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The title is just a bit of persiflage as eπ
√

163 is not an integer but then ......

eπ
√

163 = 262537412640768743.9999999999992 . . . .

The object here is to ‘explain’ this amazing fact. The explanation involves
SL(2,Z), elliptic curves, modular forms, class field theory and Artin’s reci-
procity, among other things.
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1 Quadratic forms

We shall consider only positive definite, binary quadratic forms over Z. Any
such form looks like f(x, y) = ax2 + bxy + cy2 with a, b, c ∈ Z; it takes only
values > 0 except when x = y = 0.

Two forms f and g are said to be equivalent (according to Gauss) if ∃ A =(
p q
r s

)
∈ SL(2, (Z) such that f(x, y) = g(px + qy, rx + sy). Obviously,

equivalent forms represent the same values. Indeed, this is the reason for the
definition of equivalence. One defines the discriminant of f to be disc(f) =
b2 − 4ac. Further, f is said to be primitive if (a, b, c) = 1.

Note that if f is positive-definite, the discriminant D must be < 0 (because
4a(ax2+bxy+cy2) = (2ax+by)2−Dy2 represents positive as well as negative
numbers if D > 0.)

One has:

Theorem 1.1 For any D < 0, there are only finitely many classes of prim-
itive, positive definite forms of discriminant D. [This is the class number
h(D) of the field Q(

√
D); an isomorphism is obtained by sending f(x, y) to

the ideal aZ + −b+
√

D
2 Z].

This is proved by means of reduction theory. The idea is to show that
each form is equivalent to a unique ‘reduced’ form. ‘Reduced’ forms can
be computed - there are even algorithms which can be implemented in a
computer which can determine h(D) and even the h(D) reduced forms of
discriminant D.

A primitive, +ve definite, binary quadratic form f(x, y) = ax2 + bxy + cy2

is said to be reduced if |b| ≤ a ≤ c and b ≥ 0 if either a = c or |b| = a. These
clearly imply

0 < a ≤
√
|D|
3

.

For example, the only reduced form of discriminant D = −4 is x2 + y2.

The only two reduced forms of discriminant D = −20 are x2 + 5y2 and
2x2 + 2xy + 3y2.
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The group SL(2,Z) is a discrete subgroup of SL(2,R) such that the quotient
space SL(2,Z)\SL(2,R) is non-compact, but has a finite SL(2,R)-invariant
measure. Reduction theory for SL(2,Z) is (roughly) to find a complement to
SL(2,Z) in SL(2,R); a ‘nice’ complement is called a fundamental domain.
Viewing the upper half-plane H as the quotient space SL(2,R)/SO(2),

{z ∈ H : Im(z) ≥
√

3/2, | Re(z) |≤ 1/2}
is (the image in H) of a fundamental domain (figure below) :
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Fundamental domains can be very useful in many ways; for example, they
give even a presentation for SL(2,Z). In this case, such a domain is written
in terms of the Iwasawa decomposition of SL(2,R). One has SL(2,R) =
KAN in the usual way. The, reduction theory for SL(2,Z) says SL(2,R) =
KA 2√

3

N 1
2
SL(2,Z). Here At = {diag(a1, a2) ∈ SL(2,R) : ai > 0 and a1

a2
≤

t} and Nu = {
(

1 x
0 1

)
∈ N : |x| ≤ u}.

What does this have to with quadratic forms? Well, GL(2,R) acts on the
space S of +ve-definite, binary quadratic forms as follows: Each P ∈ S can
be representated by a +ve-definite, symmetric matrix. For g ∈ GL(2,R),
tgPg ∈ S. This action is transitive and the isotropy at I ∈ S is O(2). In
other words, S can be identified with GL(2,R)/O(2) i.e. S = {tgg : g ∈
GL(2,R)}. In general, this works for +ve-definite quadratic forms in n
variables.

It is easy to use the above identification and the reduction theory statement
for SL(2,Z) to show that each +ve definite, binary quadratic form is equiv-
alent to a unique reduced form.
Indeed, writing f = tgg and g = kanγ, tgg = tγtna2nγ with n ∈ U1/2 and
a2 ∈ A4/3; so tna2n is a reduced form equivalent to f .
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To see how useful this is, let us prove a beautiful discovery of Fermat, viz.,
that any prime number p ≡ 1 mod 4 is expressible as a sum of two squares.
Since (p − 1)! ≡ −1 mod p and since (p − 1)/2 is even, it follows that
(p−1

2 !)2 ≡ −1 mod p i.e.,

((
p− 1

2
)!)2 + 1 = pq

for some natural number q. Now the form px2 +2(p−1
2 )!xy + qy2 is +ve def-

inite and has discriminant −4. Now, the only reduced form of discriminant
−4 is x2 +y2 as it is trivial to see. Since each form is equivalent to a reduced
form (by reduction theory), the forms px2 +2p−1

2 !xy + qy2 and x2 +y2 must
be equivalent. As the former form has p as the value at (1, 0), the latter also
takes the value p for some integers x, y.

2 Class field theory/Reciprocity

One way to motivate reciprocity is as follows.

A prime p 6= 2 is of the form x2 + y2 ⇔ (−1
p) = 1 (i.e., −1 is a square mod

p).

A prime p 6= 2 is of the form x2 + 27y2 ⇔ 2 is a cube mod p and p ≡ 1 mod
3.

A prime p 6= 2 is of the form x2 + 64y2 ⇔ 2 is a 4th power mod p and -1 is
a square mod p.

The point of quadratic reciprocity is that one can express a condition of the
form (a

p ) = 1 in terms of congruences for p. For instance,

(
3
p
) = 1 ⇔ p ≡ ±1 mod 12.

(
5
p
) = 1 ⇔ p ≡ ±1,±11 mod 20.

(
7
p
) = 1 ⇔ p ≡ ±1,±3,±9 mod 28.

The quadratic reciprocity law (QRL) says:

4



p 6= q odd primes ⇒

(
p

q
) = 1 ⇔ q ≡ ±d2 mod 4p for some odd d.

Abelian class field theory and Artin’s reciprocity law in particular - QRL
corresponds to the special case of quadratic extensions - tells us when a
prime p splits completely in a finite abelian extension of Q, in terms of
congruences. Here p splits completely in
Q(α) if the minimal polynomial of α over Q splits into linear factors when
viewed modulo p.
For e.g. in Q(e2πi/n), a prime p splits completely ⇔ p ≡ 1 mod n. In any
finite extension field K of Q, one can do algebra as in Z and Q, excepting
the fact that unique factorisation is absent, in general. Fortunately, a finite
group (called the class group of K) measures the deviation from this property
holding good.

For K = Q(
√

D) with D < 0, the order h(D) of the class group of K gives
the number of +ve-definite, primitive, reduced, binary, quadratic forms.

Class Field Theory has two parts - one consists of the reciprocity law and
the other is an existence theorem of a certain field called the Hilbert class
field corresponding to any field K. The latter is the maximal, unramified,
abelian extension of K. For example, the Hilbert class field of Q(

√−14) is

Q(
√−14)(

√
2
√

2− 1). One has:

Theorem 2.1 Let n > 0 be square-free and 6≡ 3 mod 4. Then, an odd
prime p can be expressed as x2 + ny2 if, and only if, p splits completely in
the Hilbert class field of Q(

√−n).

Remark There is an analogous version when n ≡ 3(4). In that case one
looks at primes p expressible as x2 + xy + (1+n

4 )y2 and one considers the
so-called ring class field of Z[

√−n].

Of course, (−n
p ) = 1 implies that p divides x2 + ny2 for some integers x, y.

Unlike the case of n = 1 (and the cases n = 2, 3, 4, 7), there are many (as
many as h(−4n) ) reduced forms (among which is the form x2 + ny2) and
the condition (−n

p ) = 1 only implies that p is represented by one of these
forms. When do we know that p is represented by x2 + ny2 itself ?
Now, the previous theorem can be used to determine the primes expressible
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in the form x2 + ny2 provided one can determine the Hilbert class field of
Q(
√−n). Indeed, if L = Q(

√−n)(α) is the Hilbert class field (actually the
ring class field of Z[

√−n] and fn(X) is the minimal polynomial of α (where
α ∈ OL), then for a prime p 6= 2 with p 6 |n, p 6 |disc.fn, we have:

p = x2 + ny2 ⇔ (
−n

p
) = 1 and fn(x) ≡ 0 mod p for some x ∈ Z.

As before, there is an analogous version for n ≡ 3 (mod 4).

3 The modular function

For τ ∈ H, the upper half-plane, consider the lattice Z+Zτ and the functions

g2(τ) = 60
′∑

m,n

1
(m + nτ)4

(
=

(2π)4

12

(
1 +

∞∑

n=1

σ3(n)e2πinτ

))

g3(τ) = 140
′∑

m,n

1
(m + nτ)6

(
=

(2π)6

12

(
1 +

∞∑

n=1

σ5(n)e2πinτ

))
.

[Note that p′(z)2 = 4p(z)3 − g2(τ)p(z) − g3(τ) where the Weierstrass p-
function on Z + Zτ is given by p(z) = 1

z2 +
∑
w

( 1
(z−w)2

− 1
w2 ).]

It can be shown that ∆(τ) d= g2(τ)3 − 27g3(τ)2 6= 0. The elliptic modular
function j : H → C is defined by

j(τ) = 123 · g2(τ)3

∆(τ)
.

The adjective ‘modular’ accompanies the j-function because of the invari-
ance property:

j(τ) = j(τ ′) ⇔ τ ′ ∈ SL(2,Z)(τ) d=
{

aτ + b

cτ + d
:
(

a b
c d

)
∈ SL(2,Z)

}
.

In fact, we have:

Theorem 3.1 (i) j is holomorphic on H.
(ii) j has the invariance property above.
(iii) j : H → C is onto.
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The proof of (iii) needs the fundamental domain of SL(2,Z) we referred to
earlier.
That fact that p satisfies the equation (p′)2 = 4p3 − g2p − g3 implies, by
the above theorem, that the j-function, gives an isomorphism from the set
SL(2,Z)\H to the set all ‘complex elliptic curves’ C/Z + Zτ .

In fact, one has bijective correspondences between :
(i) lattices L = Z + Zτ ⊂ C upto scalar multiplication,
(ii) complex elliptic curves C/L upto isomorphism,
(iii) the numbers j(τ), and
(iv) Riemann surfaces of genus 1 upto complex analytic isomorphism.

As a matter of fact, SL(2,Z)\H is the (coarse) moduli space of elliptic
curves over C.

In general, various subgroups of SL(2,Z) describe other moduli problems
for elliptic curves. This description has been vastly exploited by Shimura et
al. in modern number theory.

For instance, complex spaces like Γ0(N)\H have algebraic models over Q
called Shimura varieties. The Taniyama-Shimura-Weil conjecture (which is
proved by Wiles et al. and which implies Fermat’s Last Theorem) says that
any elliptic curve over Q admits a surjective, algebraic map defined over Q
from a projectivised model of Γ0(N)\H onto it. The point of this is that func-
tions on Γ0(N)\H or even on SL(2,Z)\H with nice analytic properties are
essentially modular forms and conjectures like Taniyama-Shimura-Weil say
essentially that ‘nice geometric objects over Q come from modular forms’.

As j : H → C is SL(2,Z) - invariant, one has j(τ + 1) = j(τ). So j(τ) is a
holomorphic function in the variable q = e2πiτ , in the region 0 < |q| < 1.

Thus, j(τ) =
∞∑

n=−∞
cnqn is a Laurent expansion i.e., all but finitely many

cn(n < 0) vanish.

In fact, j(τ) = 1
q + 744 +

∑
n≥1

cnqn with cn ∈ Z ∀ n. (c1 = 196884, c2 =

21493760, c3 = 864299970 etc.) We shall keep this q-expansion of j in mind.
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4 Complex multiplication

We defined the j-function on H. One can think of j as a function on lattices
Z + Zτ . In particular, if O is an order in an imaginary quadratic field
Q(
√−n), it can be viewed as a lattice in C. In fact, any proper, fractional

O-ideal I can be 2-generated i.e, is a free Z-module of rank 2 i.e., is a lattice
in C. Then, it makes sense to talk about j(I). Using basic properties of
elliptic functions, it is quite easy to show:

Proposition: j(I) is an algebraic number of degree ≤ class number of O.
In fact, a much stronger result holds and, it is :

The First main theorem of Complex multiplication :

Let O be an order in an imaginary quadratic field K. Let I ⊂ O be a
factional O-ideal. Then, j(I) is an algebraic integer and K(j(I)) is the
Hilbert (ring) class field of O.

In particular, K(j(OK)) is the Hilbert class field of K. We have almost
come back where we started from. Indeed, it only remains to explain the
‘za’ of things now1

A Corollary of the above theorem is:

Proposition: Let O,K be as above and let I1, . . . , Ih be the ideal classes
of O (i.e., h = [Hilbert class field of O : K] = [K(j(O)) : K]). Then,
h∏

i=1
(X− j(Ii)) is the minimal polynomial of any α such that K(α) = Hilbert

class field of O. Note that α can be any j(Ii).

Applying the theorem to j(τ) for τ imaginary quadratic, it follows that j(τ)
is an algebraic integer of degree = class number of Q(τ) i.e, ∃ integers
a0, . . . , ah−1 such that j(τ)h + ah−1j(τ)h−1 + . . . + a0 = 0.

Now, there are only finitely many imaginary quadratic fields Q(τ) = K
which have class number 1. The largest D such that Q(

√−D) has class
number 1 is 163. Since 163 ≡ 3(4), the ring of integers is Z + Z(−1+i

√
163

2 ).
Thus j(−1+i

√
163

2 ) ∈ Z.

1A friend had confessed long ago that in his primary school, he understood the tables
but it took him a long time to understand the meaning of ‘za’ in ‘two two za four’ !
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Now j(τ) = 1
q + 744 +

∑
n≥1

cnqn with cn ∈ Z and

q = e2πi(−1+i
√

163
2

) = −e−π
√

163.

Thus −eπ
√

163 +744−196884 e−π
√

163 +21493760 e−2π
√

163 + . . . = j(τ) ∈ Z.
In other words,

eπ
√

163 − integer = 196884 e−π
√

163 + 21493760 e−2π
√

163 . . . ≈ 0.

VOILA !!!
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