K. Then one ~['the.[bllowing holds: 

(a) q(X ,  Y) divides .fi)(X) - go(Y), or 

(b) p = 2, f ( X )  = .til(X2), g(X)  = .~)(aX 2 + b)fi)r some a, b c K, and q(X,  Y) = 
X 2 - ~zY 2 - b. 

R e m a r k  1.4. Under suitable conditions on the parameters  and the field K, all 

cases listed in Theorem 1.2 give examples such that d"l (X) - gl (Y) indeed has an 

irreducible quadratic factor. The cases of  the Dickson polynomials  are classically 

known, see Lemma 2.8 and its proof. We illustrate two examples: 
(b)(v). Here p = 2 and h(X)  = X 4 + (1 + a ) X  2 + a X .  We have h(X)  - h (Y)  = 

(X q- Y)(X q- Y q- I ) (X  2 q- X q- y2 q_ y q - a ) .  l f Z  2 q- Z = a  has no solution in K, 

then the quadratic factor is irreducible. 
p+[ 

(b)(iv). Here p >/3 and h(X)  = X t' - 2 a X T  + a 2 X ,  and a ¢ 0 o f  course, lfc~ is 

a root o f Z I '  I _ a, then so is -c~. Let T be a set such T U ( - T )  is a disjoint union 

o f  the roots o f  Zt '  I _ a. 

We compute 

h(X~) -h (Y~)= (  x ~ -  Y~) 1-I [ (~X-  Y ) - t ) ( ~ X + r ) - t ) ]  
t c T u ( T )  

= ( x  2 - Y~)1- [ [ ( (x  - Y) - t ) ( ( x  + Y ) - t )  
tcT 

× ( ( X  + Y ) + t ) ( ( X -  Y) + t ) ]  

- ( x ~ - _  y~)1-I((x ~- - y~)~_ zt~(x ~ + Y~)+,41 
tET" 

and therefore 

h ( X )  - h ( Y )  = ( X  - Y)  I - [ ( ( X  - y)2 _ 2t2(X + y) + t4). 
tET 

The discriminant with respect to X of  the quadratic factor belonging to t is 16t2y, 

so all the quadratic factors are absolutely irreducible. 
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2. PREPARATION 

Definition 2.1. 
b-lab. 

Let a, b elements of a group G. Then a b denotes the conjugate 

Lemma 2.2, Let G be a finite dihedral group, generated by the involutions a and b. 
Then a and a suitable conjugate of  b generate a Sylow 2-subgroup of  G. 

Proof. Set c = ab. For i E N, the order of (a, b c' ) is twice the order of ab d . We 
compute ab e  ̀ = a ( c - 1 ) i b c  i = a ( b a ) i b ( a b )  i = ( a b )  2i+1 = c 2i+1. Let 2i + 1 be the 

largest odd divisor of [G[. The claim follows. [] 

Definition 2.3. For a, b, c, d in a field K with ad - bc ~ 0 let [~ b] denote the 

b) ~ GL2(K) in PGL2(K). image of (~ d 

Lemma 2.4. Let K be an algebraically closed field of characteristic p, and p 

PGL2 (K) be an element offinite order n. Then one of the following holds: 

(a) p does not divide n, and p is conjugate to [~ ~], where ( is a primitive nth root 

of  unity. 
(b) n = p, and p is conjugate to [~ I]" 

Proof. Let f3 E GL2(K) be a preimage of p. Without loss of generality we may 
assume that 1 is an eigenvalue of ~3. The claim follows from the Jordan normal 
form of ~3. [] 

Lemma 2.5. Let K be an algebraically closed field of characteristic p, and 
G ~< PGL2(K) be a dihedral group of order 2n >>, 4, which is generated by the 
involution r and the element p of order n. Then one of the following holds: 

(a) pdoesnotdividen.  Thereiscr c P G L ( K ) s u c h t h a t r  ~ = [ ~  l ]and  p~ = [~ ~], 
where ( is a primitive nth root of  unity. 

(b) n = p/> 3. There is ~ * PGL(K) such that r ° = [1 o °1] and p~ = [ l o ~ ]. 

' l ] I o r  s o m e  (c) n = p = 2. There is cr E PGL(K) such that r ~ -- [1 ~] and pa = [o 
I ¢ b E K .  

Proof. By Lemma 2.4 we may assume that p has the form given there. From 
pr  = p - 1  we  obtain the shape o f t :  

10 a b  
= = ( c d )  E a First assume that p does not divide n, so p [o ; ]" Let -~ GL2(K) be 

preimage of r. From pr = p-J we obtain pr  = rp -1, hence 
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for some ~. E K. This gives ( ~  - 1)a = 0, (~ - l)b = 0, (~ - 1)c = 0, and (,~ - ~')d = 

0. First assume b = c = 0. Then p and r commute,  so G is abelian, hence n = 2 # p 

and therefore ¢ = - 1 .  It follows r = [~ _° ] = P, a contradiction. 

Thus b ¢ 0, so ~ = 1. This yields a = d = 0, as ~ # 1. We obtain r = [°(J)]. 

Choose/7 ~ K with/72 = C,  and set <~ = [I) ~]. The claim follows from p~ = p and 

r ~ = [o I 1 
El OJ' 

NOW assume the second case o f  Lemma 2.4, that is p : n and p = [I, I]" Again 

setting -~ =- ('j. ,~) we obtain 

(; :)(: ;)(; :') 
for some ,~ • K. This gives a + c = ,t.a, b + d = ,t .(-a + b), c = Xc, and d = 

K ( - c  + d). I f  c ¢ 0, then )~ = 1, so c = 0 by the first equation, a contradiction. 

Thus c = 0, so a ¢ 0. We may assume a = 1, so d = - 1 .  This gives the result 

for p = n = 2. If p # 2, then set c~ = [(1) l~ ] with /7 = - b / 2 .  From p<~ = p and 

r~ = [I, o, ] we obtain the claim. [] 

Let z be a transcendental over the field K. The group o f  K-automorphisms 
a a z + b  of  K(z )  is isomorphic to PGLz(K),  where [ c ~ ]  sends z to ~ .  Note that 

K(z)  = K(z ' )  for z • K(=) if and only if,.,' = ,,= +a with [(' ~] • PGLz(K).  

Let r (z) E K(z) be a rational function. Then the degree deg r o f  r is the maximum 

of  the degrees o f  the numerator and denominator o f r ( z )  as a reduced fraction. Note 

that deg r is also the degree o f  the field extension K ( z ) / K  (r(z)).  

Definition 2.6. For a • K one defines the nth Dickson polynomial D,,(X, a) (of  

degree n) implicitly by D,,(= + a/=, a) = z" + (a/z)" .  Note that D,,(X, O) = X".  

Furthermore, f romb"D, , ( :  + a / = , a )  b"(z" + ( a / z ) " )  . . . .  n--  "bZa'n D,,(bz + = - - tozJ  + t ~ : )  = 

;~-, o-a)  = D,,(b(z + a/=).  b~a) one obtains b"D,,(X,  a) = D , (bx ,  b2a), a relation 
we will use later. 

L e m m a  2.7. 

(a) Let f ( X )  = g ( h ( X ) )  with f • K[X] and g ,h  • K(X) .  Then f = g o h  = 

(g o )~- I ) o ( ~ o h ) j b r  a rational.[hnction X • K ( X ) q f  degree 1, such that g o ~. I 

and ;~ o h are polynomials. 

(b) Let f ,  g ~ K[ X] be two polynomials such that f ( X ) = L (g( R ( X ) ) ) for  rational 

j imct ions  L. R • K ( X ) of 'degree 1. Then there are linear polynomials ~, r • 

KIX]  with f ( X )  = ~7(.v(r(X))). 

Proof.  (a) This is well known. For the convenience o f  the reader, we supply a short 

proof. Let ~ • K ( X )  be of  degree I such that M h ( ~ ) )  = oo. Setting ~ = ~ o ~ z 

and ,h = ,~ o h we have f = ~7 o h with /~(oo) = oo. Suppose that ~ is not a 

polynomial. Then there is c¢ e /( (/~ denotes an algebraic closure o f  K) with 
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~(~) = o~. Let/~ E/£ U {~} with/~(/3) = or). From/~(oc) = ~ we obtain/5 # o~. 

Now f(/3) = ~(h(/3)) = ~(o~) = oo yields a contradiction, so ~ is a polynomial. 
From that it follows that fz is a polynomial as well. 

(b) If L is a polynomial, then R has no poles, so is a polynomial as well. 
Suppose now that L is not a polynomial. Then there is ot 6 K with L(c~) = o~. 

Let /~  be an algebraic closure of  K. Choose/3 e/~" with g(fl) = o~. If  we can find 

y E/¢ with R(y) =/3, then we get the contradiction f ( v )  = o~. The value set of R 
on/~" is/~ minus the element R(oo) 6 K. Thus we are done except for the case that 
the equation g(X) = c~ has only the single solution/3 = R(oo) E K. In this case, 
however, g(X) = c~ + 3(X - / 5 )  ~ with 3 E K. From L - I ( f ( R - I ( X ) ) )  = g(X)  we 

analogously either get that L and R are polynomials, or f ( X )  = ed + 3I(X -/3,)n 
with c~ I, 6 I, fll c K. The claim follows. [] 

Lemma 2.8. Let K be a fieM of  character&tic p, and n 6 1~ even and not divisible 

by p (so in particular p # 2). Let ~ be a primitive (2n)th root o f  unity and a E K. 

Then 

Dn(X, a) + Dn(Y, a) 

---- I 1  ( X2 - ( sek + 1/~k) X Y  + y2 + (~k _ 1/~k)2a). 

l<~k<~n-1 odd 

Proof. This is essentially [2, Proposition 3.1 ]. The factorizations of  Dm (X, a) - 

Dm(Y, a) are known, see [3, Proposition 1.7]. The claim then follows from that and 

D2n(X, a) - O2n(Y, b) = Dn(X, a) 2 - Dn(Y, b) 2 --- ( Dn(X, a) + Dn(Y, b) )( Dn(X, a) 

- D n ( r , b ) ) .  [ ]  

The following proposition classifies polynomials f over K with a certain 
Galois theoretic property. To facilitate the notation in the statement and its proof, 
we introduce a notation: If  E is a field extension of  K, and f ,  h ~ K[X] are 
polynomials, then we write f "~e h if and only if there are linear polynomials 
L, R c= E[X] with f ( X )  = L(h(R(X))) .  Clearly, "~E is an equivalence relation on 
K[X]. In determining the possibilities of  f in Proposition 2.10, we first determine 
certain polynomials h E /~[X] with f "~R h, and from that we conclude the 
possibilities for f .  The following Lemma illustrates this latter step. 

Lemma 2.9. Let K be an algebraic closure of  the field K o f  characteristic p. Sup- 
pose that f "JR Xp - 2X(P+1)/2 + X for f E K[X]. Then f " K  XP -- 2aX(P+I)/2 + 
a2 X for some a e K. 

Proof. There are or, fl, y, ~ 6 /¢ with f ( X )  = othO, X + 8) +/3 6 K[X], where 
h(X) = X p - 2X (p+I)/2 + X. 

The coefficients o f X  p and X {p+l)/2 o f f ( X )  are o~yp e K and -2oty (p+l)/2 E K, 
so y(p-O/2 ¢ K and coy ~ K. 

Suppose that p > 3. Then the coefficient of  X {p-l}/2 is (up to a factor from K) 
oty{P-O/2a E K, so aa E K and therefore a /y  E K. Thus, upon replacing X by 
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X - 3 /y ,  we may assume 3 = 0. Then/4  ~ K,  so/4 = 0 without loss o f  generality. 

Now dividing by o~ft' and setting a = 1/y {p-I)/2 yields the claim. 

In the case p = 3 we get from above y ~ K and then ~ E K.  Thus we may assume 

o~ = ~, = 1. Looking at the coefficient o f  X, which is - 4 6  + 1, shows ~ ~ K, so 

= /4  = 0 without loss o f  generality. Thus f ( X )  = X 3 - 2X 2 + X. [] 

P ropos i t i on  2.10. Let K be a f i e ld  o f  characteristic p, and f ( X )  E K[X] be 

a polynomial ~f  degree n >~ 3 which is not a polynomial in X p. Let x be a 

transcendental, and set t = f (x). Suppose that the normal closure o f  K (x) /  K (t) 

has the Jorm K (x, y) where F(x, y) = 0 with F c K[X, Y] irreducible o f  total 

degree 2. Furthermore, suppose that the Galois group o f  K (x, y ) /  K (t) is dihedral 

o f  order 2n. Then one o f  the jbllowing holds: 

(a) p does not divide n, and f ~K Dn(X,a)  for  some a ~ K. l f a #  O, then ~ + 

1/~ c K where ¢ is' a primitive nth root o f  unity. 

(b) n = p ~> 3, and f ~K X p - a X J b r s o m e  a E K. 

(c) n = 2p ~> 6, and f ~ x  (X p + aX + b)2 jor  some a,b  ~ K. 
p + l  

(d) n = p, and f ~ x  X p - 2 a X e -  + a 2 X j o r s o m e a  ~ K. 

(e) n = 4 ,  p = 2 ,  and f ~ x  X4 + ( I  + a ) X  2 + a X . [ b r s o m e a C K .  

In the cases (b). (d), (e), and ( a ) J o r  odd n, the .following holds': I f  K (w) is 

an intermediate field ~f  K(x, y ) / K ( t )  with [K(x ,  y) : K(w)]  = 2, then K(w)  is 

conjugate to K (x). 

In case (a) suppose that . f (X) = Dn(X, a) and K(w) is not conjugate to K(x). 

Furthermore, suppose that t = g(w)./br a polynomial g(X) ~ K[X]. Then g(X) = 

- D~ (b(~ + 1/~) X + c, a ) /or  b, c ~ K and ~ a primitive (2n)th root o f  unity. 

Proof. Let /~ be the algebraic closure o f  K in K(x,  y). Then K(x)  c_ l¢(x) c_ 

K(x,  y), so either k = K or K(x ,  y) = /~ ' (x ) .  

We start looking at the latter case. Here K(x) / l¢( t )  is a Galois  extension with 

group C which is a subgroup o f  G = Gal(l¢(x) /K(t))  o f  order n. Note that C 

is either cyclic or dihedral.  Let c~ ~ C, so x ~ - ~,,+h with a, b, c, d E /~. From 
~' ~ + d  

ax  +h  ~ tc~ f ( ~ 1  = f ( x  ~ ) = ./'(x) ~ = = t = f ( x )  we obtain that ax+h is a polynomial ,  so 
Y cr = a x  q-  b .  

Suppose that p does not divide n. Then we may assume that the coefficient o f  

X" t o f f  vanishes. From f ( a x  + b )  = f ( x )  we obtain b = 0. Thus C is isomorphic  

to a subgroup o f /¢  x in part icular  C is cyclic and generated by a with x"  = ¢'x with 

¢" a primit ive nth root o f  unity. From f ( x )  = . ( (¢x)  we see that, up to a constant 

factor, f ( X )  = X". This is case (a) with a = 0. 

From now on it is more convenient to work over an algebraic c lo su re /~  o f  K. 

As /¢(t)  g K(x,  y) = /¢(t) (see, e.g., [4, Proposit ion 1.1 l(c)]),  we obtain that 

G a l ( / ¢ ( x ) / / ¢ ( t ) )  = C. 

Now suppose that p divides n = ICI, but p ~> 3. First assume that C is cyclic. 

From Lemma 2.4 we get p = n. Let p be a generator  o f  C. Lemma 2.4 shows the 

following: There is x '  c /¢(x) with /¢(x) = / ~ ( x ' ) ,  such that x 'p = x '  + I. So t' = 
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x'P - x'  is fixed under C. We obtain t '  ~ K(t),  because K(t) is the fixed field of  C. 

From p = [K(x')  : K(t ')]  we obtain K(t ' )  = K(t).  So there are rational functions 
L, R 6 K(X) of degree 1 with x '  = R(x)  and t = L(t ' ) .  Then f ( x )  = t = L(t ' )  = 

L(x  'p - x ')  = L(r (x )  p - R(x) ) ,  so f = L o (X p - X)  o R. By Lemma 2.7 we may 
assume that L and R are polynomials over K. Then f ( X )  = ol(X p - aX)  + ¢~ with 
~,/~, a c K. From that we get case (b). 

Next assume that C is dihedral of  order n. As p ~> 3, we get that p divides n/2.  

We apply Lemma 2.5 now. This yields n = 2p, and there is x '  with K(x ' )  = K(x) 

such that K(t) is the fixed field of  the automorphisms x '  ~ - x '  and x '  ~ x '  + 1. 

Obviously t '  = (x 'p - x')  2 is fixed under these automorphisms, and as [K(x')  : 

K(t ' )]  = 2p, we obtain K(t) = /¢ ( t ' ) .  The claim follows similarly as above. 

Now assume that p = 2 divides n. Applying Lemmata 2.4 and 2.5, we get 
that C is the Klein 4 group. We see that t '  = x ' (x '  + 1)(x' + b)(x'  + b + 1) is 

fixed under the automorphisms sending x '  to x '  + 1 and to x '  + b. So t '  = h(x')  

with h(X)  = X 4 + (1 + b + bz)X 2 ÷ (b ÷ bz)X.  Next we show that b 2 ÷ b E K. 

A suitable substitution y f ( o t X  + ~) + ~ should give f ( X )  E K[X].  We obtain 

g f ( o l X  + ~) + S = y ( f ( o t X )  + f ( ~ ) )  + ~ c K[X].  Looking at the coefficients of  
X 2 and X yields c¢ ~ K, so ~ = 1 without loss of  generality. Looking at X 4 gives 

g E K, so ) / =  1 without loss. Finally the coefficient of  X yields the claim. Thus 
f ( X )  = X 4 ÷ (1 ÷ b + bz)X 2 ÷ (b ÷ b2)X E K[X] and /~ = K(b) ,  which gives 

case (e). In this case assume that w is as in the proposition. Let rx and r~ be the 

involutions of  the dihedral group G of order 8 which fix x and w, respectively. From 

K(x ,  y) = K(x ,  b) = K(w ,  b) we obtain that rx, r~j ~ C. This shows that rx and r~ 
are conjugate in G, so K ( w )  is conjugate to K(x) .  

It remains to study the case K = / ~ ,  so ~;(x, y ) / [ f ( t )  is Galois with group G. 

By the Diophantine trick we obtain a rational parametrization of  the quadric 
F(X ,  Y ) = 0  over k (actually, a suitable quadratic extension over which 
F ( X ,  Y) = 0 has a rational point suffices). In terms of  fields that means K(z) = 
K(x, y) for some element z. 

We apply Lemma 2.5. Up to replacing x and t by x '  and t '  as above, we get the 
following possibilities: 

(a) p does not divide n, x is fixed under the automorphism sending z to 1/z, 

and t is fixed under this automorphism and the one sending z to z /¢ .  So we 
may choose t = z n + 1/z ~, x = z + 1/z. But then t = Dn(x, 1). There are linear 

polynomials L, R 6 K[X] with L o Dn(X,  1) o R = f ~ K[X],  so we get case (a) 

of  the proposition by [3, Lemma 1.9]. For the remaining claims concerning this 

case, we may assume that f ( X )  = D , ( X ,  a). Again set t = f ( x ) ,  and now choose z 
with z + a / z  = x. Then t = Dn(x, a) = D~(z + a/z ,  a) = z n + (a/z)  ~. The normal 

closure K(x ,  y) = K(x ,  w) of  K ( x ) / K ( t )  is contained in K(¢, z). The elements 
a and x" = x x '  = ~x + U ~- + ~ are conjugates of  x, so x , x ' , x "  c K ( x , y ) .  From 

x'  + x "  = (~ + 1/~)(x + a / x )  we obtain ~" + 1/¢ E K(x ,  y). However, we are in the 
case that K is algebraically closed in K(x ,  y), so ~ + 1/~" ~ K. 

Suppose that K ( w )  is not conjugate to K(x) .  As extending the coefficients does 

not change Galois groups, this is equivalent to /~ (x) not being conjugate to /~  (w) 

in /~(x, y) = /~(z ) .  Note that x is fixed under the involution z ~ a /z .  The other 
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involutions in Gal(~; (z ) /K( t ) )  have the form z ~ a[3/z, where ,8 is an nth root 

o f  unity, or ~ ~ - z .  The latter involution cannot fix w, because the fixed field 

would b e / l  (z2), however, =" + (a/z.) ~ cannot be written as a polynomial in z 2. Thus 

suppose that z ~ aC~/z fixes w. If  ¢~,/2 = 1, then an easy calculation shows that [~t' o] 

and [0 ~,] are conjugate in Gal(K(z) /~J( t ) ) ,  contrary t o / i ( x )  and / ( (u) )  not being 

conjugate. Thus /~,,/2 ¢ 1, hence fin/2 = - 1 ,  because /~" = 1. The element w ' =  

z + (3a ) / z  is fixed under the involution z ~ a[3/z, s o / ( ( w ' )  = / ( ( w ) .  Furthermore, 

t = z" + (a/z)" = z" + (f la/z)" = D,,(z + (f ia)/z ,  fla) = D . (w ' ,  fla). 

so g(X)  = Dn(uX + v,[~a) for some u, v e /i .  The condition that g(X)  has 

coefficients in K shows that '~ E K, see [3, Lemma 1.9]. Thus, upon replacing 

X by X - '2 we may assume v = 0. The transformation formula in Definition 2.6 

gives g(X)  = D, (uX , /3a )  = [ ¢ ' / 2 D , ( ~ X ,  a) = - D , ( ½ X ,  a) with ~ e K. As each 

conjugate o f  w has degree 2 over K (x) we obtain that f ( X )  - g (Y) splits over K in 

irreducible factors o f  degree 2. By Lemma 2.8 one o f  the factors o f  f ( X )  - g (Y) = 
I y ,a )  is X 2 1 D,(  X, a) + D,,( ~ - ~(~ + 1/~ ) X Y  + ~_ y2 _ (~ _ 1/~ )2a. All coefficients 

1 of  this factor have to be in K, so there is bl 6 K with ~(~ + g) = hi. We obtain 
- - I 1  ( b l  b l  g(X)  = ~ , , ,~+l /~X,a)  = -D, , (b(~  + 1 /~)X ,a ) ,  where b - (~+1/~)2 e K. The 

claim follows. 

(b) n = p ~> 3. From a computation above we obtain t = (z p - z) 2. We may 

assume that x is fixed under the automorphism sending z to - z ,  so for instance 
x = z 2. Let h ~ / ((X) with h(x)  = t. That means h(z 2) = (z p - z) 2 = ~2p _ 

p + l  
2zF+I + ~2, hence h(X)  = X p - 2 X T  + X. Lemma 2.9 yields the claim. 

(c) The case n = p = 2 does not arise, because we assumed n i> 3. 

The conjugacy of  K(w) and K(x)  has been shown in the derivation o f  case (e) 

above. In the cases (a) (n odd), (b) and (d) it holds as well, because G is dihedral o f  

order 2n with n odd, so all involutions in G are conjugate. [] 

3. P R O O f  ( ) l  ~ T H E  T H E O R E M S  

3.1. Proof  of  T h e o r e m s  !.1 and 1.2 

Suppose that f ( X )  is not a polynomial in X p, so not all exponents o f  f are divisible 

by p. Let q(X,  Y) be an irreducible divisor o f  f ( X )  - g (Y)  of  degree at most 2. 

Set t -- f ( x ) ,  where x is a transcendental over K, Clearly both variables X and Y 

appear in q(X,  Y). In an algebraic closure o f  K(t )  choose y with q(x ,  y) = 0. Note 

that g(y)  = t. The field K(x)  • K(y )  lies between K ( x )  and K(t) ,  so by Liiroth's 

Theorem, K(x)  c3 K(y )  = K(u)  for some u. Writing t = ~ (u)  and u = f l ( x )  for 

rational functions qb, ]'l e K ( X ) ,  we have f = • o .['1. By Lemma 2.7(a), we may 

replace u by u' with K(u)  = K(u ' ) ,  such that t is a polynomial in u, and u is a 

polynomial in x. Thus without loss o f  generality we may assume that • and fl  

are polynomials. From that it follows that u is also a polynomial in y, so g ( X )  = 

(gt (X)) for a polynomial g L with g l (Y) = u. Note that .ft is again not a polynomial 

in X p. As q is irreducible and .ft (x) - •1 ( Y )  = U - -  U = 0, we get that q(X,  Y) divides 
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f l  (X) - gl (Y). Thus, in order to prove the theorems, we may assume that f = f l  

andg  = g l ,  so K(x) A K(y)  = K(t). 
First suppose that the polynomial q(x, Y), considered in the variable Y, is 

inseparable over K(x).  Then the characteristic of  K is 2, and (up to a factor) 
q (X, Y) = aX 2 + bX + c + y2, hence y2 = ax 2 + bx + c. So K (y2) c K (x) N K (y) = 

K(t),  therefore [K(y) : K(t)] ~< 2. But [K(x) : K(t)] = [K(x, y) : K(y)][K(y) : 

K (t)]/[K (x, y) : K (x)] ~< 2. We obtain deg f ,  deg g ~< 2, a situation which gives case 

(a) in the theorems. 

Thus we assume that K(x,  y ) /K(x )  is separable. By the assumption that f ( X )  

is not a polynomial in X p, we also obtain that K(x ) /K( t )  is separable. Thus 

K(x,  y ) /K( t )  is separable. From K(x) A K(y) = K(t) we obtain that the fields 
K(x),  K(y),  and K(x,  y) are pairwise distinct. So K(x,  y) is a quadratic extension 

of  K(x)  and K(y).  Thus K(x, y ) /K( t )  is a Galois extension, whose Galois group 
G is generated by involutions rx and ry, where Tx and ry fix x and y, respectively. 

In particular, G is a dihedral group. 

For deg f = deg g = 2 we obtain case (a) of the Theorems. Thus assume n = 

deg f = deg g ~> 3 from now on. 

The possibilities for f are given in Proposition 2.10. In the cases (b), (d), (e), and 

(a) for odd n, we obtain that K(x) and K(y) are conjugate, yielding the case (a) of  

Theorem 1.1 and case (b )o f  Theorem 1.2. 

Let us assume case (c) of  Proposition 2.10. Here G is a dihedral group of  
order 4p. If r~ and ry are conjugate, then we obtain case (a) of Theorem 1.1 and 

case (b)(iii) of Theorem 1.2. Thus suppose that r~ and ~y are not conjugate. By 

Lemma 2.2 there is a conjugate r~ of  ~y such that ~x and r~ generate a group 
of  order 4. Thus K(x) and K(y') have degree 2 over K(x) A K ( j ) .  So there are 

fo, go, h e K[X] with fo and go of degree 2 and f = h o f0, g = h o go, giving case 
(a) of  Theorem 1.1. Without loss of  generality assume that f ( X )  = (X p + aX ÷ b) 2, 

and fo(X) = X 2. From f ( - X )  -- h ( ( - X )  2) = h(X 2) = f ( X )  we obtain b = 0, 

so U(X) = h(X 2) with h(X) = X p + 2 a X ~  ÷ a2X. This yields case (d) of  

Theorem 1.2. 
Finally, assume the situation of  Proposition 2.10, case (a) for even n. If K (x) and 

K(y) are conjugate, then we obtain the case (a) of  Theorem 1.1 and case (b)(i) of  

Theorem 1.2. If however K(x) and K(y) are not conjugate, then Proposition 2.10 
yields case (c) of Theorem 1.2. In order to obtain case (b) of  Theorem 1.1 one 

applies Lemma 2.2 in order to show that rx and a conjugate of ~y generate a dihedral 

2-group and argues as in the previous paragraph. 

3.2. Proof of Theorem 1.3 

We have f ( X )  = u(X) p and g(X) = v(X) p, where the coefficients of u and v are 

contained in a purely inseparable extension L of  K. (This includes the case K = L.) 

In particular, [L : K] is a power of  p, so q (X, Y) remains irreducible over L if p > 2. 
Suppose first that p > 2, or that q(X, Y) is irreducible over L i f p  = 2. As each 

irreducible factor of f (X) - g(Y) = u(X) p - v(X)P = (u(X) - v ( Y )  ) p arises at least 
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p times, we obtain that q(X,  Y)P = q(X p, YP) divides f ( X )  - g(Y) = fo(X p) - 

go(YP), and the claim follows in this case. 

It remains to look at the case that p = 2 and q(X, Y) = ql (X, Y)qz(X, Y) is a 

nontrivial factorization over L. I fq l  and q2 do not differ by a factor, then as above 
ql(X,  y)2 and q2(X, y)2 divide u(X) 2 - v(Y) 2, so q(X, y)2 divides u(X) 2 - v(Y) 2, 

and we conclude as above. 

Thus q(X, Y) = (~(eeX + Y + fl)2 for some c~,fi 6 L, ~ c K. Then q(X,  Y) = 

(~(aX 2 q_ y2 + b) with a, b ¢ K divides fo(X 2) - go(y2), so aX q- Y q- b divides 

Ji)(X) - go(Y), hence go(X) = Ji)(aX + b), and the claim follows. 

R e m a r k  3.1. The method of  the paper is easily extended to the study o f  degree 2 

factors o f  polynomials o f  the form a(X)b(Y)  - c (X)d(Y) ,  where a, b, c, d are 

polynomials. For if q(X,  Y) is a quadratic factor, x is a transcendental, and y 

chosen with q(x, y) = 0, then a(x) /c(x)  = d(y) /b(y) ,  so setting t = a(x) /c (x)  = 

d(y) /b(y)  and studying the field extension K ( x , y ) / K ( t )  requires only minor 

extensions o f  the arguments given in the paper. 
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