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Introduction

The subject of Diophantine equations is an area of mathematics where
solutions to very similar-looking problems can vary from the elementary
to the deep. Problems are often easy to state, but it is usually far from
clear whether a given one is trivial to solve or whether it must involve
deep ideas.

In the present day, the topic is understood more widely as that of
considering polynomial equations with integer or rational coefficients for
which one seeks integer or rational solutions. Even the type of
mathematical tools used varies drastically for equations which seem
similar on the first glance.
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Some Examples.

• The Congruent Number Problem.
A natural number d is said to be a congruent number if there is a
right-angled triangle with rational sides and area d .
Equivalently Can we have an arithmetic progression of three terms
which are all squares of rational numbers and the common difference d?
That is, x2 − d , x2, x2 + d comprised of squares of rational numbers
where x is rational?

B.Sury How to solve f (x) = g(y) in integers



Indeed, Let u ≤ v < w be the sides of a right triangle with rational sides.
Then x = w/2 is such that (v − u)2/4,w 2/4, (u + v)2/4 form an
arithmetic progression.

Conversely, if x2 − d = y 2, x2, x2 + d = z2 are three rational squares in
arithmetic progression, then z − y , z + y are the legs of a right angled
triangle with rational legs, area (z2 − y 2)/2 = d and rational hypotenuse
2x because 2(y 2 + z2) = 4x2.
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• For example, 5, 6, 7 are congruent numbers.
To see these, consider the following three right-angled triangles:
with sides 3/2, 20/3, 41/6 with area 5,
with sides 3, 4, 5 with area 6,
with sides 35/12, 24/5, 337/60.

• 1, 2, 3 are not congruent numbers.
The fact that 1, 2 are not congruent numbers is essentially equivalent to
Fermat’s last theorem for the exponent 4.

Indeed, if a2 + b2 = c2, 1
2 ab = 1 for some rational numbers a, b, c then

x = c/2, y = |a2 − b2|/4 are rational numbers satisfying y 2 = x4 − 1.
Similarly, if a2 + b2 = c2, 1

2 ab = 2 for rational numbers a, b, c , then
x = a/2, y = ac/4 are rational numbers satisfying y 2 = x4 + 1.
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These equations reduce to the equation x4 ± z4 = y 2 over integers which
was proved by Fermat using the method of descent not to have nontrivial
solutions.

The unsolvability of y 2 = x4 ± 1 in rational numbers are exactly
equivalent to showing 1, 2 are not congruent.
In fact y 2 = x4 − 1 for rational x , y gives a right-angled triangle with
sides y/x , 2x/y , (x4 + 1)/xy and area 1.
Similarly, y 2 = x4 + 1 for rational x , y gives a right-angled triangle with
sides 2x , 2/x , 2y/x and area 2.
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Here is an amusing way of using the above fact that 1 is not a congruent
number to show that

√
2 is irrational!

Indeed, consider the right-angled triangle with legs
√

2,
√

2 and
hypotenuse 2. If

√
2 were rational, this triangle would exhibit 1 as a

congruent number!
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Though it is an ancient problem to determine which natural numbers are
congruent, it is only in late 20th century that substantial results were
obtained and progress has been made which is likely to lead to its
complete solution.
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The rephrasing in terms of arithmetic progressions of squares emphasizes
a connection of the problem with rational solutions of the equation
y 2 = x3 − d2x .
Such equations define elliptic curves.

It turns out that:
d is a congruent number if, and only if, the elliptic curve
Ed : y 2 = x3 − d2x has a solution with y 6= 0.
In fact, a2 + b2 = c2, 1

2 ab = d implies bd/(c − a), 2d2/(c − a) is a
rational solution of y 2 = x3 − d2x .
Conversely, a rational solution of y 2 = x3 − d2x with y 6= 0 gives the
rational, right-angled triangle with sides (x2 − d2)/y , 2xd/y , (x2 + d2)/y
and area d .

In a nutshell, here is the reason we got this elliptic curve. The real
solutions of the equation a2 + b2 = c2 defines a surface in 3-space and so
do the real solutions of 1

2 ab = d . The intersection of these two surfaces
is a curve whose equation in suitable co-ordinates is the above curve.
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The set of rational solutions of an elliptic curve over Q forms a group
and, it is an easy fact from the way the group law is defined, that there is
a solution with y 6= 0 if and only if there are infinitely many rational
solutions.

Therefore, if d is a congruent number, there are infinitely many
rational-sided right-angled triangles with area d(!)
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A point to note is that even for an equation with integral coefficients as
the one above, it is the set of rational solutions which has a nice (group)
structure.
Thus, from two rational solutions, one can produce another rational
solution by ‘composition’.
So, it is inevitable that in general one needs to understand rational
solutions even if we are interested only in integral solutions.

For example, the equation y 2 = x3 + 54 has only two integral solutions
(3,±9) but the set of rational solutions is the infinite cyclic group
generated by (3, 9).

The connection with elliptic curves has been used to show that numbers
which are 1, 2 or 3 mod 8 are not congruent.

Further, assuming the truth of the weak Birch & Swinnerton-Dyer
conjecture, Stephens showed this provides a complete characterization of
congruent numbers.
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Another example is the question:
• Which (are there infinitely many?) natural numbers have all their digits
to be 1 with respect to two different bases?
This is equivalent to solving

xm − 1

x − 1
=

yn − 1

y − 1

in natural numbers x , y > 1; m, n > 2.

For example 31 and 8191 have this property;

(11111)2 = (111)5 , (111)90 = 213 − 1.

(Observed by Goormaghtigh nearly a century ago).
However, it is still unknown whether there are only finitely many solutions
in x , y ,m, n. In fact, no other solutions are known.

For any fixed bases x , y , it was proved only as recently as in 2002 that
the number of solutions for m, n is at the most 2. The basic technique
used here is Baker’s method of linear forms in logarithms from
transcendental number theory.
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Another problem is:
• Can one have different finite arithmetic progressions with the same
product?
Note that

2.6 · · · (4n − 2) = (n + 1)(n + 2) · · · (2n)

for all natural numbers n.
Are there other solutions to the equation

x(x + d1) · · · (x + (m − 1)d1) = y(y + d2) · · · (y + (n − 1)d2)

where d1, d2 are positive rational numbers and d1 6= d2 if m = n ?

It is only in 1999 that using ideas from algebraic geometry, it was proved
that if m, n, d1, d2 are fixed, then the equation has only finitely many
solutions in integers apart from some exceptions which occur when
m = 2, n = 4.
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Erdös conjectured in 1975 that for each c ∈ Q, the number of
(x , y ,m, n) satisfying

x(x + 1) · · · (x + m − 1) = cy(y + 1) · · · (y + n − 1)

with y ≥ x + m , min(m, n) ≥ 3, is finite. This is unsettled as yet.
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On the other hand, the question as to whether a product of k
consecutive numbers (where k ≥ 3) could be a perfect power was settled
in 1975 by Erdös & Selfridge who proved that this could never be so.

They used a classical theorem due to Sylvester which asserts that any set
of k consecutive numbers with the smallest one > k contains a multiple
of a prime > k.
The special case of this when the numbers are k + 1, · · · , 2k is known as
Bertrand’s postulate. Therefore, this equation is comparatively
elementary to solve.

B.Sury How to solve f (x) = g(y) in integers



We indicate how the proof goes basically for squares.
Suppose (n + 1)(n + 2) · · · (n + k) = y 2 in positive integers n, y where
k ≥ 2.
Write n + i = aix

2
i with ai square-free; clearly each prime factor of each

ai is less than k.
The key point is to show that all the ai ’s must be distinct.
Now, if n < k, then Bertrand’s postulate gives a prime p between
[(n + k)/2] and n + k.
As n < (n + k)/2, the prime p is one of the terms n + i(1 ≤ i ≤ k) and,
therefore, p2 cannot divide the product (n + 1)(n + 2) · · · (n + k) which is
a contradiction.
If n ≥ k, then Sylvester’s theorem gives a prime number q > k which
divides the product (n + 1)(n + 2) · · · (n + k) = y 2.
So, q2 divides some n + i and hence n + i ≥ q2 ≥ (k + 1)2.
Therefore, n ≥ k2 + 1; that is, n > k2.
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But, if ai = aj for some i > j , then

k > (n + i)− (n + j) = aj(x2
i − x2

j ) > 2ajxj ≥ 2
√

ajx2
j = 2

√
n + j >

√
n,

a contradiction.
Finally, one easily bounds the product a1a2 · · · ak below by the product of
the first k square-free numbers and one uses the fact that each prime
divisor of each ai is < k to bound the product of the ai ’s from above to
get a contradiction.
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The title of our talk mentions Diophantine equations of the form
f (x) = g(y).
The reason is that questions on counting often involve finding integer
solutions of equations of the form f (x) = g(y) for integral polynomials
f , g .
For instance, suppose we are counting lattice points in generalized
octahedra. The number of integral points on the n-dimensional
octahedron |x1|+ |x2|+ · · ·+ |xn| ≤ r is given by the expression
pn(r) =

∑n
i=0 2i

(
n
i

)(
r
i

)
and the question of whether two octahedra of

different dimensions m, n can contain the same number of integral points
becomes equivalent to the solvability of pm(x) = pn(y) in integers x , y .
When m > n ≥ 2, the above equation turns out to have only finitely
many integral solutions.
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To give another natural example, for fixed but distinct natural numbers
m, n, a natural question is how often

(
x
m

)
=
(
y
n

)
or, more generally,

whether the Diophantine equation a
(
x
m

)
+ b
(
y
n

)
= c for some integers

a, b, c with ab 6= 0, has only finitely many integer solutions.
It can be proved more generally that if a, b, c ∈ Q and ab 6= 0, then for
m > n ≥ 3, the above equation has only finitely many integral solutions
x , y .
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One more result of this kind is that for the sequences of classical
orthogonal polynomials pm(x) like the Laguerre, Legendre and Hermite
polynomials, an equation of the form apm(x) + bpn(y) = c with
a, b, c ∈ Q and ab 6= 0 and m > n ≥ 4 has only finitely many solutions in
integers x , y .
Note that this is false for Chebychev polynomials Tn(x) defined as
Tn(cos θ) = cos(nθ) because Tm(x) = Tn(y) when
x = Tn(z), y = Tm(z) for any z!
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A method for y n = f (x)

For equations of the form yn = f (x), Baker’s methods suffice to give the
following results (due to Baker and to Schinzel & Tijdeman) which we
shall use:

Assume that f (x) ∈ Q[x ] has at least 3 simple roots and n > 1, or f (x)
has at least 2 simple roots and n > 2. Then f (x) = yn has infinitely
many solutions in x ∈ Z and y ∈ Q, and the solutions can be effectively
computed.

Let f (x) ∈ Q[x ] be a polynomial having at least 2 distinct roots. Then
there exists an effective constant N(f ) such that any solution of
f (x) = yn in x , n ∈ Z, y ∈ Q satisfies n ≤ N(f ).
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Erdös-Selfridge translated

After Erdös-Selfridge’s result, it is a natural problem to study
x(x + 1)(x + 2)...(x + (m − 1)) + r = yn for r ∈ Q∗.
Note that the method of Erdös-Selfridge fails for these equations.

With Yuri Bilu and a postdoctoral visitor Kulkarni, I proved :
Theorem. For r ∈ Q∗ which is not a perfect power, the equation
x(x + 1)(x + 2)...(x + (m− 1)) + r = yn has only finitely many solutions
(x , y ,m, n) with x ,m, n ∈ Z, y ∈ Q, m, n > 1.
Moreover, all the solutions can be explicitly determined.

Later, Kulkarni and I extended this theorem (non-effectively) to the
equation x(x + 1) · · · (x + (m − 1)) = g(y), where g(y) is an arbitrary
irreducible polynomial.
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The Theorem is deduced from three particular results which we prove.

First of all, let us note two infinite series of solutions which occur for two
special values of r .
For r = 1/4 we have the solutions

x ∈ Z, y = ±(x + 1/2), m = n = 2. (1)

For r = 1 we have infinitely many solutions

x ∈ Z, y = ±(x2 + 3x + 1), m = 4, n = 2. (2)
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In the following theorem m is fixed, and we solve the above equation in
x , y , n.

Theorem 2. Let r be a non-zero rational number and m > 1 be an
integer.

1 Assume that (m, r) /∈ {(2, 1/4), (4, 1)}. Then the equation has at
the most finitely many solutions (x , y , n) satisfying

x , n ∈ Z, y ∈ Q, n > 1, (3)

and all the solutions can be explicitly determined.

2 Assume that (m, r) = (2, 1/4) or (m, r) = (4, 1). Then, besides the
above infinite classes of solutions, the equation has at most finitely
many solutions (x , y , n) satisfying the conditions
x , n ∈ Z, y ∈ Q, n > 1, and all these solutions can be explicitly
determined.
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The theorem implies that n is bounded in terms of m and r . It turns out
that, when r 6= ±1, it is bounded in terms of r only. Indeed, we have:

Theorem 3. Let r be a rational number distinct from 0 and ±1. Then
there exists an effective constant C (r) with the following property. If
(x , y ,m, n) is a solution, then n ≤ C (r).
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Now, let us change the roles : n is fixed, m is variable.

Theorem 4. Let r be a non-zero rational number and n > 1 an integer.
Assume that r is not an n-th power in Q. Then, the equation has at the
most finitely many solutions (x , y ,m) satisfying

x ,m ∈ Z, y ∈ Q, m > 1, (4)

and all the solutions can be explicitly determined.
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Proofs of Bilu-Kulkarni-Sury theorems

The first theorem is an immediate consequence of the others.

Indeed, assume that r is not a perfect power.
The second theorem implies that n is effectively bounded in terms of r .
In particular, we have finitely many possible n.
The third theorem implies that for each n there are at most finitely many
possibilities of (x , y ,m).
This proves the first theorem.
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Remark. It is interesting to compare the equation

x(x + 1)(x + 2)...(x + (m − 1)) + r = yn

with the classical equation of Catalan xm − yn = 1 which has been solved
by Mihăilescu. However, much less is known about the equation
xm − yn = r for r 6= ±1. Just to the contrary, for our equation, the case
r = ±1 seems to be the most difficult.
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Let us put fm(x) = x(x + 1) · · · (x + m − 1).

Proposition. Let λ be a complex number. Then the polynomial
fm(x)− λ has at least 2 simple roots if

(m, λ) /∈
{

(2,−1/4) ,
(

3, ±2
3
√

3

)
, (4,−1)

}
. It has at least three simple

roots if m > 2 and
(m, λ) /∈

{(
3,±4/3

√
3
)
, (4,−1), (4, 9/16) ,

(
6, 16(10± 7

√
7)/27

)}
.

Sketch of Proof.
By the Theorem of Rolle, f ′m(x) has m − 1 distinct real roots. Hence
fm(x)− λ may have roots of order at most 2.
It can be proved that for even m at most 2 double roots are possible, and
for odd m only one double root may occur.
It follows that for m /∈ {2, 3, 4, 6} the polynomial f (x)− λ has at least 3
simple roots.
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We are left with m ∈ {2, 3, 4, 6}. Since the polynomial f (x)− λ has
multiple roots if and only if λ is a stationary value of the polynomial f (x)
(that is, λ = f (α) where α is a root of f ′(x)), it remains to determine
the stationary values of each of the polynomials f2, f3, f4 f6 and count the
simple roots of corresponding translates. The details are routine.
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Corollary.

Let r be a non-zero rational number. The polynomial fm(x) + r has at
least 2 simple roots if (m, r) /∈ {(2, 1/4), (4, 1)}. It has at least three
simple roots if m > 2 and (m, r) /∈ {(4, 1), (4,−9/16)}.
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Proof of the second theorem.
Corollaries above imply that the theorem is true if m > 2 and
(m, r) /∈ {(4, 1), (4,−9/16)}.

It remains to consider the cases m = 2 and (m, r) ∈ {(4, 1), (4,−9/16)}.
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Case 1 : m = 2, r 6= 1/4

In this case f2(x) + r has two simple roots, and Corollary above implies
that f2(x) + r = yn has at most finitely many solutions with n > 2 (and
these solutions can be explicitly determined). We are left with the
equation x(x + 1) + r = y 2, which is equivalent to the equation
(x + 1/2 + y)(x + 1/2− y) = 1/4− r , having finitely many solutions.
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Case 2 : m = 2, r = 1/4

In this case we have the equation (x + 1/2)2 = yn. It has infinitely many
solutions given as above and no other solutions. Indeed, if (x , y , n) is a
solution with n > 2 then x + 1/2 is a perfect power, which is impossible
because its denominator is 2.

B.Sury How to solve f (x) = g(y) in integers



Case 3 : m = 4, r = 1

In this case we have the equation
(
x2 + 3x + 1

)2
= yn. It has infinitely

many solutions given as above and only finitely many other solutions, all
of which can be explicitly determined.
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Indeed, let (x , y , n) be a solution with n > 2.
If n is odd, then y is a perfect square: y = z2 and x2 + 3x + 1 = ±zn.
Since x2 + 3x + 1 has two simple roots, the latter equation has only
finitely many solutions with n ≥ 3.

If n = 2n1 is even then x2 + 3x + 1 = ±yn1 , which has finitely many
solutions with n1 ≥ 3.
We are left with n = 4, in which case x2 + 3x + 1 = ±y 2.
Equation x2 + 3x + 1 = y 2 is equivalent to
(2x + 3 + 2y)(2x + 3− 2y) = 5, which has finitely many solutions.
Equation x2 + 3x + 1 = −y 2 is equivalent to (2x + 3)2 + 4y 2 = 5, which
has finitely many solutions as well.
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Case4 : m = 4, r = −9/16

In this case we have the equation (x + 3/2)2(x2 + 3x − 1/4) = yn.
Since its left-hand side has 2 simple roots, this equation has only finitely
many solutions with n > 2.
We are left with the equation (x + 3/2)2(x2 + 3x − 1/4) = y 2, which is
equivalent to the equation 16(x2 + 3x + 1− y)(x2 + 3x + 1 + y) = 25,
having only finitely many solutions.
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The proofs of both theorems 3 and 4 rely on the following simple
proposition.
First recall that if α is a non-zero rational number and p a prime
number, then ordp(α) is the integer t such that p−tα is a p-adic unit.

B.Sury How to solve f (x) = g(y) in integers



Proposition.

Let p be a prime number and t = ordp(r). Then for any solution
(x , y ,m, n), one has either m < (t + 1)p or n|t.
Proof.
Assume that m ≥ (t + 1)p. Then
ordp

(
x(x + 1)(x + 2)...(x + (m − 1))

)
≥ t + 1. Hence

ordp
(
x(x + 1)(x + 2)...(x + (m − 1)) + r

)
= t,

that is, ordp(yn) = t, which implies that n|t.
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Proof of the third theorem.

Since r 6= ±1, there exists a prime number p such that t = ordp(r) 6= 0.
Theorem above implies that for every m > 1 there exists an effective
constant N(m) such that for any solution, we have n ≤ N(m). Put
C ′(r) = max{N(m) : 2 ≤ m < (t + 1)p} if t > 0 and C ′(r) = 0 if t < 0.
Then n ≤ C ′(r) when m < (t + 1)p, and n ≤ |t| by the above
Proposition when m ≥ (t + 1)p. Thus, in any case
n ≤ C (r) := max{C ′(r), t}.
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Proof of the fourth theorem.

The proof splits into two cases.

Case 1: there is a prime p such that n does not divide t = ordp(r) In

this case Proposition above implies that m ≤ (t + 1)p. Also,
(n, r) /∈ {(2, 1/4), (4, 1)}, because in both these cases r is an n-th power.
Now Theorem above implies that we may have only finitely many
solutions.
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Case 2: n is even and r = −rn1 , where r1 ∈ Q Write z = (y/r1)n/2.

Let p be prime number congruent to 3mod 4 and such that ordp(r) = 0.
If m ≥ p then

ordp
(
1 + z2

)
= ordp

(
r−1x(x + 1) · · · (x + m − 1)

)
> 0,

which implies that −1 is a quadratic residue mod p, a contradiction.
Thus, m < p and Theorem again implies that we may have only finitely
many solutions.
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However, the methods used in the above theorems do not work even for
the general equation of the form x(x + 1) · · · (x + m − 1) = g(y) and
different ideas are required. We discuss one technique which has proved
very useful for these equations as well as for many others in recent times.
Many results on equations of the form f (x) = g(y) appearing in the last
decade have been made possible by a beautiful theorem of Bilu & Tichy
to be recalled below.
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Siegel’s theorem

To motivate the basic approach and statement of Bilu-Tichy’s theorem,
let us start more generally, for a polynomial F (x , y) ∈ Z[x , y ].
Basic problem: Determine if F (x , y) = 0 has only finitely many solutions
with x , y in Z.

When F (x , y) is absolutely irreducible, Siegel’s celebrated 1929 theorem
shows the finiteness of the number of integer solutions except when the
(projective completion of the) curve defined by F (x , y) = 0 has genus 0
and at most 2 points at infinity.

Siegel’s theorem generalizes also to S-integers in algebraic number fields
but is, unfortunately, ineffective.
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Bilu-Tichy’s remarkable theorem produces a set F of five families of pairs
of polynomials (called standard pairs) over Q, such that any pair (f , g) of
polynomials over Q for which the curve f (x) = g(y) has genus zero and
at most two points at infinity, is a pair in F up to a linear change of
variables. Moreover, they show that each pair (f , g) for which
f (x) = g(y) has infinitely many solutions can be determined from
standard pairs.
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Curves f (X ) = g(Y )

To determine finiteness, or otherwise, of the integral solutions of any
given F (x , y) = 0 using Siegel’s theorem, one proceeds along the
following steps:
• Split F (x , y) into irreducible factors in Q[x , y ].
• For each factor which is irreducible over Q̄, find the genus and the
number of points at infinity.
• For each of those factors which have genus 0 and ≤ 2 points at infinity,
try to determine whether the number of integral solutions is finite or not.
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In several of the classical problems, F (x , y) has the special form
f (x)− g(y). In this case, there are nice results answering the
sub-problems which rise while attempting to apply Siegel’s theorem.

For instance, Ehrenfeucht (1958) proved : If (deg f , deg g) = 1, then
f (X )− g(Y ) is irreducible.
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There are some cases when one can observe that f (X )− g(Y ) is
reducible. For instance, note that if f , g ,F are arbitrary polynomials with
deg F > 0, then f1(X )− g1(Y ) is a factor of f (X )− g(Y ) where
f (X ) = F (f1(X )) and g(Y ) = F (g1(Y )).

Over C, Tn(X ) + Tn(Y ) is a product of quadratic factors (and a linear
factor if n is odd) where Tn(X ) is the Chebychev polynomial
Tn(2 cos x) = 2 cos nx :
Tn(x) + Tn(y) =

∏
k odd(x2 − 2xy cosπk/n + y 2 − sin2 πk/n) for n even

and
Tn(x) + Tn(y) = (x + y)

∏
k odd,k<n(x2− 2xy cosπk/n + y 2− sin2 πk/n)

for n odd.
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Davenport, Fried, Lewis, Runge, Schinzel and Siegel have made
fundamental contributions to the question of irreducibility of
f (X )− g(Y ).

Fried had made a deep study of the factors of f (X )− g(Y ).
He proved in 1973 that given f , g ∈ Q[X ], there are f1, f2, g1, g2 in Q[X ]
such that :
(i) f (X ) = f1(f2(X )), g(X ) = g1(g2(X )),
(ii) Splitting fields of f1(X )− t and of g1(X )− t over Q(t) (where t is a
new indeterminate) are the same, and
(iii) the irreducible factors of f1(X )− g1(Y ) are in bijection with
irreducible factors of f (X )− g(Y ) under the correspondence

F1(X ,Y ) 7→ F1(f2(X ), g2(Y )).
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Here is a simple way of computing the genus of the curve f (X )− g(Y )
using the Riemann-Hurwitz formula.

Let f , g ∈ C[X ] have degrees m, n respectively. Suppose f (X )− g(Y ) is
irreducible. Assume that the stationary points of f and g are all simple.
For a stationary point α of f , let rα denote the number of stationary
points β of g such that g(β) = f (α). Then, the genus is

1

2

∑
α∈Sf

(n − 2rα)− m

2
+ 1− (m, n)

2

where the sum is over the set Sf of stationary points of f .
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Let us see how useful this is by means of the following simple example.
Consider any λ ∈ C∗ and the equation

x(x + 1) = λy(y + 1)(y + 2).

If f (X ) = X (X + 1), g(Y ) = Y (Y + 1)(Y + 2), then

Sf = {−1/2},Sg = {−1± 1/
√

3}.

g(−1± 1/
√

3) = ±2
√

3λ/9 = f (−1/2) = −1/4

if, and only if, λ = ±3
√

3/8, and in this case r−1/2 = 1.

Therefore, the genus is 0 for λ = ±3
√

3/8, and 1 for other λ. Hence, it
follows from Siegel’s theorem that the equation

x(x + 1) = λy(y + 1)(y + 2)

has only finitely many integral solutions unless λ = ±3
√

3/8.
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Decomposition of polynomials

In order to state the theorem of Bilu & Tichy, we need to recall a
definition and some properties ensuing from it.

A decomposition of a polynomial F (X ) ∈ K [X ] over a field K , is an
equality of the form F (X ) = G1(G2(X )), where G1(X ),G2(X ) ∈ K [X ].
The decomposition is called nontrivial if deg G1 > 1, deg G2 > 1.
Two decompositions F (X ) = G1(G2(X )) and F (X ) = H1(H2(X )) are
called equivalent over K if there exist a linear polynomial l(X ) ∈ K [X ]
such that G1(X ) = H1(l(X )) and H2(X ) = l(G2(X )).
The polynomial called decomposable if it has at least one nontrivial
decomposition, and is indecomposable otherwise.
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Capelli lemma and Ritt theorems

Before stating the Bilu-Tichy theorem, we recall some very early results
on compositions of polynomials due to Capelli (who discovered the
Frattini argument in group theory) and to Ritt.

Capelli lemma. For polynomials f , g over a field K , the polynomial f ◦ g
is irreducible if and only if f is irreducible over K and, for each root α of
f , the polynomial g(x)− α is irreducible over K (α).

B.Sury How to solve f (x) = g(y) in integers



Ritt’s first theorem. Let f1 ◦ f2 ◦ · · · fr = g1 ◦ g2 ◦ · · · gs where fi , gj ∈ C[X ]
be nontrivial decompositions into indecomposables. Then, r = s and the
sets of degrees {deg(f1), · · · , deg(fr )} = {deg(g1), · · · , deg(gs)}.

Ritt’s second theorem. let f1 ◦ g1 = f2 ◦ g2 be two proper decompositions
over C where deg(f1) = deg(g2) is relatively prime to deg(g1) = deg(f2).
Then, either

f1(X ) = X rP(X )s = g2(X ) , g1(X ) = f2(X ) = X s

or
f1(X ) = g2(X ) = Dm(X ) , g1(X ) = f2(X ) = Dn(X )

where Dn(X ) is the Dickson polynomial of degree n defined by

Dn(X + 1/X ) = X n + 1/X n.
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Bilu-Tichy theorem

If f , g are polynomials in Q[X ], then the equation f (x) = g(y) is said to
have infinitely many rational solutions with a bounded denominator if
there is an integer N such that there are infinitely many rational solutions
x , y with Nx ,Ny ∈ Z.

Theorem (Bilu & Tichy) 2000

For non-constant polynomials f (X ) and g(X ) ∈ Q[X ], the following are
equivalent:
(a) The equation f (x) = g(y) has infinitely many rational solutions with
a bounded denominator.
(b) We have f = φ(f1(λ)) and g = φ(g1(µ)) where λ(X ), µ(X ) ∈ Q[X ]
are linear polynomials, φ(X ) ∈ Q[X ], and (f1(X ), g1(X )) is a standard
pair over Q such that the equation f1(x) = g1(y) has infinitely many
rational solutions with a bounded denominator.
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Standard Pairs (f1, g1)

First kind :
(X t , aX rp(X )t) or (aX rp(X )t ,X t)

where 0 ≤ r < t, (r , t) = 1 and r + deg p(X ) > 0.
Second kind :

(X 2, (aX 2 + b)p(X )2) or ((aX 2 + b)p(X )2,X 2).

Third kind :
(Dk(X , at),Dt(X , ak))

where (k, t) = 1. Here the Dickson polynomial

Dn(X , a) =

[ n2 ]∑
i=0

n

n − i

(
n − i

i

)
(−a)iX n−2i .

Fourth kind:
(a−t/2Dt(X , a),−b−k/2Dk(X , b))

where (k , t) = 2.
Fifth kind :

((aX 2 − 1)3, 3X 4 − 4X 3) or (3X 4 − 4X 3, (aX 2 − 1)3).
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x(x + 1) · · · (x + m − 1) = g(y)

Kulkarni & S used Bilu Tichy’s theorem to study the equation
fm(x) = g(y) where fm(X ) = X (X + 1) · · · (X + m − 1). Before stating
some of the results, let us note that one needs to find all possible
decompositions of fm. This is quite easy and one has :

Let m ≥ 3 and fm(X ) = X (X + 1)...(X + (m − 1)). Then,
(i) fm(X ) is indecomposable if m is odd and,
(ii) if m = 2k, then any nontrivial decomposition of fm(X ) is equivalent
to fm(X ) = Rk((X − m−1

2 )2) where

Rk = (X − 1

4
)(X − 9

4
) · · · (X − (2k − 1)2

4
).

In particular, the polynomial Rk is indecomposable.
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Theorem

(Kulkarni, S)
Suppose fm(x) = g(y) has infinitely many rational solutions x , y with a
bounded denominator. Then we are in one of the following cases:

1. g(y) = fm(g1(y)) for some g1(y) ∈ Q[Y].

2. m is even and g(y) = φ(g1(y)) where

φ(X ) = (X − ( 1
2 )2)(X − ( 3

2 )2) · · · (X − ( (m−1)
2 )2) and g1(y) ∈ Q[Y] is a

polynomial whose square-free part has at most two zeroes.

3. m = 3 and g of any degree n ≥ 3 when g(X ) = 1
33(n+1)/2 Dn(µ(X ), 33)

and µ(X ) is a linear polynomial over Q.

4. m = 4 and g(y) = 9
16 + b δ(y)2 where δ is a linear polynomial.
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Theorem

Assume that g(y) is an irreducible polynomial in Q[y ]. Then there exists
a constant C = C (g) such that for any m > C , there does not exist any
x , y ∈ Z satisfying fm(x) = g(y). Moreover, C can be calculated
effectively.
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Proof.

Let n be the degree of g . Write g(X ) = g1(X )/Λ for some non-zero
integer Λ and an irreducible, integral polynomial g1. Assume that
fm(x) = g(y) has a rational solution (x , y) with bounded denominator ∆
where ∆ is a positive integer. Since g1 is irreducible, Chebotarev density
theorem guarantees the existence of infinitely many primes p such that g1

has no roots modulo p. Choose such a prime p which does not divide
Λ∆. We claim that m < p. Suppose, if possible, m ≥ p. Write
x = x0/d , y = y0/d1 with x0, y0, d , d1 integers with d , d1 dividing ∆.Then

Λx0(x0 + d) · · · (x0 + (m − 1)d) = dmg1(y0/d1).

Clearing the denominator on the right hand side, we get

dn
1 Λx0(x0 + d) · · · (x0 + (m − 1)d) = dmh(y0)

for an integral polynomial h. As m ≥ p, the left hand side is a multiple of
p; as p 6 |d , we get p|h(y0). Since h(X ) = dn

1 g1(X/d1) and p 6 |d1, we
have p|g1(z0) for some integer z0 (indeed, d1z0 ≡ y0 mod p would do).
This contradicts the choice of p. Thus, one may take C = p as above.
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Sums of powers

Let us now consider the Bernoulli polynomials Bn(x) defined by the
generating series

tetx

et − 1
=
∞∑
n=0

Bn(x)
tn

n!
.

Then, Bn(x) =
∑n

i=0

(
n
i

)
Bn−ix

i where Br = Br (0) is the r -th Bernoulli
number. In fact, Br are rational numbers defined recursively by B0 = 1
and

∑n−1
i=0

(
n
i

)
Bi = 0 for all n ≥ 2. The odd Bernoulli number Br = 0 for

r odd > 1 and the first few are :

B0 = 1,B1 = −1/2,B2 = 1/6,B4 = −1/30.

The Bernoulli polynomials Bn are related to the sums of n-th powers of
the first few natural numbers as follows. For any n ≥ 1, the sum
1n + 2n + · · ·+ kn is a polynomial function Sn(k) of k and

Sn(x) = Bn+1(x+1)−Bn+1

n+1 .
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The decomposition of Bernoulli polynomials has been investigated by Y.
Bilu, B. Brindza, P. Kirschenhofer, A.Pintér and R.F. Tichy - they prove :
Theorem.
Let m ≥ 2. Then,
(i) Bm is indecomposable if m is odd and,
(ii) if m = 2k, then any nontrivial decomposition of Bm is equivalent to
Bm(x) = φ((x − 1

2 )2) for a (unique) polynomial φ over Q.
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It is natural to ask if Sn(x) = Sm(y) has solutions when m 6= n.
Note that the polynomials Bn(X ) = ±Bn(1− X ) which give infinitely
many solutions to Bn(x) = Bn(y).
More generally, we have:
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Theorem

(Kulkarni, S)
For C (T ) ∈ Q[T ] and m ≥ n > deg C + 2, the equation

aBm(x) = bBn(y) + C (y)

has only finitely many rational solutions with a bounded denominator
unless m = n, a = ±b and C ≡ 0.
Inparticular, for all m, n > 2 and any c ∈ Q∗, the equation

aBm(x) + bBn(y) = c

has only finitely many rational solutions with a bounded denominator.
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Theorem

(Kulkarni, S)
Let fn(x) = x(x + 1) · · · (x + n − 1). For m ≥ n > deg(C ) + 2, the
equation

aBm(x) = bfn(y) + C (y)

has only finitely many rational solutions with bounded denominator
except in the following situations :
(i) m = n,m + 1 is a perfect square, a = b(

√
m + 1)m,

(ii) m = 2n, n+1
3 is a perfect square, a = b( n

2

√
n+1

3 )n.

In each case, there is a uniquely determined polynomial C for which the
equation has infinitely many rational solutions with a bounded
denominator. Further, C is identically zero when m = n = 3 and has
degree n − 4 when n > 3.
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Theorem

(Kulkarni, S)
For m ≥ n > deg(C ) + 2, the equation

afm(x) = bBn(y) + C (y)

has only finitely many rational solutions with bounded denominator
excepting the following situations when it has infinitely many :
m = n, m + 1 is a perfect square, b = a(

√
m + 1)m.

In these situations, the polynomial C is also uniquely determined to be

C (x) = afm((±
√

m + 1)x +
1−m ∓

√
m + 1

2
)− bBm(x)

and has degree m − 4.
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Theorem.

Let g(y) ∈ Q[y ] have degree n ≥ 3 and let m ≥ 3. The equation
Bm(x) = g(y) has only finitely many rational solutions x , y with any
bounded denominator apart from the following exceptions :
(i) g(y) = Bm(h(y)) where h is a polynomial over Q.
(ii) m is even and g(y) = φ(h(y)), where h is a polynomial over Q,
whose square-free part has at most two zeroes, such that h takes
infinitely many square values in Z and, φ is the unique polynomial such
that Bm(x) = φ((x − 1

2 )2).
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(iii) m = 3, n ≥ 3 odd and g(x) = 1
8(33(n+1)/2)

Dn(δ(x), 33).

(iv) m = 4, n ≥ 3 odd and g(x) = 1
22(n+3) Dn(δ(x), 24)− 1

480 .

(iv) m = 4, n ≡ 2 mod 4 and g(x) = −β−n/2

64 Dn(δ(x), β)− 1
480 .

Here δ is a linear polynomial over Q and β ∈ Q∗. Furthermore, in each of
the exceptional cases, there are infinitely many solutions with a bounded
denominator.
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The proof of our finiteness result uses (apart from the Bilu-Tichy
theorem, of course) special properties of the Bernoulli polynomials. For
instance, it is known (due to Brillhart and Inkeri) that the Bernoulli
polynomial Bm has only simple roots if m > 3 is odd, and has no rational
roots if m > 2 is even. Instead of going through all details of the proof,
we just give a sample of the proof.
One of the cases leads to an equation of the form

Bm(rx + s) = φ0 + φ1ax rp(x)3

where m = 3d + r with r = 1 or 2. We will rule this out as follows.
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If r = 2, then Bm(ux + v) = φ0 + φ1ax2p(x)3. By taking the derivative,
it follows that mBm−1 has at least one rational root. But we know that,
if Bk has a rational root then k must be odd by Inkeri’s result quoted
above. In our case, this gives a contradiction since m − 1 is even.
Let r = 1. Then Bm(x)− φ0 = λ(x)p(x)3 for a linear polynomial λ(x)
and a polynomial p(x) of degree (m − 1)/3 over Q. As every root of
p(x) is a multiple root of Bm(x)− φ0 with multiplicity ≥ 3, such a root is
also a root of Bm−1(x) and of Bm−2(x).
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From this discussion, it follows that p has no rational roots (since this is
true for Bm−1), and all its roots are simple (since this is true for Bm−2).
We show now that it is impossible for an equality

Bm(x)− φ0 = λ(x)p(x)3

of polynomials to hold where λ is linear and Bm(α) = φ0 and
Bm−1(α) = 0.
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To show this, we note that x = 0, 1
2 , 1 are zeroes of Bm(x). Hence,

writing λ(x) = c0 + c1x , we have

−φ0 = c0p(0)3 = (c0 + c1/2)p(1/2)3 = (c0 + c1)p(1)3.

Note that Bm−1(α) = φ0 6= 0 as Bm has only simple roots.
As p is not zero at rational numbers, we have

c0 + c1

2

c0
= s3,

c0 + c1

c0
= t3

for nonzero rational numbers s, t. Hence we have

t3 + 1 = 2s3

where evidently s 6= 1 6= t. The above equation is equivalent to

x3 + y 3 = 2z3

in nonzero integers x , y , z which are not all equal (as t 6= 1 6= s). But, it
is well-known and easy to prove that the above equation has no solutions
other than xyz = 0 or x = y = z .
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Dropping terms

If we drop terms from fm(X ) = X (X + 1) · · · (X + m − 1) to get some f ,
what can be said about solutions of f (x) = yn? How many terms can we
drop?

Theorem. Let r ∈ Q, let 0 ≤ a1 < a2 < · · · < ak be integers where
k > 2. Further, let n > 2 and assume that we are not in the case when
n = k = 4. Then, there are only finitely many solutions x ∈ Z, y ∈ Q to
the equation

(x − a1)(x − a2) · · · (x − ak) + r = yn

and, all the solutions satisfy

max{H(x),H(y)} < C

where C is an effectively computable constant depending only on n, r and
the ai ’s.
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A more interesting result bounding k when r is an integer which is not a
perfect nth power, is contained in the following result.
Theorem 2. Let n be a fixed positive integer > 2 and let r be a nonzero
integer which is not a perfect nth power. Let {tm}m be a sequence of
positive integers such that m/tm →∞ as m→∞. There exists a
constant C such that if (x − a1)(x − a2) · · · (x − am−tm) + r = yn with
0 ≤ a1 < a2 < · · · < am−tm has a solution, then m/(tm + 1) < C .
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The polynomial 1 + x + x2

2 + · · ·+ xn

n!

Now, we consider finiteness of the number of rational solutions with
bounded denominators (and point out all the exceptions) for certain
equations of the form f (x) = g(y) which includes the polynomials

f (x) = 1 + x +
x2

2
+

x3

6
+ ...+

xn

n!

for any n ≥ 3, and the Bernoulli polynomials Bn(x), where g is an
arbitrary polynomial of degree m ≥ 3 in Q[y ]. This f is the ‘exponential
polynomial’ of the title and, it should be remarked that the name
exponential polynomial is used in another sense also.
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Kulkarni & S proved the following results :
Theorem.
Let En(x) = 1 + x + x2

2! + x3

3! + · · ·+ xn

n! with n ≥ 3. Then, we have :
(a) En is indecomposable for each n,
(b) for g ∈ Q[y ] of degree m ≥ 3, the equation En(x) = g(y) has only
finitely many rational solutions with a bounded denominator except in
the following two cases :
(i) g(y) = En(h(y)) for some nonzero polynomial h(y) ∈ Q(y),
(ii) n = 3,m is odd, and g(x) = 1

3 + 1
6 Dm(µ(x),−1), where µ is a linear

polynomial over Q.
In each exceptional case, there are infinitely many solutions.
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As a matter of fact, the proof works more generally and we have :
Theorem.
Let f , g be polynomials of degrees n,m respectively, with rational
coefficients. Suppose each extremum (with respect to f ) has type
(1, 1, · · · , 1, 2). Then, for n,m ≥ 3, the equation f (x) = g(y) has only
finitely many rational solutions (x , y) with a bounded denominator except
in the following two cases :
(i) g(x) = f (h(x)) for some nonzero polynomial h(x) ∈ Q(x),
(ii) n = 3,m ≥ 3 and f (x) = c0 + c1D3(λ(x), cm),
g(x) = c0 + c1Dm(µ(x), c3) for linear polynomials λ and µ over Q and
ci ∈ Q with c1, c 6= 0.
In each exceptional case, there are infinitely many solutions.
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Indecomposability of En

We start with a simple observation which gives a sufficient condition for
indecomposability of a complex polynomial.
For a polynomial P(x) ∈ C[x ], a complex number c is said to be an
extremum, if P(x)− c has multiple roots.
The type of c (with respect to P) is defined to be the tuple (µ1, · · · , µs)
of the multiplicities of the distinct roots of P(x)− c .
Observation Let f be any complex polynomial and suppose f = g ◦ h for
complex polynomials g , h of degrees ≥ 2. Then, if α ∈ C is so that
g ′(α) = 0, then the polynomial h(x)− α divides both f (x)− g(α) and
f ′(x).
In particular, if f (x) ∈ C[x ] satisfies the condition that any extremum
λ ∈ C has the type (1, 1, · · · , 1, 2), then f is indecomposable over C.
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Proof.

The former statement implies the latter one. For, it implies that if
f (x) = G1(G2(x)) is a decomposition of f (x) with deg G1,G2 > 1, then
there exists λ ∈ C such that deg gcd (f (x)− λ, f ′(x)) ≥ deg G2. But,
then the type of λ (with respect to f ) cannot be (1, 1, · · · , 1, 2).
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So, we prove the former statement. Evidently, for any α ∈ C, the
polynomial h(x)− α divides f (x)− g(α). Moreover, if α is such that
g ′(α) = 0, then consider any root θ of h(x)− α. Suppose its multiplicity
is a. Then, since the multiplicity of θ in h′(x) is a− 1 and since
g ′(h(θ)) = g ′(α) = 0, it follows that (x − θ)a divides
f ′(x) = g ′(h(x))h′(x). This concludes the proof.
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In order to prove indecomposability of En’s using the above lemma, the
key result needed is the following :
Proposition.
Each extremum of the polynomial

En(x) = 1 + x +
x2

2!
+

x3

3!
+ · · ·+ xn

n!

has the type (1, 1, · · · , 1, 2). In particular, En(x) is indecomposable for all
n. Moreover, En has only simple roots for any n.
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Proof.

Note that E ′n+1 = En for any n ≥ 0. Therefore, it is clear that, for each
n ≥ 0, the roots of En are simple, for En+1(α) = 0 implies

E ′n+1(α) = En(α) = En+1(α)− αn+1/(n + 1)! = −αn+1/(n + 1)! 6= 0.

Now, let λ be a complex number such that En+1(x)− λ has a multiple
root α. Then En(α) = 0 and λ = En+1(α) = αn+1/(n + 1)!. If β is
another multiple root of En+1(x)− λ, then αn+1 = βn+1. This implies
that there exists θ 6= 1 with θn+1 = 1 such that En has two roots α, αθ.
Using Galois theory, this can be shown to be impossible.
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In the course of the proof, one needs some basic facts about Dickson
polynomials. These are summarized in the following result due to Bilu :
Theorem.
(a) The Dickson polynomial Dl(x , 0) has exactly one extremum 0; it is of
type (l).

(b) If a 6= 0 and l ≥ 3 then Dl(x , a) has exactly the two extrema ±2a
l
2 .

If l is odd, then both are of type (1, 2, 2 · · · , 2).

If l is even, then 2a
l
2 is of type (1, 1, 2, · · · , 2) and −2a

l
2 is of type

(2, 2, · · · , 2).
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Quadratic factors of f(X)-g(Y)

Yuri Bilu classified the pairs of polynomials f , g over a field of
characteristic 0 such that f (X )− g(Y ) has an irreducible factor of
degree 2.
This is used in the seminal work of Bilu & Tichy on equations of the
form f (x) = g(y).
The point is that they are interested in determining ‘exceptional factors’
of f (X )− g(Y ).
An exceptional curve F (X ,Y ) is one when Siegel’s theorem does not give
finitely many integral points on a curve - this is if the genus is 0 and
there are only two points at infinity.
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Determining exceptional factors of f (X )− g(Y ) reduces by a trick due to
Fried to finding quadratic factors - this is the motivation to find
quadratic factors in general characteristic.
In this section, we extend Bilu’s results to arbitrary characteristic - this
work is in collaboration with M.Kulkarni & P.Müller.

Our method is completely different from Bilu’s and, if one skips all the
arguments specific to this, one obtains a particularly short and natural
proof of Bilu’s result.
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Theorem

Let f , g ∈ K [X ] be non-constant polynomials over a field K, such that
f (X )− g(Y ) ∈ K [X ,Y ] has a quadratic irreducible factor q(X ,Y ). If
the characteristic p of K is positive, then assume that at least one of the
polynomials f , g cannot be written as a polynomial in X p. Then there
are f1, g1,Φ ∈ K [X ] with f = Φ ◦ f1, g = Φ ◦ g1 such that q(X ,Y )
divides f1(X )− g1(Y ), and one of the following holds:

B.Sury How to solve f (x) = g(y) in integers



(a) max(deg f1, deg g1) = 2 and q(X ,Y ) = f1(X )− g1(Y ).

(b) There are α, β, γ, δ ∈ K with g1(X ) = f1(αX + β), and
f1(X ) = h(γX + δ), where h(X ) is one of the following polynomials.

(i) p does not divide n, and h(X ) = Dn(X , a) for some a ∈ K . If a 6= 0,
then ζ + 1/ζ ∈ K where ζ is a primitive n-th root of unity.

(ii) p ≥ 3, and h(X ) = X p − aX for some a ∈ K .
(iii) p ≥ 3, and h(X ) = (X p + aX + b)2 for some a, b ∈ K .

(iv) p ≥ 3, and h(X ) = X p − 2aX
p+1

2 + a2X for some a ∈ K .
(v) p = 2, and h(X ) = X 4 + (1 + a)X 2 + aX for some a ∈ K .

(c) n is even, p does not divide n, and there are α, β, γ, a ∈ K such that
f1(X ) = Dn(X + β, a), g1(X ) = −Dn((αX + γ)(ξ + 1/ξ), a). Here ξ
denotes a primitive 2n-th root of unity. Furthermore, if a 6= 0, then
ξ2 + 1/ξ2 ∈ K .

(d) p ≥ 3, and there are quadratic polynomials u(X ), v(X ) ∈ K [X ],
such that f1(X ) = h(u(X )) and g1(X ) = h(v(X )) with

h(X ) = X p − 2aX
p+1

2 + a2X for some a ∈ K .
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The theorems exclude the case that f and g are both polynomials in X p.
The following handles this case, a repeated application reduces to the
situation of the Theorems above.

Theorem

Let f , g ∈ K [X ] be non-constant polynomials over a field K, such that
f (X )− g(Y ) ∈ K [X ,Y ] has an irreducible factor q(X ,Y ) of degree at
most 2. Suppose that f (X ) = f0(X p) and g(X ) = g0(X p), where p > 0
is the characteristic of K . Then one of the following holds:

(a) q(X ,Y ) divides f0(X )− g0(Y ), or

(b) p = 2, f (X ) = f0(X 2), g(X ) = f0(aX 2 + b) for some a, b ∈ K , and
q(X ,Y ) = X 2 − aY 2 − b.
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Remark

Under suitable conditions on the parameters and the field K , all cases
listed in Theorem 3 give examples such that f1(X )− g1(Y ) indeed has an
irreducible quadratic factor. The cases of the Dickson polynomials are
classically known and look as follows where n is even and ξ is a primitive
2n-th root of unity:

Dn(X , a)+Dn(Y , a) =
∏

1≤k≤n−1 odd

(X 2−(ξk+1/ξk)XY +Y 2+(ξk−1/ξk)2a).
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We illustrate with two examples:
(b)(v). Here p = 2 and h(X ) = X 4 + (1 + a)X 2 + aX . We have
h(X )− h(Y ) = (X + Y )(X + Y + 1)(X 2 + X + Y 2 + Y + a). If
Z 2 + Z = a has no solution in K , then the quadratic factor is irreducible.

(b)(iv). Here p ≥ 3 and h(X ) = X p − 2aX
p+1

2 + a2X , and a 6= 0 of
course. If α is a root of Z p−1 − a, then so is −α. Let T be a set such
T ∪ (−T ) is a disjoint union of the roots of Z p−1 − a.
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We compute

h(X 2)− h(Y 2) = (X 2 − Y 2)
∏

t∈T∪(−T )

[((X − Y )− t)((X + Y )− t)]

= (X 2 − Y 2)
∏
t∈T

[((X − Y )− t)((X + Y )− t)

((X + Y ) + t)((X − Y ) + t)]

= (X 2 − Y 2)
∏
t∈T

((X 2 − Y 2)2 − 2t2(X 2 + Y 2) + t4).

and therefore

h(X )− h(Y ) = (X − Y )
∏
t∈T

((X − Y )2 − 2t2(X + Y ) + t4).

The discriminant with respect to X of the quadratic factor belonging to t
is 16t2Y , so all the quadratic factors are absolutely irreducible.
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Davenport problem, Schur conjecture

We discuss a classical conjecture which involves the same analysis which
is used in Bilu-Tichy’s work.

For an integral polynomial f (X ), and each prime number p, let us
consider the set Valp(f ) of values of f (Z) modulo p.
If f and g are linearly related in Q, obviously Valp(f ) = Valp(g) for all
but finitely many primes p.
Davenport problem asks whether the converse is true.
Note the special case f (X ) = aX n, g(X ) = X n of this is already
interesting - if a is an n-th power modulo p for all but finitely many
primes p, then is a an n-th power?
The answer is known to be ‘yes’ if n is not a multiple of 8 and ‘no’ in the
exceptional cases.
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A conjecture of a similar flavour is Schur’s conjecture which was solved
affirmatively by M.Fried.
Schur’s conjecture requires us to find all integral polynomials f (X ) such
that Valp(f ) is the full set for infinitely many primes p. These are exactly
the ones linearly related to Dickson polynomials.
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Group-theoretic approach

The method of approach to both Schur’s conjecture and the Davenport
problem is group-theoretic which we briefly describe.

First, we point out that Davenport conjecture has been solved by Fried
for f , g when f is indecomposable. Later, P.Müller solved the case when
the decomposition length of f is 2. In fact, a version is proved for
algebraic number fields where there are finitely many exceptions which
are explicitly pointed out. The rest is completely open.
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Let f , g ∈ K [X ] where K is an algebraic number field. Take a Galois
extension E of the function field K (t) which contains roots x of
f (X )− t ∈ K (t)[X ] and y of g(X )− t ∈ K (t)[X ].
Note that we have located elements x , y ∈ E such that f (x) = g(y).
Call G = Gal(E/K (t)) and U,V to be the stabilizers in G of x , y
respectively. Then, Fried proved using the Chebotarev density theorem
that:

Theorem (Fried). Let f , g ∈ OK [X ] be non-constant polynomials.
Then, ValP(f ) = ValP(g) for almost all prime ideals P if, and only if,⋃

g∈G

gUg−1 =
⋃
g∈G

gVg−1

The last condition is very interesting for any finite group G and
subgroups U,V because even if one of U ⊂ V , it is sometimes true that
U = V and sometimes not!
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Proofs of M-K-S Theorems

Theorem

Let f , g ∈ K [X ] be non-constant polynomials over a field K, such that
f (X )− g(Y ) ∈ K [X ,Y ] has a quadratic irreducible factor q(X ,Y ). If
the characteristic p of K is positive, then assume that at least one of the
polynomials f , g cannot be written as a polynomial in X p. Then there
are f1, g1,Φ ∈ K [X ] with f = Φ ◦ f1, g = Φ ◦ g1 such that q(X ,Y )
divides f1(X )− g1(Y ), and one of the following holds:
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(a) max(deg f1, deg g1) = 2 and q(X ,Y ) = f1(X )− g1(Y ).

(b) There are α, β, γ, δ ∈ K with g1(X ) = f1(αX + β), and
f1(X ) = h(γX + δ), where h(X ) is one of the following polynomials.

(i) p does not divide n, and h(X ) = Dn(X , a) for some a ∈ K . If a 6= 0,
then ζ + 1/ζ ∈ K where ζ is a primitive n-th root of unity.

(ii) p ≥ 3, and h(X ) = X p − aX for some a ∈ K .
(iii) p ≥ 3, and h(X ) = (X p + aX + b)2 for some a, b ∈ K .

(iv) p ≥ 3, and h(X ) = X p − 2aX
p+1

2 + a2X for some a ∈ K .
(v) p = 2, and h(X ) = X 4 + (1 + a)X 2 + aX for some a ∈ K .

(c) n is even, p does not divide n, and there are α, β, γ, a ∈ K such that
f1(X ) = Dn(X + β, a), g1(X ) = −Dn((αX + γ)(ξ + 1/ξ), a). Here ξ
denotes a primitive 2n-th root of unity. Furthermore, if a 6= 0, then
ξ2 + 1/ξ2 ∈ K .

(d) p ≥ 3, and there are quadratic polynomials u(X ), v(X ) ∈ K [X ],
such that f1(X ) = h(u(X )) and g1(X ) = h(v(X )) with

h(X ) = X p − 2aX
p+1

2 + a2X for some a ∈ K .
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Definition

For elements a, b of a group G , let ab denote the conjugate b−1ab.

Lemma

Let G be a finite dihedral group, generated by the involutions a and b.
Then a and a suitable conjugate of b generate a Sylow 2-subgroup of G.

Proof. Set c = ab. For i ∈ N, the order of < a, bc i > is twice the order of

abc i . We compute abc i = a(c−1)ibc i = a(ba)ib(ab)i = (ab)2i+1 = c2i+1.
Let 2i + 1 be the largest odd divisor of |G |. The claim follows.
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Definition

For a, b, c , d in a field K with ad − bc 6= 0 let

[
a b
c d

]
denote the image

of

(
a b
c d

)
∈ GL2(K ) in PGL2(K ).

Lemma

Let K be an algebraically closed field of characteristic p, and
ρ ∈ PGL2(K ) be an element of finite order n. Then one of the following
holds:

(a) p does not divide n, and ρ is conjugate to

[
1 0
0 ζ

]
, where ζ is a

primitive n-th root of unity.

(b) n = p, and ρ is conjugate to

[
1 1
0 1

]
.

Proof. Let ρ̂ ∈ GL2(K ) be a preimage of ρ. Without loss of generality
we may assume that 1 is an eigenvalue of ρ̂. The claim follows from the
Jordan normal form of ρ̂.
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Lemma

Let K be an algebraically closed field of characteristic p, and
G ≤ PGL2(K ) be a dihedral group of order 2n ≥ 4, which is generated by
the involution τ and the element ρ of order n. Then one of the following
holds:

(a) p does not divide n. There is σ ∈ PGL(K ) such that τσ =

[
0 1
1 0

]
and ρσ =

[
1 0
0 ζ

]
, where ζ is a primitive n-th root of unity.

(b) n = p ≥ 3. There is σ ∈ PGL(K ) such that τσ =

[
1 0
0 −1

]
and

ρσ =

[
1 1
0 1

]
.

(c) n = p = 2. There is σ ∈ PGL(K ) such that τσ =

[
1 b
0 1

]
and

ρσ =

[
1 1
0 1

]
for some 1 6= b ∈ K .
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Proof.

By Lemma 6 we may assume that ρ has the form given there. From
ρτ = ρ−1 we obtain the shape of τ :

First assume that p does not divide n, so ρ =

[
1 0
0 ζ

]
. Let

τ̂ =

(
a b
c d

)
∈ GL2(K ) be a preimage of τ . From ρτ = ρ−1 we obtain

ρτ = τρ−1, hence(
1 0
0 ζ

)(
a b
c d

)
= λ

(
a b
c d

)(
ζ 0
0 1

)
for some λ ∈ K . This gives (λζ − 1)a = 0, (λ− 1)b = 0, (λ− 1)c = 0,
and (λ− ζ)d = 0. First assume b = c = 0. Then ρ and τ commute, so
G is abelian, hence n = 2 6= p and therefore ζ = −1. It follows

τ =

[
1 0
0 −1

]
= ρ, a contradiction.
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Thus b 6= 0, so λ = 1. This yields a = d = 0, as ζ 6= 1. We obtain

τ =

[
0 1
c 0

]
. Choose β ∈ K with β2 = c , and set δ =

[
1 β
0 1

]
. The

claim follows from ρδ = ρ and τ δ =

[
0 1
1 0

]
.

Now assume the second case of Lemma 6, that is p = n and ρ =

[
1 1
0 1

]
.

Again setting τ̂ =

(
a b
c d

)
we obtain

(
1 1
0 1

)(
a b
c d

)
= λ

(
a b
c d

)(
1 −1
0 1

)
for some λ ∈ K .
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This gives a + c = λa, b + d = λ(−a + b), c = λc , and d = λ(−c + d).
If c 6= 0, then λ = 1, so c = 0 by the first equation, a contradiction.
Thus c = 0, so a 6= 0. We may assume a = 1, so d = −1. This gives the

result for p = n = 2. If p 6= 2, then set σ =

[
1 β
0 1

]
with β = −b/2.

From ρσ = ρ and τσ =

[
1 0
0 −1

]
we obtain the claim.

B.Sury How to solve f (x) = g(y) in integers



(b) If L is a polynomial, then R has no poles, so is a polynomial as well.
Suppose now that L is not a polynomial. Then there is α ∈ K with
L(α) =∞. Let K̄ be an algebraic closure of K . Choose β ∈ K̄ with
g(β) = α. If we can find γ ∈ K̄ with R(γ) = β, then we get the
contradiction f (γ) =∞. The value set of R on K̄ is K̄ minus the
element R(∞) ∈ K . Thus we are done except for the case that the
equation g(X ) = α has only the single solution β = R(∞) ∈ K . In this
case, however, g(X ) = α + δ(X − β)n with δ ∈ K . From
L−1(f (R−1(X ))) = g(X ) we analogously either get that L and R are
polynomials, or f (X ) = α′ + δ′(X − β′)n with α′, δ′, β′ ∈ K . The claim
follows.
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Lemma

Let K be a field of characteristic p, and n ∈ N even and not divisible by
p (so in particular p 6= 2). Let ξ be a primitive 2n-th root of unity and
a ∈ K . Then

Dn(X , a)+Dn(Y , a) =
∏

1≤k≤n−1 odd

(X 2−(ξk+1/ξk)XY +Y 2+(ξk−1/ξk)2a).

Proof.

This is essentially a proposition proved by Bilu in the paper we are
generalizing. The factorizations of Dm(X , a)− Dm(Y , a) are known from
Turnwald’s proof of Schur’s conjecture. The claim then follows from that
and D2n(X , a)− D2n(Y , b) = Dn(X , a)2 − Dn(Y , b)2 =
(Dn(X , a) + Dn(Y , b))(Dn(X , a)− Dn(Y , b)).
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The following proposition classifies polynomials f over K with a certain
Galois theoretic property. To facilitate the notation in the statement and
its proof, we introduce a notation: If E is a field extension of K , and
f , h ∈ K [X ] are polynomials, then we write f ∼E h if and only if there
are linear polynomials L,R ∈ E [X ] with f (X ) = L(h(R(X ))). Clearly, ∼E

is an equivalence relation on K [X ]. In determining the possibilities of f in
Proposition 0.1, we first determine certain polynomials h ∈ K̄ [X ] with
f ∼K̄ h, and from that we conclude the possibilities for f . The following
Lemma illustrates this latter step.
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Lemma

Let K̄ be an algebraic closure of the field K of characteristic p. Suppose
that f ∼K̄ X p − 2X (p+1)/2 + X for f ∈ K [X ]. Then
f ∼K X p − 2aX (p+1)/2 + a2X for some a ∈ K .

Proof There are α, β, γ, δ ∈ K̄ with f (X ) = αh(γX + δ) + β ∈ K [X ],
where h(X ) = X p − 2X (p+1)/2 + X .
The coefficients of X p and X (p+1)/2 of f (X ) are αγp ∈ K and
−2αγ(p+1)/2 ∈ K , so γ(p−1)/2 ∈ K and αγ ∈ K .
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Suppose that p > 3. Then the coefficient of X (p−1)/2 is (up to a factor
from K ) αγ(p−1)/2δ ∈ K , so αδ ∈ K and therefore δ/γ ∈ K . Thus, upon
replacing X by X − δ/γ, we may assume δ = 0. Then β ∈ K , so β = 0
without loss of generality. Now dividing by αγp and setting
a = 1/γ(p−1)/2 yields the claim.
In the case p = 3 we get from above γ ∈ K and then α ∈ K . Thus we
may assume α = γ = 1. Looking at the coefficient of X , which is
−4δ + 1, shows δ ∈ K , so δ = β = 0 without loss of generality. Thus
f (X ) = X 3 − 2X 2 + X .
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Proposition

Let K be a field of characteristic p, and f (X ) ∈ K [X ] be a polynomial of
degree n ≥ 3 which is not a polynomial in X p. Let x be a transcendental,
and set t = f (x). Suppose that the normal closure of K (x)/K (t) has the
form K (x , y) where F (x , y) = 0 with F ∈ K [X ,Y ] irreducible of total
degree 2. Furthermore, suppose that the Galois group of K (x , y)/K (t) is
dihedral of order 2n. Then one of the following holds:

B.Sury How to solve f (x) = g(y) in integers



(a) p does not divide n, and f ∼K Dn(X , a) for some a ∈ K . If a 6= 0,
then ζ + 1/ζ ∈ K where ζ is a primitive n-th root of unity.

(b) n = p ≥ 3, and f ∼K X p − aX for some a ∈ K .

(c) n = 2p ≥ 6, and f ∼K (X p + aX + b)2 for some a, b ∈ K .

(d) n = p, and f ∼K X p − 2aX
p+1

2 + a2X for some a ∈ K .

(e) n = 4, p = 2, and f ∼K X 4 + (1 + a)X 2 + aX for some a ∈ K .
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In the cases (b), (d), (e), and (a) for odd n, the following holds: If K (w)
is an intermediate field of K (x , y)/K (t) with [K (x , y) : K (w)] = 2, then
K (w) is conjugate to K (x).
In case (a) suppose that f (X ) = Dn(X , a) and K (w) is not conjugate to
K (x). Furthermore, suppose that t = g(w) for a polynomial
g(X ) ∈ K [X ]. Then g(X ) = −Dn(b(ξ + 1/ξ)X + c , a) for b, c ∈ K and
ξ a primitive 2n-th root of unity.
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Proof of the Theorems

Suppose that f (X ) is not a polynomial in X p, so not all exponents of f
are divisible by p. Let q(X ,Y ) be an irreducible divisor of f (X )− g(Y )
of degree at most 2. Set t = f (x), where x is a transcendental over K .
Clearly both variables X and Y appear in q(X ,Y ). In an algebraic
closure of K (t) choose y with q(x , y) = 0. Note that g(y) = t. The field
K (x) ∩ K (y) lies between K (x) and K (t), so by Lüroth’s Theorem,
K (x) ∩ K (y) = K (u) for some u. Writing t = Φ(u) and u = f1(x) for
rational functions Φ, f1 ∈ K (X ), we have f = Φ ◦ f1. By Lemma 10(a),
we may replace u by u′ with K (u) = K (u′), such that t is a polynomial
in u, and u is a polynomial in x . Thus without loss of generality we may
assume that Φ and f1 are polynomials. From that it follows that u is also
a polynomial in y , so g(X ) = Φ(g1(X )) for a polynomial g1 with
g1(y) = u. As q is irreducible and f1(x)− g1(y) = u− u = 0, we get that
q(X ,Y ) divides f1(X )− g1(Y ). Thus, in order to prove the theorems, we
may assume that f = f1 and g = g1, so K (x) ∩ K (y) = K (t).
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First suppose that the polynomial q(x ,Y ), considered in the variable Y ,
is inseparable over K (x). Then the characteristic of K is 2, and (up to a
factor) q(X ,Y ) = aX 2 + bX + c + Y 2, hence y 2 = ax2 + bx + c . So
K (y 2) ⊆ K (x) ∩ K (y) = K (t), therefore [K (y) : K (t)] ≤ 2. But
[K (x) : K (t)] = [K (x , y) : K (y)][K (y) : K (t)]/[K (x , y) : K (x)] ≤ 2. We
obtain deg f , deg g ≤ 2, a situation which gives case (a) in the theorems.
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Thus we assume that K (x , y)/K (x) is separable. By the assumption that
f (X ) is not a polynomial in X p (this property is inherited by the new f ),
we also obtain that K (x)/K (t) is separable. Thus K (x , y)/K (t) is
separable. From K (x) ∩ K (y) = K (t) we obtain that the fields K (x),
K (y), and K (x , y) are pairwise distinct. So K (x , y) is a quadratic
extension of K (x) and K (y). Thus K (x , y)/K (t) is a Galois extension,
whose Galois group G is generated by involutions τx and τy , where τx
and τy fix x and y , respectively. In particular, G is a dihedral group.
For deg f = deg g = 2 we obtain case (a) of the Theorems. Thus assume
n = deg f = deg g ≥ 3 from now on.
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The possibilities for f are given in Proposition 0.1. In the cases (b), (d),
(e), and (a) for odd n, we obtain that K (x) and K (y) are conjugate,
yielding the case (a) of Theorem ?? and case (b) of Theorem 3.
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Let us assume case (c) of Proposition 0.1. Here G is a dihedral group of
order 4p. If τx and τy are conjugate, then we obtain case (a) of Theorem
?? and case (b)(iii) of Theorem 3. Thus suppose that τx and τy are not
conjugate. By Lemma 4 there is a conjugate τ ′y of τy such that τx and τ ′y
generate a group of order 4. Thus K (x) and K (y ′) have degree 2 over
K (x) ∩ K (y ′). So there are f0, g0, h ∈ K [X ] with f0 and g0 of degree 2
and f = h ◦ f0, g = h ◦ g0, giving case (a) of Theorem ??. Without loss of
generality assume that f (X ) = (X p + aX + b)2, and f0(X ) = X 2. From
f (−X ) = h((−X )2) = h(X 2) = f (X ) we obtain b = 0, so f (X ) = h(X 2)

with h(X ) = X p + 2aX
p+1

2 + a2X . This yields case (d) of Theorem 3.
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Finally, assume the situation of Proposition 0.1, case (a) for even n. If
K (x) and K (y) are conjugate, then we obtain the case (a) of Theorem
?? and case (b)(i) of Theorem 3. If however K (x) and K (y) are not
conjugate, then Proposition 0.1 yields case (c) of Theorem 3. In order to
obtain case (b) of Theorem ?? one applies Lemma 4 in order to show
that τx and a conjugate of τy generate a dihedral 2-group and argues as
in the previous paragraph.
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Let z be a transcendental over the field K . The group of

K -automorphisms of K (z) is isomorphic to PGL2(K ), where

[
a b
c d

]
sends z to az+b

cz+d . Note that K (z) = K (z ′) for z ∈ K (z) if and only if

z ′ = az+b
cz+d with

[
a b
c d

]
∈ PGL2(K ).

Let r(z) ∈ K (z) be a rational function. Then the degree deg r of r is the
maximum of the degrees of the numerator and denominator of r(z) as a
reduced fraction. Note that deg r is also the degree of the field extension
K (z)/K (r(z)).

B.Sury How to solve f (x) = g(y) in integers



For a ∈ K recall the nth Dickson polynomial Dn(X , a) (of degree n)
defined implicitly by Dn(z + a/z , a) = zn + (a/z)n.
Note that Dn(X , 0) = X n.
Furthermore, from bnDn(z + a/z , a) = bn(zn + (a/z)n) =

(bz)n + ( b2a
bz )n = Dn(bz + b2a

bz , b
2a) = Dn(b(z + a/z), b2a) one obtains

bnDn(X , a) = Dn(bx , b2a), a relation we will use.
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Lemma

(a) Let f (X ) = g(h(X )) with f ∈ K [X ] and g , h ∈ K (X ). Then
f = g ◦ h = (g ◦ λ−1) ◦ (λ ◦ h) for a rational function λ ∈ K (X ) of
degree 1, such that g ◦ λ−1 and λ ◦ h are polynomials.

(b) Let f , g ∈ K [X ] be two polynomials such that f (X ) = L(g(R(X )))
for rational functions L,R ∈ K (X ) of degree 1. Then there are linear
polynomials `, r ∈ K [X ] with f (X ) = `(g(r(X ))).
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Proof.

(a) This is well known. For the convenience of the reader, we supply a
short proof. Let λ ∈ K (X ) be of degree 1 such that λ(h(∞)) =∞.
Setting ḡ = g ◦ λ−1 and h̄ = λ ◦ h we have f = ḡ ◦ h̄ with h̄(∞) =∞.
Suppose that ḡ is not a polynomial. Then there is α ∈ K̄ (K̄ denotes an
algebraic closure of K ) with ḡ(α) =∞. Let β ∈ K̄ ∪ {∞} with
h̄(β) = α). From h̄(∞) =∞ we obtain β 6=∞. Now
f (β) = ḡ(h̄(β)) = ḡ(α) =∞ yields a contradiction, so ḡ is a polynomial.
From that it follows that h̄ is a polynomial as well.
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Proof

Let K̂ be the algebraic closure of K in K (x , y). Then
K (x) ⊆ K̂ (x) ⊆ K (x , y), so either K̂ = K or K (x , y) = K̂ (x).
We start looking at the latter case. Here K̂ (x)/K̂ (t) is a Galois extension
with group C which is a subgroup of G = Gal(K̂ (x)/K (t)) of order n.
Note that C is either cyclic or dihedral. Let σ ∈ C , so xσ = ax+b

cx+d with

a, b, c , d ∈ K̂ . From f ( ax+b
cx+d ) = f (xσ) = f (x)σ = tσ = t = f (x) we

obtain that ax+b
cx+d is a polynomial, so xσ = ax + b.
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Suppose that p does not divide n. Then we may assume that the
coefficient of X n−1 of f vanishes. From f (ax + b) = f (x) we obtain
b = 0. Thus C is isomorphic to a subgroup of K̂×, in particular C is
cyclic and generated by σ with xσ = ζx with ζ a primitive nth root of
unity. From f (x) = f (ζx) we see that, up to a constant factor,
f (X ) = X n. This is case (a) with a = 0.
From now on it is more convenient to work over an algebraic closure K̄ of
K .
Now K̄ (t) ∩ K (x , y) = K̂ (t) as noticed in Turnwald’s notes on
monodromy of polynomials, we obtain that Gal(K̄ (x)/K̄ (t)) = C .
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Now suppose that p divides n = |C |, but p ≥ 3. First assume that C is
cyclic. From Lemma 6 we get p = n. Let ρ be a generator of C . Lemma
6 shows the following: There is x ′ ∈ K̄ (x) with K̄ (x) = K̄ (x ′), such that
x ′ρ = x ′ + 1. So t ′ = x ′p − x ′ is fixed under C . We obtain t ′ ∈ K̄ (t),
because K̄ (t) is the fixed field of C . From p = [K̄ (x ′) : K̄ (t ′)] we obtain
K̄ (t ′) = K̄ (t). So there are rational functions L,R ∈ K̄ (X ) of degree 1
with x ′ = R(x) and t = L(t ′). Then
f (x) = t = L(t ′) = L(x ′p − x ′) = L(r(x)p − R(x)), so
f = L ◦ (X p − X ) ◦ R. By Lemma 10 we may assume that L and R are
polynomials over K̄ . Then f (X ) = α(X p − aX ) + β with α, β, a ∈ K .
From that we get case (b).
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Next assume that C is dihedral of order n. As p ≥ 3, we get that p
divides n/2. We apply Lemma 7 now. This yields n = 2p, and there is x ′

with K̄ (x ′) = K̄ (x) such that K̄ (t) is the fixed field of the
automorphisms x ′ 7→ −x ′ and x ′ 7→ x ′ + 1. Obviously t ′ = (x ′p − x ′)2 is
fixed under these automorphisms, and as [K̄ (x ′) : K̄ (t ′)] = 2p, we obtain
K̄ (t) = K̄ (t ′). The claim follows similarly as above.
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Now assume that p = 2 divides n. Applying Lemmata 6 and 7, we get
that C is the Klein 4 group. We see that
t ′ = x ′(x ′ + 1)(x ′ + b)(x ′ + b + 1) is fixed under the automorphisms
sending x ′ to x ′ + 1 and to x ′ + b. So t ′ = h(x ′) with
h(X ) = X 4 + (1 + b + b2)X 2 + (b + b2)X . Next we show that b2 + b ∈ K .
A suitable substitution γf (αX + β) + δ should give f (X ) ∈ K [X ]. We
obtain γf (αX + β) + δ = γ(f (αX ) + f (β)) + δ ∈ K [X ]. Looking at the
coefficients of X 2 and X yields α ∈ K , so α = 1 without loss of
generality. Looking at X 4 gives γ ∈ K , so γ = 1 without loss. Finally the
coefficient of X yields the claim. Thus
f (X ) = X 4 + (1 + b + b2)X 2 + (b + b2)X ∈ K [X ] and K̂ = K (b), which
gives case (e). In this case assume that w is as in the proposition. Let τx
and τw be the involutions of the dihedral group G of order 8 which fix x
and w , respectively. From K (x , y) = K (x , b) = K (w , b) we obtain that
τx , τw 6∈ C . This shows that τx and τw are conjugate in G , so K (w) is
conjugate to K (x).
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It remains to study the case K = K̂ , so K̂ (x , y)/K̂ (t) is Galois with
group G . By the Diophantine trick we obtain a rational parametrization
of the quadric F (X ,Y ) = 0 over K̄ (actually, a suitable quadratic
extension over which F (X ,Y ) = 0 has a rational point suffices). In terms
of fields that means K̄ (z) = K̄ (x , y) for some element z .
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We apply Lemma 7. Up to replacing x and t by x ′ and t ′ as above, we
get the following possibilities:
(a) p does not divide n, x is fixed under the automorphism sending z to
1/z , and t is fixed under this automorphism and the one sending z to
z/ζ. So we may choose t = zn + 1/zn, x = z + 1/z . But then
t = Dn(x , 1). There are linear polynomials L,R ∈ K̄ [X ] with
L ◦ Dn(X , 1) ◦ R = f ∈ K [X ], so we get case (a) of the proposition by
Turnwald’s work on Schur’s conjecture. For the remaining claims
concerning this case, we may assume that f (X ) = Dn(X , a). Again set
t = f (x), and now choose z with z + a/z = x . Then
t = Dn(x , a) = Dn(z + a/z , a) = zn + (a/z)n. The normal closure
K (x , y) = K (x ,w) of K (x)/K (t) is contained in K (ζ, z). The elements
x ′ = ζx + a

ζx and x ′′ = x
ζ + ζa

x are conjugates of x , so

x , x ′, x ′′ ∈ K (x , y). From x ′ + x ′′ = (ζ + 1/ζ)(x + a/x) we obtain
ζ + 1/ζ ∈ K (x , y). However, we are in the case that K is algebraically
closed in K (x , y), so ζ + 1/ζ ∈ K .
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Suppose that K (w) is not conjugate to K (x). As extending the
coefficients does not change Galois groups, this is equivalent to K̄ (x) not
being conjugate to K̄ (w) in K̄ (x , y) = K̄ (z). Note that x is fixed under
the involution z 7→ a/z . The other involutions in Gal(K̄ (z)/K̄ (t)) have
the form z 7→ aβ/z , where β is an nth root of unity, or z 7→ −z . The
latter involution cannot fix w , because the fixed field would be K̄ (z2),
however, zn + (a/z)n cannot be written as a polynomial in z2. Thus
suppose that z 7→ aβ/z fixes w . If βn/2 = 1, then an easy calculation

shows that

[
0 a
1 0

]
and

[
0 βa
1 0

]
are conjugate in Gal(K̄ (z)/K̄ (t)),

contrary to K̄ (x) and K̄ (w) not being conjugate. Thus βn/2 6= 1, hence
βn/2 = −1, because βn = 1. The element w ′ = z + (βa)/z is fixed under
the involution z 7→ aβ/z , so K̄ (w ′) = K̄ (w).
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Furthermore,

t = zn + (a/z)n = zn + (βa/z)n = Dn(z + (βa)/z , βa) = Dn(w ′, βa),

so g(X ) = Dn(uX + v , βa) for some u, v ∈ K̄ . The condition that g(X )
has coefficients in K shows that v

u ∈ K , by Turnwald’s work on Schur’s
conjecture. Thus, upon replacing X by X − v

u , we may assume v = 0.
The transformation formula gives
g(X ) = Dn(uX , βa) = βn/2Dn( u√

β
X , a) = −Dn( 1

δX , a) with δ ∈ K̄ . As

each conjugate of w has degree 2 over K (x) we obtain that f (X )− g(Y )
splits over K in irreducible factors of degree 2. One of the factors of
f (X )− g(Y ) = Dn(X , a) + Dn( 1

δY , a) is
X 2 − 1

δ (ξ + 1/ξ)XY + 1
δ2 Y 2 − (ξ − 1/ξ)2a. All coefficients of this factor

have to be in K , so there is b1 ∈ K with 1
δ (ξ + 1

ξ ) = b1. We obtain

g(X ) = −Dn( b1

ξ+1/ξX , a) = −Dn(b(ξ + 1/ξ)X , a), where

b = b1

(ξ+1/ξ)2 ∈ K . The claim follows.
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(b) n = p ≥ 3. From a computation above we obtain t = (zp − z)2. We
may assume that x is fixed under the automorphism sending z to −z , so
for instance x = z2. Let h ∈ K̄ (X ) with h(x) = t. That means

h(z2) = (zp − z)2 = z2p − 2zp+1 + z2, hence h(X ) = X p − 2X
p+1

2 + X .
Lemma 9 yields the claim.
(c) The case n = p = 2 does not arise, because we assumed n ≥ 3.
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The conjugacy of K (w) and K (x) has been shown in the derivation of
case (e) above. In the cases (a) (n odd), (b) and (d) it holds as well,
because G is dihedral of order 2n with n odd, so all involutions in G are
conjugate.
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Proof of 2nd theorem:

We have f (X ) = u(X )p and g(X ) = v(X )p, where the coefficients of u
and v are contained in a purely inseparable extension L of K . (This
includes the case K = L.) In particular, [L : K ] is a power of p, so
q(X ,Y ) remains irreducible over L if p > 2.
Suppose first that p > 2, or that q(X ,Y ) is irreducible over L if p = 2.
As each irreducible factor of
f (X )− g(Y ) = u(X )p − v(X )p = (u(X )− v(Y ))p arises at least p
times, we obtain that q(X ,Y )p = q(X p,Y p) divides
f (X )− g(Y ) = f0(X p)− g0(Y p), and the claim follows in this case.
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It remains to look at the case that p = 2 and
q(X ,Y ) = q1(X ,Y )q2(X ,Y ) is a nontrivial factorization over L. If q1

and q2 do not differ by a factor, then as above q1(X ,Y )2 and q2(X ,Y )2

divide u(X )2 − v(Y )2, so q(X ,Y )2 divides u(X )2 − v(Y )2, and we
conclude as above.
Thus q(X ,Y ) = δ(αX + Y + β)2 for some α, β ∈ L, δ ∈ K . Then
q(X ,Y ) = δ(aX 2 + Y 2 + b) with a, b ∈ K divides f0(X 2)− g0(Y 2), so
aX + Y + b divides f0(X )− g0(Y ), hence g0(X ) = f0(aX + b), and the
claim follows.
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Remark

The method of the discussion is easily extended to the study of degree 2
factors of polynomials of the form a(X )b(Y )− c(X )d(Y ), where
a, b, c , d are polynomials. For if q(X ,Y ) is a quadratic factor, x is a
transcendental, and y chosen with q(x , y) = 0, then
a(x)/c(x) = d(y)/b(y), so setting t = a(x)/c(x) = d(y)/b(y) and
studying the field extension K (x , y)/K (t) requires only minor extensions
of the arguments given in the discussion.
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