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One of the  most  ubiqui tous  results  of e lementary  n u m b e r  
theory is the  so-called Fermat ' s  l i t t le theorem.  Pierre  
de Fermat  was an ama teu r  m a t h e m a t i c i a n  to w h o m  are 
credi ted several deep and s tunn ing  results  in m a t h e m a t -  
ics. Let us list a few. He proved the  impossibi l i ty  of 
solving in non-zero integers the  equa t ion  X 4 § y 4  = Z 2 

and,  in the  process, discovered the  now-famous m e t h o d  
of descent.  He proved tha t  a p r ime  of the  form 4n + 1 is a 
sum of two squares of integers. He is also credited,  a long 
with Newton  and Leibniz, wi th  the  discovery of the  inte- 
gral calculus. The  ' little theorem'  of Fe rmat  referred to 
above s ta tes  t h a t  f o r  a p r i m e  n u m b e r  p a n d  a n u m b e r  a 

which  is n o t  a mu l t ip l e  o f  p,  a p-1 -- 1 m o d  p. T h e  last 
phrase  means  t ha t  a p-1 - 1 is a mul t ip le  of p. This  is 
also evident ly  equivalent to the  s t a t e m e n t  t ha t  a p - a is 

a mu l t ip l e  o f  p f o r  any  a. This  e lementa ry  propos i t ion  
in classical n u m b e r  theory  has, in fact, found applica-  
t ions to as appl ied a subjec t  as cryptology.  There  are 
many  ways to prove Fermat ' s  li t t le theorem.  We discuss 
a number  of t h e m  and go on to generalise one of them.  
Fix a pr ime p. We aim to prove t ha t  a p - a is a mul t ip le  
of p for any integer  a or, equivalently, t ha t  a p-1 - 1 is a 

mul t ip le  of p for all a copr ime to p. 

I n d u c t i o n  

The  m e t h o d  of ma themat i ca l  induc t ion  provides per- 
haps the  easiest proof. Assuming  tha t  a is any na tu ra l  
number  sat isfying a p - a is a mul t ip le  of p, let us look 
at (a + 1) p - (a + 1). This  is s imply  a p - a up to  a su m in 
which each t e rm  is a mul t ip le  of some binomial  coeffi- 
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cient (~), 1 < r < p. I t  is an easy exercise to prove tha t  

each such binomial  coefficient is a mul t ip le  of p (this is 
where  we require p to be a prime).  As the  induct ion  is 
tr ivially s ta r ted  wi th  a = 1, and  as the  passage from a 
posi t ive integer  a to its negat ive - a  is evident ,  the  proof  

is complete .  

Counting Necklaces 

Here is an a t t rac t ive  - one might  even say ornamental ( ! )  
- proof. Suppose  there  are a different bead colours which 
can be used to form a necklace of n beads. The  only 
condi t ion  is tha t  adjacent  beads  have different colours. 
First ,  let us jus t  make  a str ing (with two ends) o f n  beads  
wi th  adjacent  beads  having different colours. As there 
are a choices of colours for the  first bead,  a -  1 choices 
for the  second and a - 1 choices the  next  onwards,  the  
n u m b e r  of a r r angemen t s  possible is a(a  - 1) ~-1. Now, 
the  first and  the  n - th  bead may or may  not  have the  

same colour. If d~ (respectively, sn) denotes  the  number  
of a r rangements ,  where  the  first and the  n - th  bead have 
different colours (respectively, the  same colour), then  it 
is obvious t ha t  s~ = d,~-l. Moreover, s~ + dn = a ( a  - 

1) '~-1 is the  to ta l  n u m b e r  of a r rangements .  Therefore,  

dn + d,~-i = a (a  - 1) n-1 

dn-1 q- dn-2  = a(a  - .  1) n-2 

dn-2  q- dn -3  = a(a  - 1) n-3 

d 2 + d l  = a ( a -  1). 

Al te rna te ly  adding  and sub t rac t ing  and not ing  tha t  dl = 
0, we get 

dn = (a - i)" -I- (-l)n(a - i). 

If n = p, a pr ime,  then  each a r rangement  leads to p 
dis t inct  cyclic combinat ions .  Note  tha t  this is not  so if 
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n is not  a prime.  Thus,  we get t ha t  ( a -  1) p - ( a -  1) is 
a mul t ip le  of p. 

Lagrange's  T h e o r e m  - S o m e  Group  T h e o r y  

This  is pe rhaps  the  most  na tu ra l  p roof  of this  theorem.  
The  set Zp -- (0, 1 , . . . , p -  1} has the  s t ruc ture  of a r ing 
viz., there  are two operat ions  - addi t ion  modu lo  p and  
mul t ip l ica t ion  modulo  p. The  special fact abou t  pr imes  
tha t  is relevant  here is t ha t  all the  numbers  1, 2, �9 �9 �9 , p -  1 
are copr ime to p. The  Eucl idean a lgor i thm familiar from 
high school tells us tha t  the  greates t  c o m m o n  divisor 
(GCD) of any a and p is of the  form ax -}- py  for cer ta in  
integers x, y. In part icular ,  if 1 < i < p - 1, there  is a 
corresponding j between 1 and  p - 1 so tha t  i j  + p y  = 1 

for some y. In te rms  of the  opera t ion  of mul t ip l ica t ion  
modulo  p, this jus t  means  t h a t  i has a mul t ip l ica t ive  
inverse j .  In  o ther  words, (1, 2 , . . . , p  - 1} form a g roup  
under  the  opera t ion  of mul t ip l ica t ion  modu lo  p. The  fa- 
mous  theorem of Lagrange a l luded to above implies t h a t  
in any finite group G with  n e lements ,  every e lement  g 
satisfies gn = e, the  ident i ty  element .  Apply ing  this  to 
our group above, we get tha t  a p - 1  equals 1 m o d u l o  p 

for a - 1, 2 , . . . , p  - 1. But ,  clearly, Fermat ' s  l i t t le the-  
orem is an assert ion on a only m o d u l o  p i.e., if it holds 
for some a, it holds for a +  (a mul t ip le  of p) as seen by 
using the  binomial  expansion.  

C a u c h y ' s  T h e o r e m  - More  Group  T h e o r y  

Here is a var iant  where ins tead  of using facts on the  
order of subgroups ,  one essentially uses the  cardinal i ty  
of orbits under  a group action. Compare  this p roof  wi th  
the  one we got by count ing necklaces. This  approach  has  
the  addi t ional  a t t rac t ion  of providing us wi th  a proof  of 
the  so-called theo rem of Cauchy  which asserts t ha t  in 

a f ini te  group with n elements ,  there are e lements  o f  

every p r i m e  order which divides n.  To see b o t h  proofs  
s imultaneously,  look at an a rb i t ra ry  finite group G wi th  

RESONANCE i November 2001. 



GENERAL [ ARTICLE 

n elements .  Let p be a pr ime and, at present ,  we have 
not  m a d e  any copr imal i ty  assumpt ion  about  n and  p. 
Consider  the  following subset  of p- tuples  of G: 

S---- { ( g l , ' ' ' , g p )  " g l ' ' ' g p  = 1}, 

where  we have wr i t ten  1 for the  ident i ty  e lement  of G. 
Evidently,  ISI = n p-1. Look at all cyclic pe rmuta t ions  of 
p-tuples.  In group- theore t ic  language,  this corresponds  
to an act ion of the  (cyclic) group of order p. Clearly, 
there  are two types  of orbits - those  which have p ele- 
men t s  and those which are singletons. This  is easy to 
see f rom the  first principles (where is it used tha t  p is a 
pr ime?)  bu t  it also follows from the  fact t ha t  the  cardi- 
nal i ty  of an orbit  of a finite group act ion is a divisor of 
the  cardinal i ty  of the  group i t s e l f -  here Zp acts on S by 
t rans la t ions  of the  subscripts .  Moreover, an orbit  is a 
s ingleton if, and  only if, it is of the  form (g, g , . . . ,  g) E S. 
In par t icular ,  gP -- 1. There  are two mutua l ly  exclusive 
and exhaus t ive  cases - ei ther n is copr ime to p or n is a 

mul t ip le  of p. 

Look at the  first case. Suppose  (g,g,  .. . .  ,g)  E S is a 
s ingleton orbit.  T h e n  gP -- 1. As g'~ = 1 from La- 
grange 's  theorem and  as (n ,p)  -- 1, one obtains  g = 1. 
Thus ,  there  is exact ly  one singleton orbit  in this case 
viz., (1, 1 , . . -  1). As all o ther  orbits  have cardinal i ty  p, 
it follows tha t  ~ p - 1  _ 1 is a mul t ip le  o f p  - Fermat ' s  li t t le 

theorem.  

Now, we look at the  second case when p divides n. Then ,  

if there  are d s ingleton orbits, one obta ins  n p-1 - d as 
a mul t ip le  of p. As p divides n, it must  divide d also. 
Clearly d _> 1 since (1, 1 , . - - ,  1) is a s ingleton orbit.  So, 
d _> p. In par t icular ,  one obtains  not  only Cauchy 's  
t heo r e m but  also the  s t ronger  fact t ha t  the  number  of 
e lements  g in G which satisfy gP = 1 is a mul t ip le  of p. 

T h e  general s t a t e m e n t  tha t  for any divisor d of n, the  
n u m b e r  of e lements  g satisfying gd = 1 is a mul t ip le  
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of d, is also true. However, this result of Frobenius is 
very difficult and uses the representation theory of finite 
groups. 

P e r i o d i c  P o i n t s  

Here is a geometric argument which possibly many read- 
ers would find more appeal ing. in comparison with the 
previous gr0up-theoretic discussion. However, it is seen 
to bear a striking resemblance to the previous proof. 
We shall look at the graph of some functions f �9 [0, 1] ---* 
[0, 1]. For any natural  number a > 2, divide the unit  
interval into a parts and consider the piece-wise linear 
function fa which connects, in turn,  the point (0, 0) to 
(1 / a, 1), (1/a,  1) to (2/a, 0), etc. until  we reach the right 
edge of the unit  square.  This will end up at (1, 0) or at 
(1, 1) depending on whether a is even or odd. For ex- 
ample, here are the graphs of f2, f3 and f4. The graph 
of fa intersects the diagonal joining (0,0) to (1, 1) at 
exactly a points. These are the points (x ,x) ,  where 
x = 21 / (a+l )  with 0 < l < [a/2] and x = 2 1 / ( a -  1) with 
1 < l < [ ( a -  1)/2]. In fact, the line joining ( ( 2 l -  1)/a,  1) 
to (21/a, 0) is y = - a x  + 2l, which intersects the diag- 
onal at the point with x = 21/(a + 1). The line joining 
(2lie,  O) to ((2l + 1)/a, 1) is y = a x -  21 which intersects 
the diagonal at the point, where x = 21/(a - 1). 

Next, one notices that  if f :  = fa ( f~ ( ' ' "  f~) '"  ") is the 
function f~ i terated n times, then fan = fan. This can be 
routinely proved by induction. Indeed, one has fa(fb(X)) 
= fab(X) for any a,b. Let us see how this relates to 
Fermat 's  little theorem. For any function f �9 [0, 1]---* 
[0, 1] one has the disjoint union F ix ( f  n) = Ud/nOrd(f ,  d), 
where the left hand side is the set of fixed points of f n  
and Ord(f ,  d) = {x" f d ( x )  = x, f r ( x )  • x V 1 < r < d}. 
If one considers only functions which have finitely many 
fixed points, one has IFix(fn)l = ~d/,~ lOrd(f,  d)l. 

Now, observe tha t  lOrd(f ,  d)l is a multiple of d for the 
following reason. If x e Ord ( f , d ) ,  then x , f ( x ) , . . . ,  
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f d - l ( x )  are distinct points in Ord ( f ,d) .  This is the 

orbit  of x under f and evidently, if y E Ord( f ,  d), then 
its orbit is either identical with or disjoint from that  of 

x. Note also tha t  Ord ( f ,  1) = Fix(f ) .  

For instance, if f = fa, we obtain a n = JFix(f.-)J = 

IFix(f2)l. So, if n = p, a prime, then 

a p = IOrd(f~, l) l  + IOrd(f~,p)J = a + IOrd(f,p)J ~- 
a mod p. 

Thus, once again we have obtained Fermat 's  little theor- 

em. Incidentally, if we write an = IOrd(f~, n)J for a gene- 

ral ~, then the Mobius inversion formula applied to a '~ = 

~-~d/,. ad gives us the exact  formula an = ~d/n adtt(n/d) 
for the number  of points of order n for fa. Observe that  

the fact I()rd(f~,n)l  = 0 mod n simply means that  for 

any natural  numbers  a, n one has 

ad#(n/d)  -- 0 rood n. 
d/n 

It is an interesting exercise to prove this independent ly  

by e lementary  number  theory. We mention in passing 

the delightful coincidence that  fixed points of iterates of 

a suitable function can be used (see [1]) to prove tha t  a 

prime of the form 4n + 1 is a sum of two squares which 

is another  assertion of Fermat.  

P e r m u t a t i o n  Representations 

Now, we move on to a group-theoretic generalisation of 

Fermat ' s  little theorem due to Strunkov. Let us recall 

some basic notions from finite group theory. 

The  permuta t ion  group (also called the symmetr ic  group) 

on n letters is denoted by S,~. See [2] for some details 

on permuta t ions  and permuta t ion  groups. For our pur- 

pose, we only recall the following basic fact: Any finite 
group G can be represented as a subgroup of Sn, where 
n is the order of G. This is proved easily by looking at 

any element g of G as the corresponding permuta t ion  
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obtained by multiplying (by g on the left) any element  
of the underlying set G. This is called the left regular 
representat ion of G and is an example of a pe rmuta t ion  
representation. Thus, a pe rmuta t ion  representat ion of 
G is simply a homomorphism from G to some Sn. Sim- 
ilarly, if H is any subgroup of G, there is a pe rmuta t ion  
representat ion of G on the set of left cosets of H in G. 
Note tha t  if a : G ~ Sn is any permuta t ion  represen- 
tation, then for any finite set A with a elements,  say, 
there is a permuta t ion  representat ion ~ : G ~ Sa- ob- 
tained in the following natural  manner.  Regard So- as 
the symmetr ic  group on the a n elements which are all 
the  n-tuples ( a l , " ' ,  an) with a~ E A. Then,  an element  
g corresponds to the permuta t ion  

/~(g)" ( a l ,  . . . , a n )  ~ ( a a ( g ) ( 1 ) ,  " " , a a ( g ) ( n ) ) .  

Let H be a subgroup of G. Our aim is to count the num- 
ber of subsets S of A n, which admit  a G-bijection with 
the set G / H  of left cosets of H.  Here, of course, G acts 
by left multiplication on G / H  and,  by a G-bijection, 
one means bijection which respects the permuta t ion  ac- 
tions of G on both sides. Those who know the basic 
language of representat ion theory of finite groups would 
realise tha t  this amounts  to counting the multiplicity of 
the representation induced on G by the trivial represen- 
tation of H in the representation A n of G. 

Let S C A n be such a subset and let lr : G / H  ~ S be 
a G-bijection. As G acts transit ively on G / H  (i.e., any 
two left cosets are permuted  by some element of G), this 
must  hold for the subset S also. This means tha t  S is 
simply a G-orbit in A '~, say, S = G -  ( a l , . . - ,  an). We 
may assume tha t  ~(H) = ( a l , . . . , a n ) ,  where H is the 
identi ty coset. Now, ~(gH) = g ( a l , ' " , a N )  for all g E 
G. Since 7r is well-defined, it follows tha t  ( a l , ' " ,  an) is 
an H-invariant  element. Furthermore,  if g(al, " �9 �9 a,~) = 
( a l , ' " , a N )  for some g E G, then gH = H i.e., g E H.  
In other words, one might say tha t  (al, �9 �9 �9 an) is exactly 

A 

RESONANCE I November 200] 



GENERAL ] ARTICLE 

H-invariant. Conversely, suppose that  ( a l , " - , a n )  is 
exactly H-invariant.  Then,  if we define 

O'G/H- -*G. (a l , . . . , an ) ,  gH~-* g(al,. . . ,an), 

then  ~ is well-defined as ( a l , ' - ' , a n )  is H-invariant 
and it is 1-1 since (a .1,- ' - ,an)  is exactly H-invariant. 
Evidently, 6 is onto. 

To summarise, we have shown that  a subset S of A n 
admits  a G-bijection with G/H if, and only if, S = 
G .  ( a l , " ' , a n )  and ( a l , " ' , a n )  is exactly g- invariant .  
We wish to count the number of these G-orbits. Thus, 
we have to scrutinise the exactly H-invariant elements 
and decide when two such give the same G-orbit. Sup- 
pose, ( a l , - ' - , a n )  and ( b l , ' " , b n )  = x ( a l , . . . , a n )  are 
both  exactly H-invariant  for some x E G. Since gH 
g(bl, '",bn) = gz(al ," ' ,an)  is well defined, we must 
have ghx(al, . . . ,an) = gx(al," "',an) for all h E g .  In 
other words, x-lhx fixes ( a l , . ' . ,  an) for any h E H. As 
( a l , . . . ,  an) is exactly H-invariant,  one obtains x-lhx E 
H V h E H i.e. x- lHx  = x i.e, x E NG(H), the nor- 
maliser of ~ / i n  G. Of course, for x, y E NG(H), we have 
x ( a l , ' " , a n )  = y ( a l , " ' , a n )  if and only if, y E x g .  
Hence, the number  of subsets of A n which admit  a G- 
bijection with G/H is e(H) ]HI where e(H) denotes ING(H)I' 
the number  of exactly H-invariant elements in An. In 
particular, the number  e(H) IHI is a positive inte- ING(H)[ 
ger(!) 

This could give us useful information if we can compute 
e(H) explicitly. First, note that  since each H-invariant 
element is exactly K-invariant for a unique subgroup K 
containing H, one has ~-~KD_H e(K) = i(H), the total 
number  of H-invariant  elements. Also i(G) = e(G). 
Now, it is easy to compute  i(K) for any subgroup K of 
G as follows. If the orbits of K in A n correspond to the 
sets of subscripts I1, I2," �9 ", Ic(g), then (1, 2 , . . - ,  n} = 

U~-(g)/j and c(g) is the number of K-orbits. Clearly, 
then ( a l , . . . ,  an) E A n is K-invariant if, and only if, for 
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each j ,  all the ai 's for i E Ij  are equal. Thus, i (K) = 
]AJC(K) _- ac(K). 

Now, the expressions ~'~KDH e(g)  = i(H) for any H ,  
yield, by the inclusion-exclusion principle tha t  e(H) = 
~'~KD_H ~ ( R ) i ( K )  where the Mobius function /t H is de- 
fined on subgroups containing H by Itg(H) = 1 and 
~ H  C_ K C_ L ~/(K) = 0 for any subgroup L D H. There-  
fore, we have obtained tha t  

e(H) = ~ ~ (K)a  c(g). 
K ~ H  

Combining this with the observation above that  the num- 
ber e H IHI ( ) Jga(H)J is a positive integer, we obtain Strun- 
kov's result: 

 H(K)a c(K) ---- 0 mod ING(H)I 
KD_H IHI 

Number- theoret ic  consequences can be derived from the 
above result. For instance, when G is Zp, .H is trivial 
and a �9 G ---* Sp is the regular representation, the result 
is just  Fermat ' s  little theorem. More generally, if G 
is cyclic of pr ime power order pr and H is trivial, the  
result (once again for the regular representat ion) gives 

__ a p r - z  _ p r .  --_ a p~ = 0 rood Thus, if (a,p) 1, we get. 
a r - 1 mod p~ where r  is Euler 's  totient function, 
which counts the number  of m _< n, which are coprime to 
n. Thus, for any n and (a, n) = 1, one obtains by wri t ing 
n as a product  of prime powers tha t  a r = 1 mod n. 
This is known as Euler 's theorem. 
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