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In 1988, Paul Erdös asked the following elementary-looking question :
If x 6= y are different natural numbers, can we find a prime number p such
that for some n, p divides exactly one among xn − 1 and yn − 1 ?
Now, if y is a power of x, then xn− 1 divides yn− 1 for each n. So, one may
ask the stronger question whether the assumption, for every n, that each
prime divisor of xn−1 also divides yn−1 necessarily means that y must be a
power of x. This problem came to be known as the ‘support problem’. One
calls the ‘support’ of a natural number a to be the set of its prime divisors.
It was only as recently as 1997 when Corrales Rodriganez and Rene Schoof
answered this in the affirnative. They proved it for general number fields
and also generalized the problem to elliptic curves and solved that too. The
proof of the answer even to the original question requires from basic algebraic
number theory. We discuss the proof for Q here. We will prove:

Theorem:
Let x, y ∈ Q∗. If, for all but finitely many primes p and, for all n ∈ N, one
has the implication

p | (xn − 1) =⇒ p | (yn − 1),

then y is a power of x.
Here p divides a rational number x = a

b
, (a, b) = 1, means that p | a.

We start by recalling some standard facts from algebraic number theory.

Let k be an algebraic number field i.e., a finite extension field of Q. Now look
at the ring of integers of k. It is, by definition, Ok = {x ∈ k : min(x,Q) is
a monic integral polynomial }. Although Ok is not a principal ideal domain
(PID) in general, it is a Dedekind domain. Any nonzero prime ideal in a
Dedekind domain is maximal and any ideal in a Dedekind domain is product
of prime ideals in a unique manner upto order.
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If p is a prime integer, the principal ideal pOk need not be a prime ideal in
Ok. However, writing

pOk = P e1
1 · · ·P eg

g

where Pi are prime ideals in Ok, one has a relation of the form
∑g

i=1 eifi =
[k : Q]. We say that p splits completely in k if g = n, ei = 1 = fi for all
i ≤ n; that is, if

pOk = P1P2 · · ·Pn.

Fact 1 (primes splitting in cyclotomic extensions) :
If p is a prime and p 6| n and ζn is a primitive nth root of unity, then p splits
completely in Q(ζn) if and only if p ≡ 1(modn).

Fact 2 (primes splitting in a radical extension) :
If q is a prime power, a ∈ N, p is a prime not dividing a, then p splits

completely in Q(ζn, a
1
q ) if and only if p ≡ 1(modq) and a is a qth power in

Z/pZ.

Fact 3 (split primes determine hierarchy) :
If K,L are finite extensions of Q and Spl(K) and Spl(L) denote the sets of
prime integers which split completely in K and L respectively, then Spl(K) ⊆
Spl(L), then K ⊇ L.
This is a deep result whose proof uses the so-called Frobenius Density The-
orem.

Fact 4 (Kummer pairing) :
Let q be a prime power. Then there is an injective homomorphism θ :
Q(ζq)

∗/(Q(ζq)
∗)q → Hom(Gal(Q/Q(ζq)), µq) where µq is the cyclic group of

qth roots of unity. This is the Kummer map which takes t to θ(t) : σ → σ(t
1
q )

t
1
q

.

Fact 5 (Special case of Dirichlet’s unit theorem) :
If S is any finite set of prime integers, then the group of units of the ring
Z[S−1] is finitely generated.
This is the Dirichlet unit theorem for a number field, but it is obvious in this
case because the concerned group is simply ±pt1

1 · · · pts
s for ti ∈ Z and where

S = {p1, · · · , ps}.

We will now use these results to prove the theorem.
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Proof of theorem.
Assume x, y are as in the theorem, that is, for all n and all but finitely many
primes p, one has

p | (xn − 1) =⇒ p | (yn − 1).

Let S denote the finite set of primes including all those which divide (either
the numerators or the denominators of) x, y and, also those where the hy-
pothesis of the theorem does not hold. The proof will depend on the following
2 lemmata.

Lemma 1:
Let q be a power of a prime l and let ζq be a primitive qth root of unity. Then

Q(ζn, x
1
q ) ⊇ Q(ζn, y

1
q ).

Proof :
Let p /∈ S split completely in Q(ζn, x

1
q ). By Fact 2, p ≡ 1(modq) and x is a qth

power in Z/pZ. Now if a ∈ Z/pZ, and ap−1 ≡ 1(modp). Since x = aq in Z/pZ,

x
p−1

q ≡ 1(modp). Since p ≡ 1(modq), p−1
q
∈ N. Thus, by the hypothesis of the

theorem, y
p−1

q ≡ 1(modp). As (Z/pZ)∗ is cyclic, y is a qth power in Z/pZ. By

Fact 2, p splits completely in Q(ζn, y
1
q ). So Spl(Q(ζn, x

1
q )) ⊆ Spl(Q(ζn, y

1
q )).

Using Fact 3 which is a consequence of the Frobenius density theorem, we

have Q(ζn, x
1
q ) ⊇ Q(ζn, y

1
q ).

Lemma 2:
Let q be an odd prime power.Then the natural map Q∗/(Q∗)q → Q(ζq)

∗/(Q(ζq)
∗)q

is injective.
To prove this lemma we will modify the proof of Hilbert’s Theorem 90 slightly.
We claim :

Modified Hilbert 90 :
Let q be an odd prime power and let L/K be a Galois extension with cyclic
Galois group G =< σ >. If α ∈ L is a qth root of unity and NL/K = 1, then

there is a qth root of unity γ ∈ L with α = σ(γ)
γ

.
Proof.
Let a be a primitive root modq,that is, a generator of (Z/qZ)∗ . Then for a
primitive qth root of unity, the extension Q (ζq) is Galois, and cyclic and is
generated by σ : ζq → ζa

q . Any integer i can be written as (a − 1)j in Z/qZ
, since (a − 1) is invertible modq. The elements of (Z/qZ)∗ are elements
which are not multiple of p (where q = pr, p is an odd prime). So if we
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can prove that an element of the form kp + 1 does not generate (Z/qZ)∗,
then a − 1 ∈ (Z/qZ)∗ . So then a − 1 is invertible modq. Now let kp + 1 be
a generator of (Z/qZ)∗ . So there is an element of the form k/p + 2 in the
subgroup generated by kp + 1. But this is not possible, since (kp + 1)n is of
the form k1p+1. So no element of the form kp+1 is a generator of (Z/qZ)∗ .
So if a is a generator of (Z/qZ)∗ , then a− 1 is invertible in Z/qZ.

For any i < q, writing i = (a − 1)j in Z/qZ , we have ξi = ξaj

ξj = σ(ξj)
ξj . So

this modified Hilbert 90 is proved.

Proof of lemma 2:
Let t ∈ Q∗ be so that t = sq with s ∈ Q(ζq)

∗. Writing Gal(Q(ζq)/Q) =< σ >,

we have (σ(s)
s

)q = 1. Thus σ(s)
s

is a qth root of unity whose norm over Q is

1. By the modified version of Hilbert’s theorem 90, σ(s)
s

= σ(u)
u

for some qth

root of unity u. So su−1 = σ(su−1). So su−1 is fixed by the galios group G.
So su−1 ∈ Q. Now t = sq = (su−1)q ∈ (Q∗)q. So the map is injective.

Proof of theorem continued :
As in Fact 4, consider the Kummer map θ : Q(ζq)

∗/(Q(ζq)
∗)q → Hom(Gal(Q/Q(ζq)), µq)

which takes t to θ(t) : σ → σ(t1/q)

t
1
q

.

From Fact 1, we have Q(ζn, x
1
q ) ⊇ Q(ζn, y

1
q ). So ker θ(x) ⊆ ker θ(y). We have

the commutative diagram:
θ(x)

0 −→ ker θ(x) −→ Gal(Q/Q(ζq)) −→ Imθ(x) −→ 0

↓ ⊆ ‖ ↓ φ
θ(y)

0 −→ ker θ(y) −→ Gal(Q/Q(ζq)) −→ Imθ(y) −→ 0.

As Imθ(x) ⊆ µq is cyclic , the last vertical map φ is simply a power map;
hence θ(y) = θ(x)d for some d ∈ Z. As θ is injective from Fact 4, we have
then y = xd in the group Q(ζq)

∗/(Q(ζq)
∗)q. So, by lemma 2, we have y = xd

in Q∗/(Q∗)q also.

Now, we look at the ring Z[S−1] obtained by inverting all the primes in the
finite set S. Let A denote Z[S−1]∗/xZ where Z[S−1]∗ is the group of units of
Z[S−1] . By Fact 5, we have that the unit group Z[S−1]∗ is finitely generated.
Indeed, it consists of all the rational numbers of the form ±pα1

1 ...pαr
r where

pi ∈ S and αi ∈ Z. In particular, the images of these elements in the quotient
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group A generate it.
By Facts 1 and 2, it follows that the image of y in A is already in Aq for each
odd prime power q. Now clearly ∩ Aq = {±1} where the intersection is over
all odd prime powers q.
Therefore, y = ±xd, d ∈ Z. Suppose, if possible, that y = −xd. This means
p | (yn − 1) =⇒ p | −(xn + 1) and by the assumption, p | (xn − 1). This
implies p = 2.So we include 2 in S. Note that the proof goes through since
Z[S−1]∗ is finitely genrated as long as S is finite. Now since 2 ∈ S, y 6= −xd.
Hence y = xd, d ∈ Z and this proves the theorem.
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