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The support problem

Let x , y be positive integers such that each prime divisor of xn − 1
also divides yn − 1 for every n. What can we say about the relation
between x and y?

For instance, if y is a power of x , the above property holds.
We may ask whether the converse also holds. This problem came
to be known as the ‘support problem’.
One calls the ‘support’ of a natural number a to be the set of its
prime divisors.
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Suppose q is a prime number and consider the “field” generated by
the q-th roots of unity (namely, all e2ikπ/p for 0 ≤ k < p).

It is usually denoted by Q(ζq) where ζq is e2iπ/q.
Suppose that a certain non-zero rational number a is a q-th power
in this field, Kummer’s theorem implies that a is already a q-th
power of a rational number.
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We mention in passing the more precise version.

Kummer theory is a correspondence between abelian extensions of
a field K and subgroups of the n-th powers of K ∗.

If K contains the n-th roots of unity, then abelian extensions L of
K whose Galois groups have exponent n correspond bijectively to
subgroups Ω of K ∗ containing (K ∗)n via L 7→ K ∗ ∩ (L∗)n and its
inverse map Ω 7→ K (Ω1/n).
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The support problem is:

Theorem:
Let x , y ∈ Q∗. If, for all but finitely many primes p and, for all
n ∈ N, one has the implication

p | (xn − 1) =⇒ p | (yn − 1),

then y is a power of x.
Here p divides a rational number x = a

b , (a, b) = 1, means that
p | a.
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This is in reality a local-global theorem. To explain:

For a prime p not dividing the numerator and denominators of x
and y , look at the order of x mod p; viz.,
The smallest n such that p|(xn − 1).
We have p|(yn − 1) so that the order of y mod p divides n, the
order of x .
A simple exercise in the cyclic group Z∗p shows that y must be a
power of x mod p.
Therefore, the support theorem says that if, modulo all but finitely
many primes p, y is a power of x modulo p, then y is actually a
power of x ; this is what Kummer theory accomplishes.
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We start by very briefly recalling some facts from algebraic number
theory.

When k is a finite extension field of Q, we have a nice subring
called the ring of integers of k .
It is Ok = {x ∈ k : x is the root of a monic integral polynomial }.
For example, if k = Q(i), Ok = Z[i ].
More generally, if d is a square-free integer, and k = Q(

√
d), then

Ok = Z[
√

d ] or Z[1+
√
d

2 ] according as to whether d ≡ 2, 3 mod 4
or 1 mod 4.
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For the important class of number fields k = Q(ζn) generated by
the n-th roots of unity - the so-called cyclotomic fields - the ring
Ok = Z[ζn] of all integral polynomial expressions in the n-th roots
of unity.

The rings Ok are a lot like the usual integers but there is one very
essential difference - in general, the ideals in Ok are NOT singly
generated (unlike Z).
In fact, this fact that, for cyclotomic fields k = Q(ζp), the ring Ok

is not a principal ideal domain when p ≥ 23, is the serious reason
why Fermat’s last theorem has no elementary proof using
factorization.
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Ordinary prime numbers may not exhibit the same property in a
bigger ring.

To explain, look at, for instance, the ring of Gaussian integers Z[i ].
The prime number 13 “divides” the product of 1 + 5i and 1− 5i in
this ring but 13 does not divide either of these.
Why should one care about what happens to ordinary prime
numbers in these bigger rings?
We’ll see that in facts 1,2,3 below.
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Although Ok is not a principal ideal domain (PID) in general, it is
a so-called Dedekind domain.

Without getting into technical details, informally a main fact is
that multiplication of numbers/elements is replaced by
multiplication of ideals in which case unique factorization into
prime “ideals” holds.
A useful fact to keep in mind is that the ideal pOk for a prime
number p can be a product of at the most d ideals where d is the
degree of k.
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For instance, the prime number 2 gives in Z[i ] the ideal 2Z[i ]
which becomes the square of a prime ideal generated by 1 + i .
An odd prime number p which is 3 modulo 4 gives the ideal pZ[i ]
which remains a prime ideal.
An odd prime number p which is 1 modulo 4 gives the ideal pZ[i ]
which is a product of two different prime ideals generated by
complex conjugates x + iy and x − iy for integers x , y ; indeed, x , y
are obtained from p = x2 + y2.

In general, for a quadratic extension k = Q(
√

d), the
decomposition of the ideal pOk into prime ideals (either two
distinct or a single prime ideal or the square of a prime ideal) is an
expression of the cases whether d is a square or non-square modulo
p or is a multiple of it.
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If k = Q(ζn), the decomposition of an ideal pOk for a prime
number p is governed by what is known as the cyclotomic
reciprocity law.

In general, the set of prime numbers p such that pOk breaks up
into the degree [k : Q] ideals (the maximum possible) determine s
the abelian extension field k.
More precisely,
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Fact 1 (primes splitting in cyclotomic extensions) :
If p is a prime and p 6| n and ζn is a primitive nth root of unity, then
p splits completely in Q(ζn) if and only if p ≡ 1(modn).

Fact 2 (primes splitting in a radical extension) :
If a ∈ N, p is a prime not dividing a, then p splits completely in

Q(ζq, a
1
q ) if and only if p ≡ 1(modq) and a is a qth power in Z/pZ.

Fact 3 (split primes determine hierarchy) :
If K , L are finite extensions of Q and Spl(K ) and Spl(L) denote
the sets of prime integers which split completely in K and L
respectively, then Spl(K ) ⊆ Spl(L), then K ⊇ L.
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Proof of the support theorem

,1-¿ Assume x , y are as in the theorem, that is, for all n and all but
finitely many primes p, one has

p | (xn − 1) =⇒ p | (yn − 1).

We us Kummer’s theorem which, for our purposes, gives using the
facts above:
Let q be an odd prime power. Then the natural map
Q∗/(Q∗)q → Q(ζq)∗/(Q(ζq)∗)q is injective.
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Look at our x , y in the support theorem. We can show:

Let q be a power of a prime l and let ζq be a primitive qth root of

unity. Then Q(ζq, x
1
q ) ⊇ Q(ζq, y

1
q ).

This is proved using a generalization of the so-called Hilbert
Theorem 90 slightly.
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Basically, the hypothesis of the support theorem shows that
y = xd in the group Q(ζq)∗/(Q(ζq)∗)q. So, by the last quoted
result based on Kummer, we have y = xd in Q∗/(Q∗)q also.

It is a simple matter to show that this is a power over integers
also; I don’t say any more about it.
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The last expressions for the so-called Rogers-Ramanujan continued
fraction appeared in Ramanujan’s first letter to Hardy. These
formulae are among some problems posed by Ramanujan in the
Journal of the Indian Mathematical Society.
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We notice that radicals are multi-valued and the meaning of
expressions where radicals appear has to be made clear.

Specially, where there is a ‘nesting’ of radicals, the level of
complexity increases exponentially with each radical sign and it is
computationally important to have equivalent expressions with the
least number of radical signs.
The appropriate language to analyze this type of problem is
Kummer theory.
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A theorem of Ramanujan

Ramanujan proved :

If m, n are arbitrary, then√
m 3
√

4m − 8n + n 3
√

4m + n =

±1

3
( 3

√
(4m + n)2 + 3

√
4(m − 2n)(4m + n)− 3

√
2(m − 2n)2).

This is easy to verify simply by squaring both sides(!) but it is
neither clear how this formula was arrived at nor how general it is.
Are there more general formulae?
In fact, it turns out that Ramanujan was absolutely on the dot
here; the following result shows Ramanujan’s result cannot be
bettered :



A theorem of Ramanujan

Ramanujan proved :
If m, n are arbitrary, then√

m 3
√

4m − 8n + n 3
√

4m + n =

±1

3
( 3

√
(4m + n)2 + 3

√
4(m − 2n)(4m + n)− 3

√
2(m − 2n)2).

This is easy to verify simply by squaring both sides(!) but it is
neither clear how this formula was arrived at nor how general it is.
Are there more general formulae?
In fact, it turns out that Ramanujan was absolutely on the dot
here; the following result shows Ramanujan’s result cannot be
bettered :



A theorem of Ramanujan

Ramanujan proved :
If m, n are arbitrary, then√

m 3
√

4m − 8n + n 3
√

4m + n =

±1

3
( 3

√
(4m + n)2 + 3

√
4(m − 2n)(4m + n)− 3

√
2(m − 2n)2).

This is easy to verify simply by squaring both sides(!) but it is
neither clear how this formula was arrived at nor how general it is.

Are there more general formulae?
In fact, it turns out that Ramanujan was absolutely on the dot
here; the following result shows Ramanujan’s result cannot be
bettered :



A theorem of Ramanujan

Ramanujan proved :
If m, n are arbitrary, then√

m 3
√

4m − 8n + n 3
√

4m + n =

±1

3
( 3

√
(4m + n)2 + 3

√
4(m − 2n)(4m + n)− 3

√
2(m − 2n)2).

This is easy to verify simply by squaring both sides(!) but it is
neither clear how this formula was arrived at nor how general it is.
Are there more general formulae?

In fact, it turns out that Ramanujan was absolutely on the dot
here; the following result shows Ramanujan’s result cannot be
bettered :



A theorem of Ramanujan

Ramanujan proved :
If m, n are arbitrary, then√

m 3
√

4m − 8n + n 3
√

4m + n =

±1

3
( 3

√
(4m + n)2 + 3

√
4(m − 2n)(4m + n)− 3

√
2(m − 2n)2).

This is easy to verify simply by squaring both sides(!) but it is
neither clear how this formula was arrived at nor how general it is.
Are there more general formulae?
In fact, it turns out that Ramanujan was absolutely on the dot
here; the following result shows Ramanujan’s result cannot be
bettered :



Let α, β ∈ Q∗ such that α/β is not a perfect cube in Q. Then,√
3
√
α + 3
√
β can be denested if and only if there are integers m, n

such that α
β = (4m−8n)m3
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For instance, it follows by this theorem that
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By the denesting of a nested radical one means rewriting it with
fewer radical symbols.

The usual convention used in fixing the values of radical
expressions is:
3
√

t for a real number t will stand for the unique real cube root
and, if s is a positive real number,

√
s stands for the value which is

the positive square root.

For example, the expression
3
√√

5 + 2− 3
√√

5− 2 has value 1 !
Indeed, if t is the value (according to the agreed-upon convention
above), then t is seen to be a (real) root of the polynomial
X 3 + 3X − 4. As X 3 + 3X − 4 = (X − 1)(X 2 + X + 4), the only
real root is 1.
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An element x ∈ K is a nested radical over K if and only if there
exists a Galois extension L of K and a chain of intermediate fields

K ⊂ K1 ⊂ · · · ⊂ Kn = L

such that Ki is generated by radicals over Ki−1 and x ∈ L.

Normally, if an element x is a nested radical over K , one obtains a
chain as above successively generated by radicals such that x ∈ L
but L may not be automatically a Galois extension.
Why is it so important/useful to have a Galois extension ?
Galois’s famous theorem tells us that x ∈ K is a nested radical if
and only if the Galois closure of K (x) over K has a solvable Galois
group.
Thus, if the successive extensions above are Galois extensions, they
have an abelian Galois group and this theory is well-studied under
Kummer theory.
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One may adjoin enough roots of unity at the first step of the chain
to get a chain of Galois extensions and may apply Kummer theory.

Recall:
If K contains the n-th roots of unity, then abelian extensions L of
K whose Galois groups have exponent n correspond bijectively to
subgroups Ω of K ∗ containing (K ∗)n via L 7→ K ∗ ∩ (L∗)n and its
inverse map Ω 7→ K (Ω1/n).
The following consequence of the above theorem will be a key to
denesting radicals.
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Proposition.
Let K denote a field extension of Q containing the n-th roots of
unity. Suppose a, b1, b2, · · · , br ∈ Q

∗
are so that

an, bn
1 , · · · , bn

r ∈ K .
Then, a ∈ K (b1, · · · , br ) if, and only if, there exist b ∈ K ∗ and
natural numbers m1,m2, · · · ,mr such that

a = b
r∏

i=1

bmi
i .



Proof.
The ‘if’ part is easily verified. Let us assume that
a ∈ L := K (b1, · · · , br ). The subgroup Ω of L∗ generated by the
n-th powers of elements of (K ∗) along with bn

1 , · · · , bn
r satisfies

L = K (Ω1/n) by Kummer theory. So, an ∈ (L∗)n ∩ K ∗ = Ω. Thus,
there exists c ∈ K ∗ so that

an = cn
r∏

i=1

bmin
i .

Taking n-th roots on both sides and multiplying by a suitable n-th
root of unity (remember they are in K ), we get

a = b
r∏

i=1

bmi
i

for some b ∈ K ∗. The proof is complete.



The following technical result from Galois theory which uses the

above proposition is crucial in the denesting of
√

1 + 3
√
β/α over

Q.

Theorem.

Let c be a rational number which is not a perfect cube. Let
δ ∈ Q( 3

√
c) and let G denote the Galois group of the Galois-closure

M of Q(
√
δ) over Q. Then, the nested radical

√
δ can be denested

over Q if, and only if, the second commutator group G ′′ of G is
trivial. Further, these conditions are equivalent to the existence of
f ∈ Q∗ and some e ∈ Q(δ) so that δ = fe2.
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Sketch of Proof.
The essential part is to show that when G ′′ is trivial, then there are
f ∈ Q∗ and e ∈ Q(δ) with δ = fe2.
We consider the field K = Q(δ, ζ3), the smallest Galois extension
of Q which contains δ. If δ2, δ3 are the other Galois-conjugates of
δ in K , the main claim is that if δ2δ3 is not a square in K , then
G ′′ is not trivial. To see this, suppose δ2δ3 (and hence its
Galois-conjugates δδ3, δδ2) are non-squares as well. Then,

√
δδ2

cannot be contained in K (
√
δ2δ3) because of the above

proposition. So, the extension L = K (
√
δδ2,
√
δ2δ3) has degree 4

over K and is contained in the Galois closure M of Q(
√
δ) over Q.

The Galois group Gal (L/K ) is the abelian Klein 4-group V4.
Indeed, its nontrivial elements are ρ1, ρ2, ρ1ρ2 where :
ρ1 fixes

√
δδ2 and sends

√
δ2δ3 and

√
δδ3 to their negatives;

ρ2 fixes
√
δ2δ3 and sends

√
δδ2 and

√
δδ3 to their negatives.

Also, Gal (K/Q) is the full permutation group on δ, δ2, δ3. We also
put δ1 instead of δ for convenience.



Suppose, if possible, G ′′ = {1}. Now, the second commutator
subgroup of Gal (L/Q) is trivial as it is a subgroup of G ′′. In other
words, the commutator subgroup of Gal (L/Q) is abelian.
Consider the action of Gal(K/Q) on Gal (L/K ) defined as :

(σ, τ) 7→ σLτσ
−1
L

where, for σ ∈Gal (K/Q), the element σL ∈Gal (L/Q) which
restricts to K as σ.
The following computation shows that the commutator subgroup
of Gal (L/Q) cannot be abelian.
If π :Gal (L/Q)→Gal(K/Q) is the restriction map, look at any lifts
a, b, c of (12), (13), (23) respectively. For any d ∈Gal (L/K ), the
commutator ada−1d−1 is defined independently of the choice of
the lift a since Gal (L/K ) is abelian. An easy computation gives :

aρ2a−1ρ−12 = ρ1

bρ1b−1ρ−11 = ρ1ρ2

c(ρ1ρ2)c−1(ρ1ρ2)−1 = ρ2.



Therefore, the whole of Gal (L/K ) is contained in the commutator
subgroup of Gal (L/Q). Now (123) = (13)(23)(13)(23) implies
that d = bcb−1c−1 which is in the commutator subgroup of Gal
(L/Q) is a lift of (123). Thus, dgd−1g−1 = Id for any g ∈Gal
(L/K ) as Gal (L/K ) is contained in the commutator subgroup of
Gal (L/Q) (an abelian group). But note that dρ1d−1 fixes

√
δ2δ3

and hence, cannot be equal to ρ1. Thus, we have a contradiction
to the assumption that G ′′ = {1} while δ2δ3 is a nonsquare in K ;
the claim follows.
Now, assume that G ′′ is trivial. We would like to use the claim
proved above to show that there are f ∈ Q∗ and e ∈ Q(δ) with
δ = fe2.



Start with some η ∈ K with δ2δ3 = η2. We would like to show
that η ∈ Q(δ). This will prove our assertion, for then,

δ =
δ1δ2δ3
δ2δ3

=
δ1δ2δ3
η2

= fe2

where f = δ1δ2δ3 ∈ Q and e = η−1 ∈ Q(δ).
Suppose η 6∈ Q(δ). Since the product δ2δ3 ∈ Q(δ), on applying the
above proposition to K = Q(δ, ζ3) = Q(δ,

√
−3), we get√

δ2δ3 =
√
−3θ for some θ ∈ Q(δ); that is,

η2 = δ2δ3 = −3θ2.

Taking norms over Q, we get N(η) = (−3)3N(θ)2 which is a
contradiction since (−3)3 is not a square in Q. Therefore, η indeed
belongs to Q(δ) and we are done.



We determine conditions under which elements e, f as in the above
theorem exist.

For any non-zero α, β in Q, the polynomial

Fβ/α(t) = t4 + 4t3 + 8
β

α
t − 4

β

α

plays a role in determining the denestability of the nested radical√
3
√
α + 3
√
β over Q.

Lemma.

Let α, β ∈ Q∗ such that α/β is not a perfect cube in Q. Then,√
3
√
α + 3
√
β can be denested if and only if the polynomial Fβ/α

has a root in Q.
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Proof.

Now
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√
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√
β/α

can be denested.

By the theorem, this happens if and only if there exists
f , x , y , z ∈ Q with

1 + 3
√
β/α = f (x + y 3

√
β/α + z 3

√
β2/α2)2 · · · · · · ♦

Assume that denesting can be done.
The elements 1, 3

√
β/α, 3

√
β2/α2 are linearly independent over

Q.
Thus, we may compare like powers of 3

√
β2/α2 in ♦ to get
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1 + 3
√
β/α = f (x + y 3

√
β/α + z 3

√
β2/α2)2

implies

1/f = x2 +
2yzβ

α

0 = y2 + 2xz

1/f =
βz2

α
+ 2xy

After a simple calculation, it is easy to see that z 6= 0 and that
y/z is a root of Fβ/α.
Conversely, suppose Fβ/α has a rational root s. Then, working
backwards, a denesting is given as :√

3
√
α + 3

√
β = ± 1√

f
(−s2

3
√
α2

2
+ s 3

√
αβ + 3

√
β2)

where f = β − s3α. The proof is complete.
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Examples 4.
For α = 5, β = −4 we get s = −2 to be the rational root of
F−4/5(t) = t4 + 4t3 − 32

5 t + 16
5 = 0. Thus, f = −4 + 40 = 36 and

we have √
3
√

5− 3
√

4 =
1

6
(−2

3
√

25− 2 3
√
−20 +

3
√

16)

=
1

3
(− 3
√

25 +
3
√

20 +
3
√

2).

Similarly, for α = 28, β = 27, we have s = −3 and f = 272 and we
get √

3
√

28− 3
√

27 = − 1

27
(−9

2

3
√

282 − 3 3
√

(−27)(28) +
3
√

272)

= −1

3
(− 3
√

98 +
3
√

28 + 1).



Connection with Ramanujan’s denesting

We saw that denesting of
√

3
√
α + 3
√
β involved the rational root of

a certain related polynomial.

The connection with Ramanujan’s denesting comes while trying to
characterize the α, β for which the polynomial Fβ/α has a root in
Q. This is easy to see as follows :



Connection with Ramanujan’s denesting

We saw that denesting of
√

3
√
α + 3
√
β involved the rational root of

a certain related polynomial.
The connection with Ramanujan’s denesting comes while trying to
characterize the α, β for which the polynomial Fβ/α has a root in
Q. This is easy to see as follows :



Lemma.
Let α, β ∈ Q∗ where the ratio is not a cube. Then

√
3
√
α + 3
√
β

can be denested over Q if, and only if, Fβ/α has a root s in Q
which is if, and only if, there are integers m, n so that

α

β
=

(4m − 8n)m3

(4m + n)n3
.

Proof.

Of course, we need to prove only the second ‘if and only if’
and, even there, it suffices to prove the ‘only if’ part as the
other implication is obvious. Now
s4 + 4s3 + 8sβ/α− 4β/α = 0 implies (on taking s = n/m) that

β

α
=

s3(s + 4)

4− 8s
=

(4m + n)n3

(4m − 8n)m3
.
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