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One of the most ubiquitous results of elementary number
theory is the so-called Fermat’s little theorem. Pierre
de Fermat was an amateur mathematician to whom are
credited several deep and stunning results in mathemat-
ics. Let us list a few. He proved the impossibility of
solving in non-zero integers the equation X* + Y4 = 22
and, in the process, discovered the now-famous method
of descent. He proved that a prime of the form 4n+1is a
sum of two squares of integers. He is also credited, along
with Newton and Leibniz, with the discovery of the inte-
gral calculus. The ‘little theorem’ of Fermat referred to
above states that for a prime number p and a number a
which is not a multiple of p, P! =1 mod p. The last
phrase means that a?~! — 1 is a multiple of p. This is
also evidently equivalent to the statement that a? — a is
a multiple of p for any a. This elementary proposition
in classical number theory has, in fact, found applica-
tions to as applied a subject as cryptology. There are
many ways to prove Fermat’s little theorem. We discuss
a number of them and go on to generalise one of them.
Fix a prime p. We aim to prove that a? — a is a multiple
of p for any integer a or, equivalently, that a?~! — 1 is a
multiple of p for all a coprime to p.

Induction

The method of mathematical induction provides per-
haps the easiest proof. Assuming that e is any natural
number satisfying a? — a is a multiple of p, let us look
at (a+1)?— (a+1). This is simply a® — a upto a sum in
which each term is a multiple of some binomial coeffi-
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cient (f), 1 <r < p. It is an easy exercise to prove that
each such binomial coefficient is a multiple of p (this is
where we require p to be a prime). As the induction is
trivially started with a = 1, and as the passage from a
positive integer a to its negative —a is evident, the proof
is complete.

Counting Necklaces

Here is an attractive — one might even say ornamental(!)
— proof. Suppose there are a different bead colours which
can be used to form a necklace of n beads. The only
condition is that adjacent beads have different colours.
First, let us just make a string (with two ends) of n beads
with adjacent beads having different colours. As there
are a choices of colours for the first bead, a-— 1 choices
for the second and a — 1 choices the next onwards, the
number of arrangements possible is a(a — 1)*~1. Now,
the first and the n-th bead may or may not have the
same colour. If d,, (respectively, s,) denotes the number
of arrangements, where the first and the n-th bead have
different colours (respectively, the same colour), then it
is obvious that s, = d,_;. Moreover, s, +d, = a(a —
1)™! is the total number of arrangements. Therefore,

dp+dp_y =a(a—1)"!
dpt + dp_g = a(a —1)"72
dp_9 + dp_3 = a(a - 1)n—3

Alternately adding and subtracting and noting that d; =
0, we get

dn=(a-1)"+(-1)"(a —1).

If n = p, a prime, then each arrangement leads to p
distinct cyclic combinations. Note that this is not so if

An attractive — one
might say
ornamental — proof
of Fermat's little
theorem can be
obtained by
counting
necklaces.
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The Euclidean
algorithm tells us
that the GCD of a
and b can be
expressed as

ax + by.

A famous theorem
of Lagrange
implies that in a
finite group G with
n elements, every
element of g
satisfies g" = e, the
identity element.

n is not a prime. Thus, we get that (a — 1) — (a — 1) is
a multiple of p.

Lagrange’s Theorem — Some Group Theory

This is perhaps the most natural proof of this theorem.
The set Zp = {0,1,---,p—1} has the structure of a ring
viz., there are two operations — addition modulo p and
multiplication modulo p. The special fact about primes
that is relevant here is that all the numbers 1,2,---,p—1
are coprime to p. The Euclidean algorithm familiar from
high school tells us that the greatest common divisor
(GCD) of any a and p is of the form ax + py for certain
integers z,y. In particular, if 1 <¢ < p—1, thereis a
corresponding 7 between 1 and p — 1 so that ij +py =1
for some y. In terms of the operation of multiplication
modulo p, this just means that 7 has a multiplicative
inverse j. In other words, {1,2,---,p — 1} form a group
under the operation of multiplication modulo p. The fa-
mous theorem of Lagrange alluded to above implies that
in any finite group G with n elements, every element g
satisfies g" = e, the identity element. Applying this to
our group above, we get that a?~! equals 1 modulo p
fora=1,2,---,p — 1. But, clearly, Fermat’s little the-
orem is an assertion on a only modulo p i.e., if it holds
for some a, it holds for a+ (a multiple of p) as seen by
using the binomial expansion.

Cauchy’s Theorem — More Group Theory

Here is a variant where instead of using facts on the
order of subgroups, one essentially uses the cardinality
of orbits under a group action. Compare this proof with
the one we got by counting necklaces. This approach has
the additional attraction of providing us with a proof of
the so-called theorem of Cauchy which asserts that in
a finite group with n elements, there are elements of
every prime order which divides n. To see both proofs
simultaneously, look at an arbitrary finite group G with
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n elements. Let p be a prime and, at present, we have
not made any coprimality assumption about n and p.
Consider the following subset of p-tuples of G:

S:{(gl,...,gp):gl...gp:_l},

where we have written 1 for the identity element of G.
Evidently, |S| = nP~1. Look at all cyclic permutations of
p-tuples. In group-theoretic language, this corresponds
to an action of the (cyclic) group of order p. Clearly,
there are two types of orbits — those which have p ele-
ments and those which are singletons. This is easy to
see from the first principles (where is it used that p is a
prime?) but it also follows from the fact that the cardi-
nality of an orbit of a finite group action is a divisor of
the cardinality of the group itself — here Z, acts on S by
translations of the subscripts. Moreover, an orbit is a
singleton if, and only if, it is of the form (g,g,---,9) € S.
In particular, g? = 1. There are two mutually exclusive
and exhaustive cases — either n is coprime to p or n is a
multiple of p.

Look at the first case. Suppose (g,g9,---,9) € S is a
singleton orbit. Then ¢g» = 1. As ¢" = 1 from La-
grange’s theorem and as (n,p) = 1, one obtains g = 1.
Thus, there is exactly one singleton orbit in this case
viz., (1,1,---1). As all other orbits have cardinality p,
it follows that n?~! —1 is a multiple of p — Fermat’s little
theorem.

Now, we look at the second case when p divides n. Then,
if there are d singleton orbits, one obtains nP~! — d as
a multiple of p. As p divides n, it must divide d also.
Clearly d > 1 since (1,1,---,1) is a singleton orbit. So,
d > p. In particular, one obtains not only Cauchy’s
theorem but also the stronger fact that the number of
elements ¢ in G which satisfy ¢g? = 1 is a multiple of p.

The general statement that for any divisor d of n, the
number of elements ¢ satisfying ¢¢ = 1 is a multiple

The cardinality of
an orbit of a finite
group action is a
divisor of the
cardinality of the
group itself.

In any finite group
G, the number of
elements which
satisfy g» =1 for
some prime p,
dividing the order
of g, is a multiple
of p.
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of d, is also true. However, this result of Frobenius is
very difficult and uses the representation theory of finite
groups.

Periodic Points

Here is a geometric argument which possibly many read-
ers would find more appealing in comparison with the
previous group-theoretic discussion. However, it is seen
to bear a striking resemblance to the previous proof.
We shall look at the graph of some functions f : [0,1] —
[0,1]. For any natural number a > 2, divide the unit
interval into a parts and consider the piece-wise linear
function f, which connects, in turn, the point (0,0) to
(1/a,1), (1/a,1) to (2/a,0), etc. until we reach the right
edge of the unit square. This will end up at (1,0) or at
(1,1) depending on whether a is even or odd. For ex-
ample, here are the graphs of fo, f3 and f4. The graph
of f, intersects the diagonal joining (0,0) to (1,1) at
exactly a points. These are the points (z,z), where
z =2l/(a+1) with0 <! < [a/2] and z = 2I/(a—1) with
1 <1< [(a—1)/2]. In fact, the line joining ((2!—1)/a, 1)
to (2!/a,0) is y = —az + 2[, which intersects the diag-
onal at the point with z = 2{/(a + 1). The line joining
(21/a,0) to ((214+1)/a,1) is y = az — 2] which intersects
the diagonal at the point, where z = 2{/(a — 1).

Next, one notices that if f' = fo(fal---fa)--) is the
function f, iterated n times, then f' = f,». This can be
routinely proved by induction. Indeed, one has f,(fs(z))
= fu(z) for any a,b. Let us see how this relates to
Fermat’s little theorem. For any function f : [0,1] —
[0, 1] one has the disjoint union Fix(f") = Ug/nOrd(f, d),
where the left hand side is the set of fixed points of f™
and Ord(f,d) = {z: fz) =z, f7(z) A2V 1 < r < d}.-
If one considers only functions which have finitely many
fixed points, one has |Fix(f")| = ¥4/, |Ord(f, d)|.

Now, observe that |Ord(f, d)| is a multiple of d for the
following reason. If z € Ord(f,d), then z, f(z), -,
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f%1(z) are distinct points in Ord (f,d). This is the
orbit of z under f and evidently, if y € Ord(f,d), then
its orbit is either identical with or disjoint from that of
z. Note also that Ord(f,1) = Fix(f).

For instance, if f = f,, we obtain a" = |Fix(f,»)| =
|[Fix(f2)|. So, if n = p, a prime, then

af = |Ord(fa,1)| + |Ord(fa,p)| = a+ |Ord(f,p)| =
a mod p.

Thus, once again we have obtained Fermat’s little theor-
em. Incidentally, if we write a, = |Ord(f,, n)| for a gene-
ral n, then the Mobius inversion formula applied to a™ =
> d/n a4 gives us the exact formula a, = 34/, atu(n/d)
for the number of points of order n for f,. Observe that
the fact |Ord(fs,n)| = 0 mod n simply means that for
any natural numbers a,n one has

Zadp(n/d) =0 mod n.
d/n

It is an interesting exercise to prove this independently
by elementary number theory. We mention in passing
the delightful coincidence that fixed points of iterates of
a suitable function can be used (see [1}]) to prove that a
prime of the form 4n + 1 is a sum of two squares which
is another assertion of Fermat.

Permutation Representations

Now, we move on to a group-theoretic generalisation of
Fermat’s little theorem due to Strunkov. Let us recall
some basic notions from finite group theory.

The permutation group (also called the symmetric group)
on n letters is denoted by S,. See [2] for some details
on permutations and permutation groups. For our pur-
pose, we only recall the following basic fact: Any finite
group G can be represented as a subgroup of S, where
n 1s the order of G. This is proved easily by looking at
any element g of G as the corresponding permutation

Fixed points of
iterates of a
suitable function
can be used to
prove that a prime
of the form 4n+1 is
a sum of two
squares which is
another assertion
of Fermat.
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In the more
sophisticated
language of
representation
theory of finite
groups, the
counting done here
amounts to
counting the
multiplicity of the
representation
induced on G by
the trivial
representation of H
in the
representation of G
on A"

obtained by multiplying (by g on the left) any element
of the underlying set G. This is called the left regular
representation of G and is an example of a permutation
representation. Thus, a permutation representation of
G is simply a homomorphism from G to some S,. Sim-
ilarly, if H is any subgroup of G, there is a permutation
representation of G on the set of left cosets of H in G.
Note that if @ : G — S, is any permutation represen-
tation, then for any finite set A with a elements, say,
there is a permutation representation 8 : G — Sz» ob-
tained in the following natural manner. Regard S,;» as
the symmetric group on the a” elements which are all
the n-tuples (a1, -, a,) with a; € A. Then, an element
g corresponds to the permutation

B(g) : (a1, -+, an) = (aa(g))s "> Ca(g)(n))-

Let H be a subgroup of G. Our aim is to count the num-
ber of subsets S of A", which admit a G-bijection with
the set G/H of left cosets of H. Here, of course, G acts
by left multiplication on G/H and, by a G-bijection,
one means bijection which respects the permutation ac-
tions of G on both sides. Those who know the basic
language of representation theory of finite groups would
realise that this amounts to counting the multiplicity of
the representation induced on G by the trivial represen-
tation of H in the representation A™ of G.

Let S C A™ be such a subset and let » : G/H — S be
a G-bijection. As G acts transitively on G/H (i.e., any
two left cosets are permuted by some element of G), this
must hold for the subset S also. This means that S is
simply a G-orbit in A", say, S = G - (a1, --,a,). We

may assume that 7(H) = (a1, -+, a,), where H is the
identity coset. Now, m(gH) = g(ay,---,a,) for all g €
G. Since  is well-defined, it follows that (a1, -, ay) is
an H-invariant element. Furthermore, if g(a1, -+, a,) =
(a1, ,an) for some g € G, then gH = H ie., g € H.
In other words, one might say that (aj, -, ay) is ezactly
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H -invariant. Conversely, suppose that (aq,---,a,) is
exactly H-invariant. Then, if we define

e:G/H__)G'(G’l?"')an): gHHg(ah'")an)’

then 0 is well-defined as (a1,---,a,) is H-invariant
and it is 1-1 since (ay,---,a,) is exactly H-invariant.
Evidently, @ is onto.

To summarise, we have shown that a subset S of A"
admits a G-bijection with G/H if, and only if, S =
G - (ay, -,a,) and (ay,---,ay) is exactly H-invariant.
We wish to count the number of these G-orbits. Thus,
we have to scrutinise the exactly H-invariant elements
and decide when two such give the same G-orbit. Sup-

pose, (a1, --,a,) and (b1, --,b,) = z(ay, --,a,) are
both exactly H-invariant for some = € G. Since gH —
g(b1, -+, bn) = gz(ay,---,an) is well defined, we must

have ghz(ay,---,an) = gz(a1,---,an) forall h € H. In
other words, = hz fixes (a1,---,a,) for any h € H. As
(a1,---,an) is exactly H-invariant, one obtains z~'hz €
HY h € Hie z'Hz = zie, = € Ng(H), the nor-
maliser of H in G. Of course, for z,y € Ng(H), we have
z(ay, - -,an) = yla1,---,an) if and only if, y € zH.
Hence, the number of subsets of A™ which admit a G-
bijection with G/H is e(H)TI\TlG%{‘ﬂ’ where e(H) denotes
the number of exactly H-invariant elements in A". In
particular, the number e(H )ch%{—)' is a positive inte-

ger(!)

This could give us useful information if we can compute
e(H) explicitly. First, note that since each H-invariant
element is exactly K-invariant for a unique subgroup K
containing H, one has Y g-ye(K) = i(H), the total
number of H-invariant elements. Also i(G) = e(G).
Now, it is easy to compute i(K ) for any subgroup K of
G as follows. If the orbits of K in A™ correspond to the
sets of subscripts Iy, Iy, - - -, Iqk), then {1,2,---,n} =
U;g? I; and ¢(K) is the number of K-orbits. Clearly,
then (aj,---,an) € A™ is K-invariant if, and only if, for
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each j, all the a;’s for i € I; are equal. Thus, i(K) =
|A|c(K) = q¢K)

Now, the expressions } x>y e(K) = i(H) for any H,
yield, by the inclusion-exclusion principle that e(H) =
Y kon 5(K)i(K) where the Mobius function uy is de-
fined on subgroups containing H by pug(H) = 1 and
Y uC K C L'%5(K) = 0for any subgroup L O H. There-
fore, we have obtained that

e(H) = 3 H(K)a"®),
KDOH

Combining this with the observation above that the num-
ber e(H )WIGL(IIIW is a positive integer, we obtain Strun-
kov’s result:

|Ne(H)|

(K)e®¥) = 0 mod

KDOH

Number-theoretic consequences can be derived from the
above result. For instance, when G is Z,, H is trivial
and o : G — §p is the regular representation, the result
is just Fermat’s little theorem. More generally, if G
is cyclic of prime power order p” and H is trivial, the
result (once again for the regular representation) gives
" = 0 mod p". Thus, if (a,p) = 1, we get
a®®") = 1 mod p” where ¢(n) is Euler’s totient function,
which counts the number of m < n, which are coprime to
n. Thus, for any n and (a, n) = 1, one obtains by writing
n as a product of prime powers that a®™ = 1 mod n.
This is known as Euler’s theorem.

o
a? — af
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