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A quote attributed to the famous mathematician L Kro- 
necker is 'Die Ganzen Zahlen hat Gott gemacht, alles 
an&re ist Menschenwerk.' A translation might be 'God 
gave us integers and all else is man's work.' All of us are 
familiar already from middle school with the similarities 
between the set of integers and the set of all polynomi- 
als in one variable. A paradigm of this is the Euclidean 
(division) algorithm. However, it requires an astute ob- 
server to notice that one has to deal with polynomials 
with real or rational coefficients rather than just inte- 
ger coefficients for a strict analogy. There are also some 
apparent dissimilarities - for instance, there is no no- 
tion among integers corresponding to the derivative of a 
polynomial. In this discussion, we shall consider poly- 
nomials with integer coefficients. Of course a complete 
study of this encompasses the whole subject of algebraic 
number theory, one might say. For the most of this arti- 
cle (in fact, with the exception of 1.9, 2.3, 2.4 and 4.3), 
we adhere to fairly elementary methods and address a 
number of rather natural questions. To give a prelude, 
one such question might be "if an integral polynomial 
takes only values which are perfect squares, then must 
it be the square of a polynomial ?" Note that for a nat- 

( X ) X(X-1)...(X-n+I) 
ural number n, the polynomial = n(~-1)...1 

takes integer values at all integers although it does not 
have integer coefficients. By Z, we shall denote the set 
of integers. 

1. P r i m e  Values and Irreducibility 

The first observation about polynomials taking integral 
values is 
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L e m m a  1.1. A polynomial P takes Z to Z i], and only 

(x) if, P ( X )  = ao + a] + . . .  + a,~ with ai E Z.  
n 

P r o o f ;  The sufficiency is evident. For the converse, we 
first note that  any polynomial  whatsoever can be written 
in this form for some n and some (possibly nonintegral) 
a~s. Writing P in this form and assuming that  P ( Z )  C 
Z, we have 

P(O) = ao E Z 

P(1) = a 0 + a l  E Z 

P(2) = a o + a l  1 + a 2 E  Z 

and so on. Inductively, since P ( m )  E Z Vm, we get 
ai E Z Vi. 

C o r o l l a r y  1.2. I f  a polynomial P takes Z to Z and has 
degree n, then n ! P ( X )  E Z[X]. 

L e m m a  1.3. A nonconstant integral polynomial P ( X )  
cannot take only prime values. 

Proof"  If all values are composite, then there is nothing 
to prove. So, assume that  P(a) = p for some integer a 
and prime p. Now, as P is nonconstant,  

lim IP(a +np)} = ~ .  

So, for big enough n, IP(a+, p)l > p. But P ( a + n p )  - 
P(a)  -- 0 mod p, which shows P(a + n p )  is composite. 

R e m a r k  1.4. Infinitely many primes can occur as inte- 
gral values of a polynomial. For example, if (a, b) = 1, 
then the well-known (but deep) Dirichlet's theorem on 
primes in progression shows that  the polynomial a X  + b 
takes infinitely many prime values. In general, it may 
be very difficult to decide whether a given polynomial 
takes infinitely many prime values. For instance, it is 
not known if X 2 + 1 represents infinitely many primes. 

Dirichlet proved 

that an arithmetic 
progression {ax + 

b} with (a, b) =1, 
contains infinitely 

many primes. It is 
unknown whether 
x 2 + 1 represents 

infinitely many 
primes. 
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For a nonconstant, 

integral polynomial 

P(X), not all values 
P(0), P(+ 1), 

P( _+ 2), etc. can be 
built from finitely 

many primes. 

However, it may 

be possible to build 

infinitely many 

such values from a 

finite set of primes. 

In fact, there is no polynomial  of degree __k 2 which is 
known to take infinitely many pr ime values. 

L e m m a  1.5. If  P is a nonconstant, integral-valued 
polynomial, then the number of prime divisors of its val- 

ues { P ( m ) } m e z ,  is infinite i.e. not all terms of the se- 
quence P ( 0 ) , P ( 1 ) , . . .  can be built f rom finitely many  
primes. 

P r o o f :  It is clear from 1.2 above that  it is enough to 
prove this for P ( X )  E Z[X], which we will henceforth 

?2 

assume. Now, P ( X )  = ~ a iX  i, where n _> 1. If a0 = 0, 
i=0  

then clearly P(p) -- 0 rood p for any prime p. If a0 :fi 0, 
let us consider for any integer t, the  polynomial  

P(ao tX  = ai(aotX) i = ao 1 -4- aia 0 t X : 
i=O i=1 

aoQ(X). 
There exmts some prime number  p such that  Q(m)  -- 
0 rood p for some m and some pr ime p, because Q can 
take the values 0,1,-1 only at finitely many points. Since 
Q(m) _= 1 mod  t, we have (p,t) = 1. Then P(aotm)  = 
0 rood p. Since t was arbitrary, the set of p arising in 
this manner  is infinite. 

R e m a r k  1.6. (a) Note that  it may be possible to con- 
struct infinitely many terms of the sequence {P(m)}meZ 
using only a finite number  of primes. For example take 
(a,d) = 1, a > d > 1. Since, by Euler 's  theorem,  

a ~~ = 1 mod d, the numbers a(a~(d)n--1) E Z V 7), For 
d 

the polynomial  P ( X )  = d X  +a,  the infinitely many val- 
ues P(-~(a ~(d)n - 1)) = a ~'(d)n+l have only prime factors 

coming from primes dfviding a. 

(b) In order that  the values of an integral polynomial  
P ( X )  be prime for infinitely many integers, P ( X )  must  
be irreducible over Z and of content  1. By content,  we 
mean the greatest  common divisor of the coefficients. 
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B o x  1. E i s e n s t e i n ' s  C r i t e r i o n  a n d  M o r e  

Perhaps  the only general cri terion known to check whether  an integral polyno- 

mial of a special kind is irreducible is due to G Eisenstein, a s tudent  of Gauss 

and a.n outs tanding  mathemat ic ian,  whom Gauss is said to have ra ted  above 

himself. Eisenstein died when he was 27. 

Let  f ( X )  = ao + a l X  + . . .  + an X n  be an integral polynomial  sat is fying 

the fol lowing property with respect to some pr ime  p. The pr ime  p divides 

a0, a l , ' " ,  an-1 but does no t  divide a , .  Also, assume that  p2 does not  divide 

ao. Then., f is irreducible. 

The  proof  is indeed very simple high school algebra. Suppose, if possible, tha t  

f ( X )  = g ( X ) h ( X )  = (bo + b l X  + . . .  + brXr) (co  + c l X  + " "  + c s X  s) with 

r, s _> 1. Comparing coefficients, one has 

ao = bocO, al =aObl  + b O a l , ' " , a n =  brcs, r -~-s = n .  

Since a0 = boco =- 0 mod p, either b0 -= 0 rood p or co -= 0 mod p. 

To fix notations,  we may assume tha t  b0 - 0 mod p. Since a0 ~ 0 mod p2, 

we must  have co ~ 0 mod p. Now al =- bocl �9 bleo :- blco mod p;  so bl ---- 0 
mod p. Proceeding inductively in this manner,  it is clear tha t  all the  bi's are 

nmltiples of p. This is a manifest contradict ion of the fact tha t  an ~- bres is 

not a multiple of p. This finishes the proof. 

It  may be noted tha t  one may reverse the roles of a0 and an and obtain another  

version of the criterion: 

L~t f ( X )  = ao + a l X  + " "  + a n X  n be an integral polynomial  sat is fying 
the fol lowing property with respect to some pr ime  p. The pr ime  p divides 

a], a 2 , ' " ,  an but does not  divide ao. Also, assume that  p2 does not  divide an. 

Then,  f is irreducible. 

The  following generalisation is similar to prove and is left as an exercise. 

Let  f ( X )  =- ao + a l X  + . . .  + a n X  n be an integral polynomial  sat is fying the 

fo l lowing property  with respect to some pr ime  p. Let  t be such that  the pr ime  

p divides ao, a ] , " ' , a n - t  but does not  divide an. Also, assume that  p2 does 

not  divide ao. Then,  f is ei ther irreducible or it has a noncons tan t  fac tor  of  

degree less than t. 
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Suppose p is a 

p r ime  n u m b e r  with 

the decimal digits 

a. . . .  a 1, a o . Then ,  

the polynomial 

ao+a~X + ... + a~ X" 

turns out to be 
irreducible. 

In general,  it is difficult to decide whe the r  a given inte- 
gral po lynomia l  is irreducible or not.  We note  t ha t  t he  
irreducibil i ty of P ( X )  and the  condi t ion  tha t  it have 
content  1, are no t  sufficient to ensure  t ha t  P ( X )  takes  
infinitely m a n y  pr ime values. For instance,  the  poly- 
nomial  X n + 105X + 12 is irreducible,  by Eisens te in ' s  

cri terion (see Box 1). But ,  it canno t  take any p r ime  
value because  it takes only even values and it does  not  
take ei ther of the  values -t-2 since bo th  X '~ + 105X + 10 
and X n +  105X +14  are irreducible,  again by Eisenste in ' s  
criterion. 

L e m m a  1.7. Let al, �9 �9 �9 an be dist inct  integers. 

Then P ( X ) =  ( X - a l ) ' . . ( X  - a n ) -  1 is irreducible. 

Proof:  Suppose ,  if possible, P ( X )  = f ( X ) g ( X )  with  

d e g . f ,  d eg .g  < n. Evidently, as f (a i )g(ai )  = - 1 ,  f(a~) = 
- g ( a i )  = +1 Vl _< i < n. Now, f ( X ) + g ( X )  being a 
polynomia l  of degree < n which vanishes at the  n dis- 
t inct  integers a l , . " ,  an mus t  be identical ly zero. Th is  
gives P ( X )  = - f ( X )  2 but  this is impossible  as can be 
seen by compar ing  the  coefficients of X n. 

Exerc i se  1.8. Let n be odd and a l , ' " , a n  be dist inct  
integers. Prove that ( X  - a l ) . . .  ( X  - an) + 1 is irre- 

ducible. 

Let us consider  the  following s i tua t ion.  Suppose  p = 

a n ' " a o  is a pr ime number  expressed in the  usual  deci- 
mal  sys tem i.e. p = a0 + 10al + 100a2 + �9 �9 �9 + lOnan, 0 
ai _< 9. Then ,  is the  po lynomia l  ao + a l X  + . . .  + anX  n 
i rreducible? This  is, in fact, t rue  and,  more  generally 

L e m m a  1.9. Let P ( X )  E Z[X] and assume that there 
exists an integer n such that 

1 (i) the zeros of  P lie in the half  plane Re (z) < n - 7" 

(ii) P ( n -  1) # O. 
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(iii) P(n) is a prime number. 

Then P ( X )  is irreducible. 

P r o o f :  Suppose, if possible P ( X )  = f ( X ) g ( X )  over Z. 
1 Therefore, All the zeros o f f ( X )  also lie in Re(z) < n - 7 .  

1 _  [ f ( n - ~  t)[ < [ f ( n - l + t ) [ V t > O .  S i n c e f ( n - 1 ) r  
and f ( n  - 1) is integral, we have If(n - 1)l _> 1. Thus 
]f(n)I > If(n - 1)l _> 1. A similar thing holding for 
g(X) ,  we get tha t  P(n) has proper divisors f (n) ,g(n)  
which contradicts our hypothesis. 

2. Irreducibility and Congruence Modulo p 

For an integral polynomial  to take the value zero at an 
integer or even to be reducible, it is clearly necessary 
tha t  these properties hold modulo any integer m. Con- 
versely, if P ( X )  has a root modulo any integer, it must 
itself have a root in Z. In fact, if P ( X )  E Z[X] has a 
linear factor modulo  all but finitely many prime num- 
bers, the P ( X )  itself has a linear factor. This fact can 
be proved only by deep methods  viz. using the so-called 
Cebotarev density theorem. On the other  hand, (see 
lemma 2.3) it was first observed by Hilbert that  the re- 
ducibility of a polynomial  modulo every integer is not 
sufficient to guarantee its reducibility over Z. Regarding 
roots of a polynomial  modulo a prime, there is following 
general result due to Lagrange: 

L e m m a  2.1. Let p be a prime number and let P ( X )  E 
Z[X] be of degree n. Assume that not all coefficients o/ 
P are multiples ofp. Then the number of solutions mod 
p to P ( X )  =- 0 mod p is, at the most, n. 

The proof is obvious using the division algorithm over 
Z/p. In fact, the general result of this kind (provable by 
the division algorithm again) is that  a nonzero polyno- 
mial over any field has at the most its degree number of 
roots. 

It was first 
observed by 

Hilbert that the 
reducibility of a 
polynomial modulo 
every integer is not 

sufficient to 
guarantee its 
reducibility over Z. 
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The division 

algorithm shows 

that over any field, 

a non-zero 

polynomial has at 

the most its degree 

number of roots. 

R e m a r k  2 .2 .  Since 1 , 2 , . . . , p -  1 are  solut ions to 

X p-1 - 1 m o d  p, we have X p-1 - 1 - (X - 1 ) (X - 

2 ) . . .  (X - (p - 1)) m o d  p. For odd  p, p u t t i n g  X = 0 

gives Wilson 's  t h e o r e m  t h a t  (p - 1)! - - 1  mod  p. 

Note  t h a t  we have  observed  ear l ier  t h a t  any  n o n - c o n s t a n t  

integral  po lynomia l  has  a roo t  m o d u l o  infini tely m a n y  

primes.  However,  as first observed  by Hilbert ,  t he  re- 

ducibi l i ty  of  a po lynomia l  m o d u l o  every  in teger  does  not  

imply  its reduc ib i l i ty  over Z.  For example ,  we have the  

following result :  

L e m m a  2.3.  Let p,q be odd prime numbers such that 
(~q) = (~) = 1 and p - 1 m o d  8. Here (~q) denotes 
the Legendre symbol defined to be 1 or - 1  according as 
p is a square or not modulo q. Then, the polynomial 
P ( X )  = (X 2 - p - q)2 _ 4pq is irreducible whereas it is 
reducible modulo any integer. 

P r o o f :  

52 

P(X) = X 4 - 2 ( p + q ) X  2 + ( p - q ) 2 =  

(X - v ~ -  v ~ ( X  + ~ + v ~ ( X  - V~ + V~) 

(X +V~- v~). 

Since x/P, v ~ ,  v/-fi + v ~ ,  v / ~  are  all i r ra t ional ,  none  of 
the  l inear or q u a d r a t i c  factors  of P ( X )  are in Z[X] i.e. 

P ( X )  is i r reducible .  Note  t h a t  it is e n o u g h  to show t h a t  

a fac tor i sa t ion  of P exists modu lo  any  p r ime  power  as we 

can use Chinese  r eminde r  t h e o r e m  to get  a fac tor i sa t ion  

modulo  a genera l  integer.  

Now, P ( X )  can be wr i t t en  in the  following ways: 

P(X) = x 4 - 2 ( p  + q ) X  2 + (p - q)~ 

= (X 2 + p _ q ) 2 _ 4 p X  2 

= (X 2 _ p + q ) 2 _ 4 q X  2 

= (X 2 _ p _ q ) 2 _ a p q .  
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The second and third equalities above show tha t  P(X) 
is reducible modulo any pn and any q'~. Also since p - 
1 mod 8,p is a square modulo any 2 ~ and the second 
equality above again shows that  P(X) is the  difference 
of two squares modulo 2 n, and hence reducible mod 2 n. 

If g is a prime r 2,p, q, let us show now that  P(X) is 
reducible modulo l ~ for any n. 

At least one of (~), (~) and ( ~ )  is 1 because, by the 
product  formula for Legendre symbols, (~)-(~).(  e ~ )  = 1. 
According as (~), (~) or (~e) = 1, the second, third or 
fourth equality shows tha t  P(X) is reducible mod g~ for 
any n. 

We end this section with a result of Schur whose proof 
is surprising and elegant as well. This is: 

Schur ' s  T h e o r e m  2.4 

For any n, the truncated exponential polynomial E~(X) = 
X 2 X ~ n!(1 + X + 7 + " '"  + "~'. ) is irreducible  over  Z .  

Just for this proof, we need some nontrivial number the- 
oretic facts. A reader unfamiliar with these notions but 
one who is prepared to accept at face value a couple of 
results can still appreciate the beauty of Schur's proof. 
Here is where we have to take recourse to some very ba- 
sic facts about prime decomposition in algebraic number 
fields. Suppose, if possible, that E ~ ( X )  = f ( X ) g ( X )  for 
some nonconsant, irreducible integral polynomial f .  Let 
us write f ( X )  = ao + a l X  + . . .  -~- X r (evidently, we may 
take the top coefficients of f to be 1). Start with any 
(complex) root a of f and look at the field K = q ( a )  
of all those complex numbers which can be written as 
polynomials in a with coefficients from Q. The basic 
fact that we will be using (without proof) is that any 
nonzero ideal in 'the ring of integers of K '  (i.e., the sub- 
ring O K  of K made up of those elements, which satisfy 
a monic integral polynomial) is uniquely a product of 

Look at the field 

K=Q(a) of all those 

complex numbers 

which can be 

written as 

polynomials in a 

with coefficients 

from Q. Any 

nonzero ideal in 

'the ring of integers 

of K' (i.e., the sub- 

ring O K of K made 

up of those 

elements, which 

satisfy a monic 

integral 

polynomial) is 

uniquely a product 

of nonzero prime 

ideals and a prime 

ideal can occur at 

the most deg f 

times. This is a 

good replacement 

for K of the usual 

unique 

factorisation of 

natural numbers 

into prime 

numbers. 
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Bertrand's 

postulate says that 

there is always a 

prime between n 

and 2n. Sylvester 

generalized this to 

the assertion that if 

rn ___ r, then (m+l )  

(m+2) ... (m+r) has 

a prime factor p>r. 

nonzero prime ideals and a prime ideal can occur at 
the most deg f times. This is a good replacement for 
K of the usual unique factorisation of natural  numbers 
into prime numbers. The proof also uses a fact about  
prime numbers observed by Sylvester but is not trivial 
to prove. 

S y l v e s t e r ' s  T h e o r e m  

I f m  >_ r, then (m + 1)(m + 2 ) . . .  (m + r) has a pr ime 
factor p > r. 

The special case m = r is known as Bertrand's  postu- 
late. 

P r o o f  of  S c h u r ' s  T h e o r e m  

Now, the proof uses the following fact which is interest- 
ing in its own right: 

O b s e r v a t i o n :  Any prime dividing the constant tcrm ao 
of f is less than the degree r of f . 

To see this, note first that  N(a ) ,  the 'norm of a '  (a 
name for the product  of all the roots of the minimal  
polynomial f of a)  is a0 upto sign. So, there is a pr ime 
ideal P of OK so that  (a) = PkI ,  (p) = p t j  where 
I, J are indivisible by P and k, l > 1. Here, (a) and (p) 
denote, respectively, the ideal of OK generated by a and 
p. Since En(a)  = O, we have 

O = n ! + n ! a + n ! a 2 / 2 !  , 4 - . . ' + a  n. 

We know that  the exact power of p dividing n! is 

hn = In~P] + [n/p 2] + . . . . . .  

Thus, in OK, the ideal (n!) is divisible by plhn and no 
higher power of P. Similarly, for 1 < i < n, the ideal 
generated by n!aVi !  is divisible by plh,~-~h~+k,. Because 
of the equality 

- -n !  = n!c~ + n !a2 /2 !  + . . .  + oz n, 
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it follows tha t  we canno t  have each lh,~ - lhi + ki str ict ly 

bigger t h a n  lh,~ which is the  exact power of P dividing 
the  left hand  side. Therefore,  there is some i so tha t  

- l h i  4- ki (_ O. Thus ,  

�9 li 
i < k i < l h , = l ( [ i / p ] + [ i / p  2 1 + .  .) < - - .  

- - p - 1  

Thus ,  p -  1 < l _< r i.e., p <_ r. 

observat ion.  

This  confirms the  

To cont inue  wi th  the  proof,  we may clearly assume tha t  
t he  degree r of f at  most  n /2 .  Now, we use Sylvester 's  
t h eo r e m to choose a p r ime  q > r dividing the  p roduc t  
n ( n  - 1 ) . . .  (n - r 4- 1). Note  tha t  we can use this the- 
o rem because the  smal les t  t e rm n - r + 1 of this r-fold 
consecut ive  p roduc t  is bigger than  r as r <_ n /2 .  Note 
also tha t  the  observat ion  tells us tha t  q cannot  divide 
a0. Now, we shall wri te  E n ( X )  modulo  the  p r ime  q. By 
choice, q divides the  coefficients of X i for 0 < i < n - r. 

! X n - I  I X '~ -r+ l  So, f ( X ) g ( X )  =-- X n 4 -n . (~_1 ,  " 4 - . . .  4- n . ~ !  m o d  q. 

Wri te  f ( X )  = ao + a l X  4 - . . .  + X ~ and  g ( X )  = bo + 
b l X  + " "  + X '~-r. 

T h e  above congruence  gives aobo - O, aobl + albo - 0 

etc. mod  q until  the  coefficient of X n-r  of f ( X ) g ( X ) .  

As a0 ~ 0 mod  q, we get recursively (this is jus t  like the  
p roof  of Eisenste in 's  cr i ter ion - see Box  1) tha t  

b0 - bl -- " " b n - r  - 0 m o d  q. 

Th is  is impossible  as bn-r = 1. Thus,  Schur 's  assertion 
follows. 

If an integral 

polynomial P takes 

only values which 
are squares, it 
turns out that P is 

itself the squre of 
an integral 
polynomial. 

3. P o l y n o m i a l s  T a k i n g  S q u a r e  V a l u e s  

If an  integral  po lynomia l  takes only values which are 
squares,  is it t rue  t ha t  the  polynomial  itself is a square 
of a po lynomia l?  In this section, we will show tha t  this, 
and  more,  is indeed true.  
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More generally, if 
P takes only k-th 

powers as values, 
P is itself the k-th 

power of an 
integral 

polynomial. 

L e m m a  3.1.  Let P ( X )  be a Z-valued polynomial which 
is irreducible. I f  P is not a constant, then there ex- 
ist arbitarily large integers n such that P(n) - 0 and 
P(n) ~ 0 m o d  p2 for some prime p. 

Proof: First ,  suppose  tha t  P ( X )  E Z[X]. Since P is 
irreducible, P and p t  have no c o m m o n  factors. Wri te  

f ( X ) P ( Z )  + g ( X ) P ' ( X )  = 1 for some f , g  e Z[X]. By 
l emma 1.5, there  is a pr ime p such t ha t  P(n) - 0 m o d  p, 
where n can be as large as we want.  So, Pr(n) ~ 0 m o d  p 
as f (n )P(n )  = g(n)P'(n) -- 1. Since P(n -t- p ) -  P(n)  - 
P'(n) m od  p2, ei ther  P(n -t- p) or P(n)  is ~ 0 m o d  p2. 

To prove the  result  for general  P ,  one can replace P by 
m ! .  P where m = d e g P .  

L e m m a  3.2.  Let P ( X )  be a Z-valued polynomial such 
that the zeros of smallest multiplicity have multiplicity 
m. Then, there exist arbitrarily large integers n such 
that P(n) - 0 m o d  pm, P ( n )  ~ 0 m o d  pm+l for some 
prime p. 

Proof: Let P I ( X ) , . ' . ,  Pr (X)  be  the  dis t inct  i r reducible  
factors of P( X) .  Write P ( X )  = PI(X)  m l . . . P r ( X )  mr 

with  m = m l  _< " ' m r .  By the  above lemma,  one 
can find arbi t rar i ly  large n such t h a t  for some pr ime  
p, Pl(n) -- 0 m o d  p, P l (n )  ~ 0 m o d  p2 and,  P~(n) ~ 0 
m o d  p for i > 1. Then ,  P(n) - 0 rood pm and  ~ 0 m o d  
pm+l. 

Corollary 3.3.  If  P ( X )  takes at every integer, a value 
which is the k-th power of an integer, then P ( X )  itself 
is the k-th power of a polynomial. 

Proof: If P ( X )  is not  an exact  k - th  power,  t hen  one 
can write P ( X )  -- f ( X ) k g ( X )  for po lynomia ls  f ,  9 so 
tha t  g(X)  has a zero whose mul t ip l ic i ty  is < k. Once 
again, we can choose n and a p r ime  p such t ha t  g(n) - 0 
m od  p, ~ 0 m o d  pk. This  cont radic ts  the  fact t ha t  P(n) 
is a k- th  power. 
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[2] is an excellent source of results of this  nature .  

4. C y c l o t o m i c  Polynomials  

These  were referred to already in an earlier article ([1]). 
It  was also shown there  tha t  one could use these poly- 
nomia l s  to prove the  existence of infinitely m a n y  pr imes 
congruen t  to 1 m o d u l o  n for any n. For a na tu ra l  num-  
ber  d, recall t ha t  the  cyclo tomic  po lynomia l  Cd(X)  is the  
irreducible,  monic  po lynomia l  whose roots  are the  prim- 

it ive d- th  roots  of un i ty  i.e. r  = 1 - I a ~ d : ( a , d ) - - _ l ( X  - -  

e2"ia/d). Note  t ha t  (I)I(X) = X - 1 and t h a t  for a pr ime 

p, (I)p(X) = X p-1 -t- . . .  + X + 1. Observe t ha t  for any 

n > 1, X n - 1 = 1-Id/n (~d(X). 

Exercise  4.1.  Prove that for  any d, ~Pd(X) has integral 
coe]i~cients, and is irreducible over Z 

Factor is ing an integral  po lynomia l  into  i r reducible  fac- 
tors  is far from easy. Even if we know the  irreducible 
factors,  it might  be difficult to decide whe the r  a given 
po lynomia l  divides ano the r  given one. 

Factorising an 
integral polynomial 
into irreducible 
factors is far from 

easy. Even if we 
know the 

irreducible factors, 
it might be difficult 
to decide whether 
a given polynomial 
divides another 
given one. 

Exercises  4.2.  (a) Given positive integers al < . . .  < 
an, consider the polynomials P ( X )  = I-I~>j(X a'-aj - 1) 
and Q ( X )  = l -I i>j(x i - j  - 1). By factorising into cy- 
clotomic polynomials, prove that Q ( X )  divides P ( X ) .  
Conclude that 1-Ii>j ~-a~ is always an integer. z - j  

(b) Consider the n x n matrix A whose (i, j ) - th  entry is 

the Gaussian polynomial j - 1 " 

Compute detA to obtain part (a) again. 

Here, for m _> r,  the  Gauss ian  polynomia l  is defined as 

r ( X r - 1 ) ( X ~ - l - l ) ' " ( X - l )  
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A consequence of 

the prime number 

theorem is that for 

any constant c, 

there is n such that 

there are atleast c n  

primes between 1 

and 2". 

Notothat[m] [m*] X,[m 1] = .4- �9 
r r -  1 r 

I t  seems f rom looking at ~ p ( X )  for pr ime p as t h o u g h  the  
coefficients of the  cyclotomic po lynomia l s  C d ( X )  for any 
d are all 0, 1 or - 1 .  However, the  following ra ther  amaz-  
ing fact was discovered by Schur.  His proof  uses a con- 
sequence of a deep result  abou t  p r ime  numbers  known  
as the  p r ime  n u m b e r  theorem.  T h e  p r ime-number  theo-  
rem tells us t h a t  ~r(x) -.~ x / l o g ( x )  as x ~ cr Here 7r(x) 
denotes  the  n u m b e r  of pr imes unt i l  x. The  reader  does  
not  need to be familiar with the  p r ime  n u m b e r  t h e o r e m  

but  is urged to take on faith the  consequence  of it t ha t  
for any cons tan t  c, there  is n such t h a t  r ( 2  n) _> cn. 

P r o p o s i t i o n  4.3 .  Every  integer occurs as a coeff icient 

o f  some  cyc lo tomic  polynomial .  

Proof:  First ,  we claim tha t  for any integer  t > 2, the re  

are pr imes Pl < P2 < " ' "  < Pt s u c h  t h a t  p l  - t - P 2  > pt. 

Suppose  this is not  true.  Then ,  for some t > 2, every 

set of t p r imes  Pl < "'" < Pt satisfies Pl + P2 < Pt. So, 
2pl < pt. Therefore,  the  n u m b e r  of pr imes  be tween 2 k 
and 2 k+l for any k is less t han  t. So, 7r(2 k) < kt.  This  
contradic ts  t he  p r ime-number  t heo rem as no ted  above. 
Hence, it is indeed t rue  tha t  for any  integer  t > 2, there  

are pr imes Pl < P2 < "'" < Pt such t ha t  Pl + P2 > Pt. 

Now, let us fix any odd  t > 2. We shall d e m o n s t r a t e  
tha t  bo th  - t  .4- t and  - t  .4- 2 occur  as coefficents. Th i s  
will prove t h a t  all negative integers occur  as coefficients. 
Then ,  using the  fact t h a t  for an  odd  m > 1, (I)2m(X) -- 
C m ( - X ) ,  we can conclude t h a t  all integers are coeffi- 
cients. 

Consider  now pr imes  Pl < P2 < " ' "  < Pt such t h a t  
Pl + P2 > P$. Write Pt = P for simplicity. L e t  n = 
P l ' ' ' P t  and  let us wri te  (I),(X) m o d u l o  X p+I. Since 

X n - 1 = d /n (~d(X) ,  and  since pl  §  > Pt, we have 
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![ 1 - X ~  
- 1 - - Y  -- ( 1 + . . . + x " ) ( 1 - x p l ) . . .  ( 1 - x p ' )  

i = l  

= (1 + . . .  + XP)(1 - X m . . . . .  X ~ ) m o d  X p+I 

Therefore, the coefficients of X p and X ~-2 are 1 - t 
and 2 - t, respectively. This completes the proof. Note 
tha t  in the proof, we have used the fact tha t  if P ( X )  = 
( 1 -  X " ) Q ( X )  for a polynomial  Q(X) ,  then Q ( X )  = 
P ( X ) ( 1  + X r + X 2r + - . .  + . . . )  modulo any X k. 

It is conjectured 
that a nonconstant 

irreducible integral 

polynomial whose 
coefficients have 

no nontrivial 

common factor 

always takes on a 

prime value. 

E x e r c i s e  4.4. (a) Let A = (aij) be a matr ix  in GL(n,  Z) 
i.e., both A and A -1 have integer entries. Consider the 

n j polynomials  pi (X)  = ~j=o ai jX for 0 <_ i _< n. Prove 
tha t  any integral polynomial  of degree at most n is an 
integral linear combinat ion of the pi(X) .  In particular,  if 
no, �9 �9 �9 an E Q are dist inct ,  show tha t  any rat ional  poly- 

nomial  of degree at most  n is of the form ~ Ai(X + a i )  n 
i = 0  

for some ,ki E Q. 

[~r] ( n - i )  
(b) Prove tha t  I + X + . . . + X  n = ~ ] ( - 1 )  i X i ( l +  

i=o i 

X)  n-2i. Conclude tha t  i>0 ~ _ _ ( n  ? ~ / )  = a"+l-Ar'+l~/5 , where 

a-v$ 
l+qg t3 = This  is known as Binet 's  formula. 

~ =  2 ~ 2 " 

Further ,  c o m p u t e ~ ( - 1 ) i ( n - i )  
i>_o i " 

R e m a r k  4.5. It is easily seen by induction tha t  

( n - i  ) is jus t  the (n + 1)-th Fibonacci number Fn+l. 
i > o  i 

As we remarked earlier, even for a polynomial  of degree 
2 (like X 2 + 1) it is unknown whether it takes infinitely 
many  prime values. A general conjecture in this context 
is: 

C o n j e c t u r e  4.6. (Bouniakowsky, Schinzel and Sierpin- 
ski) 
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Many number- 

theoretic 

questions involve 

a statement which 

can be 

understood by the 
proverbial man on 

the street but an 

answer which 

proves elusive to 

professional 

mathematicians to 

this day. 

A nonconstant irreducible integral polynomial whose co- 

ejficients have no nont~'ivial common factor always takes 
on a prime value. 

We end with an open question, which is typical of many 
number- theoret ic  questions - a s t a tement  which can be 
unders tood by the  proverbial layman but  an answer which 
proves elusive to this day to professional ma themat i -  
cians. For any irreducible, monic, integral polynomial  
P ( X ) ,  define its Mahler measure to be M ( P )  -- 
Hi Max([a~[, 1), where the product  is over the  roots of 
P .  The  following is an easy exercise. 

E x e r c i s e  4.7.  M ( P )  = 1 if, and only if, P is cyclo- 

tomic. 

D H Lehmer posed the following question: 

Does there exist C > 0 such that M ( P )  > 1 + C for all 
noncyclotomic (irreducible) polynomials P ? 

This is expected to have an affirmative answer and, in- 
deed, Lehmer 's  calculations indicate  tha t  the smallest 
possible value of M ( P )  r 1 is 1.176280821 .... , which 
occurs for the polynomial  

P ( X )  = X l~ + X 9 -  X 7 -  X 6 -  X 5 -  X 4 - X 3 + X + 1. 

Lehmer 's  question can be formulated in terms of discrete 
subgroups of Lie groups. One may not  be able to predict  
when it can be answered but it is more or less certain 
tha t  one will need tools involving deep mathemat ics .  
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