
More group-theoretic applications of geometric methods
B. Sury

This was meant to be a chapter in a publication of the proceedings of a
workshop on geometric group theory held at the IIT Guwahati in December
2002. The idea of publication was shelved. In this article, we give some
more applications to group theory coming from geometric methods including
group actions on trees. To start with we sketch the beautiful proof of Gupta
and Sidki’s negative solution ([GS]) to the general Burnside problem.
Following that, a criterion of Culler & Vogtmann ([CV ]) will be discussed.
This will prove at one stroke the property (FA) of Serre for several groups.
Finally, we discuss the proof of Formanek & Procesi ([FP ]) asserting that
the automorphism group of a free group of rank at least 3 is not linear. The
relevance here is that it turns out that a certain HNN extension cannot have
a faithful linear representation.

1 Gupta-Sidki group

In this section, we give a counterexample to the general Burnside problem
which shows that a finitely generated group, all of whose elements have finite
p-power order (for a fixed prime p), can be infinite. This beautiful construc-
tion is due to Narain Gupta and Said Sidki [4]. It should be noted that
the orders of elements in this example are unbounded. As of now, known
counterexample constructions to the bounded torsion version of the Burn-
side problem involves complicated van Kampen diagram techniques due to
Olshanskii and others. We do not discuss them here.
Let p be a fixed odd prime and let X be the set of all finite strings of symbols
from the set of alphabets {0, 1, · · ·, p− 1}. Here the empty string is of length
0. For r ≥ 0, we write 0r to denote the string of length r consisting of r
zeros. Whenever we add or subtract two symbols from the alphabet set, it
should be read modulo p. Define two permutations t and z on X as follows.
They fix the empty string and on nonempty strings, their actions are :
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(i) t changes the first symbol i to (i + 1) and leaves the rest of the string
unchanged.

(ii) For a string of the form 0rijw with i 6= 0 and r ≥ 0,

(0rijw)z = 0ri(j + i)w.

Thus, z only changes the symbol j which follows the first nonzero
symbol i (if any) to j + i.

Let G be the group of permutations of X generated by t and z. Note that
both t and z leave the lengths of strings invariant. So all orbits of G are
finite.

Theorem 1.1 G is an infinite group and all its elements have finite, p-power
order.

Proof
Note that each of z and t is of order p. Set S = {sh = t−hzth : 0 ≤ h < p} ⊂ G
and let H be the subgroup of G generated by S. Then each element of S has
order p and H is a normal subgroup of G containing z. A key observation
we shall shortly make is that H acts on the subset of X consisting of strings
starting with 0, exactly as G does on the whole of X, and this is the fact
would imply that G is infinite.
For 0 ≤ k < p, the subsets Xk = {kw : w ∈ X} of strings in X starting
with k, together with the subset of X consisting of the empty string, form a
partition of X. A simple calculation shows that for kw ∈ Xk :

(kw)sh =

{

k(w)z ifk = h

k(w)tk−h

ifk 6= h
. (1)

The notation k(w)z above means the string starting with k followed by the
string defined by the action of z on w.
The above observation shows that Xk are H-invariant. In particular, t /∈ H
and so H is a proper subgroup of G. Since G = 〈H, t〉, G/H has order p.
Now, (1) implies that the restriction of H to X0 contains the permutations
0w 7→ 0(w)z and 0w 7→ 0(w)t, and so contains a copy of G. Since H is a
proper subgroup of G, this is possible only if G is infinite.
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Next we prove that each element of G has p-power order. Using the identities
zitj = tjsi

j, each x ∈ G can be written in the form

x = tasi1 · · · sim (2)

where 0 ≤ a < p. Here, the notation si
j stands for the i-th power of the

permutation sj. We choose an expression for x in the form (2) with smallest
m. We use induction on m to prove that x has p-power order. This is clear
if m = 0, since t has order p. Assume that m > 0 and that the result is true
for all elements x of the form (2) with a product of fewer than m of the si.
Case (I): Suppose that a = 0. If the subscripts ih in (2) are all equal, say i,
then x = sm

i and so order of x divides p. So either x is the identity element
or it has order p. Now, assume that ih are not all equal. Since x ∈ H, each
Xi is x-invariant. By (1), for each string kw ∈ Xk we have (kw)x = k(w)u,
where u has the form tbsj1 · · · sjn

and n = |{ih : ih = k}|. Thus for each k,
by induction, x acts on Xk as a permutation whose order is a power of p. So
as a permutation of the whole of X, the order of x is a power of p.
Case (II): Suppose that 0 < a < p. Set y = si1 · · · sim. Then

xp = (tay)p = (tayt−a)(t2ayt−2a) · · · (y). (3)

Now, tryt−r = (trsi1t
−r)(trsi2t

−r) · · · (trsimt−r) = sl1 · · · slm . So xp can be
written as a product of pm terms of the si (0 ≤ i < p). Since p does not
divide a, the exponents a, 2a, · · ·, 0 in the expression (3) for xp correspond
to a full set of residue classes modulo p. So each si appears as a factor in
xp exactly m times. Applying (1) again, for each k we have (kw)xp

= k(w)v,
where v (depending on k) is a product of pm factors consisting of either z or
powers of t. Also, z occurs as a factor exactly m times and the total power to
which t occurs is b = m(1+2+···+(p−1)) = m(p−1)p/2. By using identities
of the form sit

r = trsi+r, v can be rewritten in the form v = tbsj1sj2 · · · sjm
.

Since p is odd, p divides b and so tb = 1. Now the argument in the second
step of Case I can be applied to conclude that v acts on Xk as a permutation
whose order is a power of p. Since this is true for each k, it follows that xp

has p-power order; so x has p-power order as well. This completes the proof.

Remark 1.2 The construction above does not work - as it is - for p = 2. A
corresponding theorem for p = 2 can be obtained with a small change. Take
X to be the set of all finite strings over {0, 1, 2, 3}, define t as above and
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modify the the definition of z as follows. For any string of the form 0rijw
with i 6= 0:

(0rijw)z = 0ri(j + i)w if i = 1 or 3, and

(0r2jw)z = 0r2jw.

2 Criterion of Culler-Voigtmann

Serre’s proof of property (FA) for SL3(ZZ) (see chapter 1) actually shows the
property (F IR) viz. that every action on an IR-tree has a fixed point. One
shows this in a manenr similar to the proof of (FA) by proving that any
action without fixed points must have a line on which the group acts by a
non-zero translation. Instead of discussing the details of such a proof, let us
use the following definition introduced by Culler and Voigtmann ([CV ]).

Definition 2.1 A group G is said to have property (AIR) if every action
without fixed points has an invariant line on which the action is by a non-
zero translation.

Note that the existence of such a line as above implies that there is a nontriv-
ial homomorphism from G to IR. Thus, if G/[G, G] is finite, the impossibility
of existence of a nontrivial homomorphism from G to IR, would imply that
G either has property (F IR) or it does not have property (AIR).
The criterion of Culler and Voigtmann to be discussed below is for a group
to have property (AIR). It is easily verified to be true for many groups
like Aut Fn; and SLn(ZZ); n ≥ 3. Thus, we would have a uniform proof of
property (FA) for all such groups. The Culler-Voigtmann criterion will be
formulated in terms of a commuting graph defined by means of a finite set
S of generators of G.

Definition 2.2 Let S = {s1, . . . , sn} be generators for a group G. For
i 6= j, a word in si, sj, s

−1
i , s−1

j is said to be minipotent, if it is of the form

sa1
i sb1

j . . . sbr

j or of the form sa1
j sb1

i . . . sbr

i for some ai, bi = ±1.
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Before defining the graph in terms of which we formulate the group theo-
retic criterion for property (FA), we motivate it by means of the following
observations. In what follows, G is any group acting on an IR-tree (X, d) by
isometries.

Lemma 2.3 Let g, h ∈ G and let w ∈ G be a minipotent word in g±, h±. If
Cg ∩ Ch = φ, then w is hyperbolic, and its axis contains the bridge from Cg

to Ch.

Proof
Consider the bridge [p, q] from Cg to Ch. Look at the tree P consisting of all
x ∈ X from which the geodesic from x to g contains p. Of course, P ⊇ Cg

by definition of the bridge. Similarly, the tree Q of all y ∈ X for which the
geodesic from y to P contains q, contains Ch. Also, evidently P ∩ Q = φ.
Further, if x ∈ X\P , then gx, g−1x ∈ P and if y ∈ X\Q, then hy, h−1y ∈ QI .
Thus, any word of the form ga1hb1 . . . garhbr (with ai, bi = ±1) takes X\Q to
P . Similarly, any word of the form ha1gb1 . . . hargbr (with ai, bi = ±1) takes
X\P to Q. Note that w is a word of one of these forms. As a consequence,
if r is an interior point of [p, q], then [w−1r, r] ∩ [r, wr] = {r} and [w−1r, r] ∪
[r, wr] ⊇ [p, q]. This means that w must be hyperbolic and its characteristic
subtree on which it acts by a non-zero translation, contains the segment [p, q].

Corollary 2.4 Let g, h ∈ G and let w be a minipotent word in g±, h± which
commutes either with g or with h. Then Cg ∩ Ch 6= φ. In particular, if both
g, h are elliptic and there exists w as above, then gh is also elliptic.

Proof
Suppose, if possible, Cg∩Ch = φ. By the lemma above, w must be hyperbolic
and its axis Cw must contains the bridge between Cg and Ch. In particular,
Cw 6⊆ Cg and Cw 6⊆ Ch. Now, let [w, g] = 1 say (here, [w, g] denotes the
commutator wgw−1g−1).
Then wCg = Cwgw−1 = Cg, i.e., Cg is a w-invariant tree. But, any w-
invariant tree must contains its axis Cw as w is hyperbolic. Thus, we have
a contradiction if Cg ∩ Ch = φ. Finally, if g, h are both elliptic, the Cg =
Xg, Ch = Xh and thus Xg ∩ Xh = Xgh 6= φ shows that gh is also elliptic.
This proves the corollary.
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We now define a special class of minipotent words which will turn out to be
very useful when discussing special groups like SLn(ZZ), Aut(Fn) etc.
For x, y ∈ G, define

[x, y(0)] = x, [x, y(1)] = [[x, y(0)], y] = [x, y],

[x, y(2)] = [[x, y(1)], y] = [[x, y], y];

[x, y(k+1)]
d
= [(x, y(k)], y] ∀ k ≥ 0.

Lemma 4 Let g, h ∈ G with h hyperbolic. If ∃ r > 0 such that [g, h(r)] = 1,
then gCh = Ch. If, further, g is elliptic and ∃ s > 0 such that [h, g(s)] = 1,
then g fixes Ch.

Proof
Since 1 = [g, h(r)] = [[g, h(r−1)], h], we have hC[g,h(r−1)] = C[g,h(r−1)]. There-
fore, as h is hyperbolic, each h-invariant tree contains the axis Ch, so Ch ⊆
C[g,h(r−1)]. Now Ch is invariant under [g, h(r−1)] = [[g, h(r−2)], h]. Write

[g, h(r−2)] = gr−2 for simplicity. Now

Ch = (gr−2hg−1
r−2h

−1)Ch = (gr−2hg−1
r−2)Ch.

This implies that Ch is the axis Cgr−2hg−1
r−2

for the hyperbolic element gr−2hg−1
r−2.

But Cgr−2hg−1
r−2 = gr−2ch; thus gr−2Ch = Ch.

So Ch is invariant under gr−2 = [g, h(r−2)]. Proceeding inductively in this
manner, we get that Ch is invariant under [g, h(0)] = g. This proves the first
assertion.
Now, if g is elliptic, and gCh 6= Ch, we shall now prove that [h, g(s)] 6= 1 ∀ x >
0. We have under this condition that g acts as a reflection on Ch. Then g, h
generate an infinite dihedral group where h acts by a translation on Ch and
g acts by a reflection. Clearly [h, g(s)] acts as a translation on Ch and g by a
reflection. Clearly [h, g(s)] acts as a translation by 2s|h| on Ch and, therefore,
[h, g(s)] 6= 1 ∀ s > 0. This proves the lemma.

Now, we can define the graph in terms of which Culler-Voigtmann’s criterion
will be formulated.

Definition 2.5 Let G be any group and S = {g1, . . . , gn} ⊆ G, a set of
generators. Define ∆(G, S) to be the graph with vertex set S and a geometric
edge between si and sj if, and only if, there is a minipotent word in s±i , s±j
which commutes either with si or with sj.
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In particular, if (si, sj) = 1, then there is an edge. A reason to define this
graph is already provided by the next proposition. First, note that the proof
of property (FA) in the first chapter carries over verbation to give:

Lemma 5 Let G act on an IR-tree X. Suppose G = 〈s1, . . . , sn〉 with each
si and each sisj elliptic. Then XG 6= φ.

Using this and the above observations, we have:

Proposition 2.6 Suppose G acts on an IR-tree X. Let S = {s1, . . . , sn} and
G = 〈S〉, where each si is elliptic. If the graph ∆(G, S) is complete then
XG 6= φ.

Proof
As ∆(G, S) is complete, si and sj are connected by an edge. That is, ∀ i, j, ∃
a minipotent word in s±i , s±j which commutes either with si or with sj. By
the previous corollary, since si and sj are elliptic, this means sisj is also
elliptic. So, the last lemma implies the result.
Now, we can state the main characterisation theorem of Culler and Voigt-
mann in a weaker form which suffices for our purpose. One final definition
we need is the following. Given generators s1, . . . , sn of G, one calls an edge
from si to sj distinguished if [si, s

(k)
j ] commutes with sj for some k > 0. Note

that the opposite edge of a distinguished edge may not be distinguished - in
fact, this happens in the example of Aut(Fn) that we will discuss. From the
subgraph ∆′(G, S) consisting of the same set S of vertices but whose edges
are either distinguished edges in ∆(G, S) or their opposites.

Theorem 2.7 Suppose all generators in S are conjugate in G. If ∆(G, S)
is connected, then G has property (AIR). If, in addition, G/[G, G] is finite,
then G has property (F IR).

Proof
First, note the simple fact that if g, h are hyperbolic and [g, h] commutes
with h, then Cg = Ch. The reason is that Ch = [g, h]Ch = ghg−1Ch means
Ch is the axis of the hyperbolic element ghg−1. So Ch = Cghg−1 = gCh. But,
the only line invariant under a hyperbolic element is its axis; so Cg = Ch.
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To proceed with the proof, if S consists entirely of elliptic elements, we have
proved that XG 6= φ i.e., G acts trivially on X. Therefore, let us assume that
S consists of some hyperbolic elements as well; hence all its elements (being
conjugate) are hyperbolic. Now, since ∆′(G, S) is connected, ∀ i, j we have
either a distinguished edge from si to sj or one from sj to si. Thus, either

[si, s
(k)
j ] commutes with sj for some k > 0 or [sj, s

(k)
i ] commutes with si for

some k > 0. Using the simple fact observed in the beginning of this proof,
Csi

= Csj
∀ i, j. Thus, we have a common line invariant under each si, and,

hence invariant under G. Thus, G has property (AIR). Of course, this gives
a nontrivial homomorphism from G to IR. If G/[G, G] were finite, then this
would be impossible thereby proving that S must consist of elliptic elements
and G must fix a vertex.

Corollary 2.8 Aut(Fn), n ≥ 3 has property (F IR).
In particular, Out(Fn), GL(n, ZZ), SL(n, ZZ) for n ≥ 3 have property (F IR).

Proof
Consider the subgroup of special automorphisms SAut(Fn)

d
= π−1(SLn(ZZ)),

where π : Aut(Fn) → Aut(ZZn) is the obvious map. Write {x1, . . . , xn} for a
basis of Fn.
Let S = {λij, ρij; i 6= j}, where λij : xi 7→ xjxi, ρij : xi 7→ xixj and
λij(xk) = xk = ρij(xk) ∀ k 6= i. It is known (see [LS]) that SAut(Fn) = 〈S〉.
In fact, since [ρij, ρjk] = ρik and [λij, λjk] = λik for i, j, k distinct, it follows
that we may take S = {ρi,i+1, λi+i+1; 1 ≤ i ≤ n} where we mean xn+1 = x1.
So, SAut(Fn) contains An and also the automorphisms which send exactly
two of the generators to their inverses. Clearly, the elements of S are conju-
gate under such automorphisms.
Note that [ρj,j+1, ρi,i+1] and [λj,j+1, ρi,i+1] commute with ρi,i+1 unless j =
i + 1 mod n. Similarly, [ρj,j+1, λi,i+1] and [λj,j+1, λi,i+1] commute with λi,i+1

unless j ≡ i + 1 mod n.
Therefore, ∆′(G, S) is already a complete graph; however, not all its edges are
distinguished. Thus, by the theorem, SAut(Fn); n ≥ 3 has property (AIR).
Since each element of S is a commutator, the abelianisation SAut(Fn)/[SAut(Fn), SAut(Fn)]
is finite. Thus, SAut(Fn) has property (F IR). As it is of finite index in
Aut(Fn), the group Aut(Fn), n ≥ 3 itself has (F IR). Being a quotient (re-
spectively, a finite extension) of Aut(Fn), the groups GL(n, ZZ), n ≥ 3 (re-
spectively, Out(Fn), n ≥ 3) have property (F IR).
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3 Unfaithfulness of Aut (F )

Now, we discuss an important result proved by E.Formanek and C.Procesi
([FP ]) which asserts that the automorphism group of a free group of rank
at least 3 does not admit a faithful linear representation over any field. This
uses some basic representation theory of algebraic groups and also gives a
more general result that Aut (G∗ZZ) can admit a faithful linear representation
only if G is virtually solvable.

Let G be any group. There are three natural embeddings α, β and ∆ of G in
G×G. These are the first and second inclusions and the diagonal embedding
respectively. Consider the HNN extension

H(G) = 〈G × G, t|t · ∆(G)t−1 = β(g) ∀ g ∈ G〉.

The relation can be reinterpreted as

tα(g)β(g)t−1 = β(g)

tα(g) = β(g)tβ(g)−1.

Notice that α(g)β(g′) = β(g′)α(g). The basic theorem proved by Formanek
and Procesi shows that the HNN extension H(G) can be linear only if G is
virtually solvable (i.e., has a solvable subgroup of finite index).
The group generated by α(g) and t is normalized by the whole group i.e.
H(G) = β(G) ∝ (α(G) ∗ 〈t〉), with the above action.
So H(G) = Fβ(G) where we have called the group α(G) ∗ 〈t〉 as F.
Therefore, we have H(G) → Aut F .
If G 6= {1}, then this map is injective since β(g) does not coincide with any
inner conjugation from F .

Theorem 3.1 If H(G) is linear then G is virtually solvable.

Corollary 3.2 If G is not virtually solvable, the Aut(G ∗ ZZ) is not linear.
Therefore, Aut Fn is non-linear ∀ n ≥ 3.
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It is interesting to note that recently D.Krammer has proved ([K]) that
the group Aut F2 does have a faithful 5-dimensional representation. To prove
the above theorem, we will need some facts from the representation theory
of algebraic groups.

Facts from algebraic group theory ([H])

For a (complex) representation ρ : G → GL(V ), let V0 denote the same
vector space V but with trivial G-action ρ0 : G → GL(V0); g 7→ Id.
All the definitions and results remain valid over any algebraically closed field
of character zero in place of C.
We shall also denote by V̄ , the semi-simplification of V ; i.e., if V ⊃ V1 ⊃
. . . ⊃ Vr = (0) is a Jordan-Holder series, then V̄ = ⊕Vi/Vi+1.
Call ρ̄ : G → GL(V̄ ). We have, therefore, an exact sequence

1 → N → ρ(G) → ρ̄(G) → 1

where N is a nilpotent group because the matrices in ρ(G) ≤ GL(V ) with
respect to a basis of V which restricts to bases of Vi for each i, are upper
triangular with 1’s on the diagonal.
One also thinks of a representation of G as a left module under the group
algebra C[G] and simply calls it a G-module.
When G is an algebraic group, then representations considered are algebraic
ones and then the module is over the co-ordinate ring of G.
If G, H are groups then a simple G×H-module is of the form V ⊗W where
V, W are simple modules over G and H respectively.
Suppose that G is a semisimple algebraic group over an algebraically closed
field K. Associated with G and a choice of a Borel subgroup B of G is a free
abelian group Λ with basis λ1, · · · , λt, called the lattice of abstract weights
of G. The generators λi are called the fundamental dominant weights and a
weight λ =

∑t
i=1 ciλi is called dominant if all ci ≥ 0. The dominant weights

are the algebraic characters of B. We partially order Λ by specifying that
λ ≥ µ if λ − µ is a dominant weight. With these notations, one knows :
(a) Any irreducible G-module V has a unique B-stable one-dimensional sub-
space spanned by a vector v of some dominant weight λ(v) (called the highest
weight of V ).
(b) If V, V ′ are irreducible G-modules, then they are isomorphic if, and only
if, they have the same highest weight. One usually writes V (λ) for the irre-
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ducible G-module with the highest weight λ.
(c) If V, W are irreducible G-modules, then some composition factor of V ⊗W
has highest weight λ(V ) + λ(W ). In fact,

V (λ) ⊗ V (µ) = V (λ + µ) + ⊕w<λ+µV (w).

Proposition 3.3 Suppose ρ : H(G) → GL(U) is a representation and write
ρG for the restriction ρ|G×G. As G×G-modules, if we write Ū = ⊕(Vi ⊗Wi)
where Vi, Wi are simple α(G)-modules and β(G)-modules respectively, then,
as a ∆(G)-module, ⊕Vi ⊗ Wi

∼= ⊕(Vi)0 ⊗ Wi.

Proof
Now, as ∆(g) and β(g) are conjugate in H(G), it follows that ρG ◦ ∆ is
conjugate to the representation ρG ◦ β.
Therefore, passing to the associated graded, we have ρ̄G ◦ ∆ ∼= ρ̄G ◦ β. But
ρ̄G◦∆ corresponds to ⊕(Vi⊗Wi), whereas ρ̄G◦β corresponds to ⊕((Vi)0⊗Wi).
This completes the proof.

Now, we can state the following result which will finish the proof of the
theorem on linearity of H(G).

Theorem 3.4 Let G be a group and Vi, Wi be semi-simple G-modules. As-
sume that ⊕(Vi ⊗ Wi) ∼= ⊕((Vi)0 ⊗ Wi) as ∆(G)-modules. Then, Im(G →
GL((⊕Vi)) is virtually Abelian.

Proof
Let H denote the Zariski closure of the image of G in GL(⊕(Vi ⊗ Wi)). It
suffices to prove the theorem for H. As the conclusion is ‘virtual’, we may
assume that H is connected. Now, ⊕(Vi ⊗ Wi) is a faithful, semisimple H-
module. But, for any nontrivial, irreducible H-module V , the fixed subspace
V U under the unipotent radical U of H is a G-submodule. Therefore, V U

must be trivial and thus U must be trivial; i.e., H is reductive. Then H =
T ·S, with T the central torus, and S = [H, H] connected semisimple. Hence,
to prove that H is virtually abelian, it suffices to show that S acts trivially
on each Vi. This follows from the following general result on semisimple
algebraic groups :

11



Proposition 3.5 Let S be a connected, semisimple algebraic group, and let
Vi, Wi be semisimple S-modules. If ⊕(Vi ⊗ Wi) ∼= ⊕((Vi)0 ⊗ Wi), then Vi =
(Vi)0 for all i.

Proof
Expand Vi, Wi as sums of simple S-modules and remove all the Vi, Wi for
which Vi = (Vi)0. Let di denote dim Vi. Then,

⊕(V (λi) ⊗ V (µi)) ∼= ⊕diV (µi).

Now, λi > 0 as Vi 6= (Vi)0 for each i. Choose i0 such that µi0 is maximal
among the µi’s. But, V (λi0 + µi0) occurs on the left hand side above. The
resultant contradiction proves the proposition.
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