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A Dedekind Domain with Nontrivial
Class Group

Vaibhav Pandey, Sagar Shrivastava, and Balasubramanian Sury

Abstract.We show that the ring of real-analytic functions on the unit circle is a Dedekind
domain with class number two.

1. RINGS THAT ENGAGE ANALYSTS. Analytic properties of function spaces
over the real and the complex fields are in someways different. This is strongly reflected
in these spaces’ algebraic properties. For instance, the ring of real-valued continuous
functions on a closed interval such as [0, 1] behaves similarly to the corresponding ring
of complex-valued functions; they depend only on the topology of [0, 1]. The ring of
real-valued polynomial functions on the unit circle can be identified with the ring of
all real trigonometric polynomials. It is not a unique factorization domain (UFD) as is
demonstrated by the following equation:

cos2(t ) = (1 + sin(t ))(1 − sin(t )).

In fact, the above ring is R[X,Y ]/(X2 + Y 2 − 1) and the equation Y 2 =
(1 + X )(1 − X ) that holds in the quotient ring gives two different decomposi-
tions of Y 2 into irreducible elements Y, 1 + X, 1 − X . On the other hand, the ring
C[X,Y ]/(X2 + Y 2 − 1) ∼= C[X + iY, 1/(X + iY )] is a principal ideal domain (PID).
Again, the rings of convergent power series (over either of these fields) with radius
of convergence larger than some positive real number ρ is a Euclidean domain (and
hence, a principal ideal domain)— this can be seen by using the function that counts
zeros (with multiplicity) in the disk |z| ≤ ρ as a Euclidean “norm” function (see [3]).

In this note, we consider the ringsCan(S1;R) of analytic functions on the unit circle
S1 that are real-valued and the corresponding ringCan(S1;C) of analytic functions that
are complex-valued. We will see that the latter is a principal ideal domain, while the
former is a Dedekind domain, which is not a principal ideal domain—the class group
having order 2.

2. MAXIMAL IDEALS ARE POINTS. The proof of the fact alluded to is exactly
the same as the corresponding proof (that is, well known) for the ring of continuous
functions on a closed interval.

Lemma 1. Maximal ideals of Can(S1,R) and of Can(S1,C) are points.

Proof. This is a consequence of the compactness of S1. Indeed, for each point p ∈ S1,
the ideal

mp := { f : f (p) = 0}
is maximal as the quotient is isomorphic to a field. Let us observe that every maximal
ideal m is of the form mp for some p in S1. If not, then we can find functions fi in
m that do not vanish in a neighborhood of pi for each pi in S1 by continuity. These
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neighborhoods cover S1. By compactness of S1, finitely many of these neighborhoods
cover it. Call these f1, . . . , fn. Then the function

∑n
i=1 fi fi lies in m and is a unit (as it

does not vanish anywhere). This is a contradiction as maximal ideals are proper. �

Lemma 2. The ring Can(S1,C) of complex-valued analytic functions on S1 is a PID.

Proof. Clearly, the maximal ideal mp is the principal ideal generated by z− p. Hence,
every finite product

ma1
p1 · · ·mak

pk

is principal. We show that every nonzero ideal is such a finite product. Any nonzero
analytic function has only finitely many zeros as zeros are isolated and S1 is compact.
Hence, if I is any nonzero ideal, it has only finitelymany common zeros, say p1, . . . , pk.
Let ai be the smallest positive integer such that every element of I has a zero of order
at least ai at pi. Hence, for each 0 �= f ∈ I, we have f = ( ∏k

i=1(z− pi)ai
)
g for some

analytic function g. In other words, I is contained in ma1
p1 · · ·mak

pk . Then

J :=
{
f /

k∏
i=1

(z− pi)
ai : f ∈ I

}

is an ideal. If J were a proper ideal, it would be contained in some mp. If p �∈
{p1, . . . , pk}, then I ⊂ mp, which contradicts the fact that p1, . . . , pk are the only com-
mon roots of I. Hence, p = pi for some 1 ≤ i ≤ k. But if fi ∈ I has order exactly ai
at pi, then fi/

∏k
j=1(z− p j )a j cannot vanish at pi, a contradiction. Hence, J is the unit

ideal and so

I = ma1
p1 · · ·mak

pk .

Hence, I is principal. So, Can(S1,C) is a PID (and hence a Dedekind domain). �

3. IDEALS INCan(S1;R). Let us recall that a real-analytic function inCan(S1;R) is
a function such that f ◦ g1 and f ◦ g−1 are analytic where g1(x) = e2iπx on (0, 2π ) and
g−1(x) = e2iπx on (−π, π ). Recall we observed that maximal ideals are points.

Lemma 3. The product of any two maximal ideals mp1,mp2 (including the case
p1 = p2) is principal.

Proof. In fact, it is easy to see that mp1mp2 can be generated by the analytic func-

tion fp1,p2 (x) = cos
(
x− (p1+p2 )

2

)
− cos

( p1−p2
2

)
. To clarify this further, note that when

p1 �= p2, the function fp1,p2 has simple zeros at p1 and p2 and no other zeros (consider
the derivative). If p1 = p2 = p, then the function fp,p(x) = 2 sin2

( x−p
2

)
has a double

root at p and no other roots. In either case, it follows that any element f ∈ mp1mp2

satisfies the property that f
fp1,p2

is analytic. This completes the proof. �

This immediately implies the following corollary.

Corollary 1. An ideal I = ma1
p1m

a2
p2 · · ·man

pn is principal if a1 + · · · + an is even.

Lemma 4. An ideal I = ma1
p1m

a2
p2 · · ·man

pn is not principal if a1 + · · · + an is odd.
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Proof. We first show that maximal ideals in the ringCan(S1;R) are not principal. This
is obvious because identifying S1 with R/2πZ, the number of zeros of any analytic
function on S1 counted with multiplicity is even—this is simply because of the in-
termediate value theorem. Now, if I = ma1

p1m
a2
p2 · · ·man

pn with a1 + · · · + an odd, then
I = mp1 (g) by the even case. If I = ( f ), then f ∈ gmp1 ⊂ (g) so that f /g is analytic.
But then mp1 = ( f /g), which is a contradiction, as f /g has an even number of zeros
counting multiplicity, while mp1 has only a common zero at p1. �

Finally, we have the following factorization result.

Theorem 1. Every nonzero proper ideal in the ring Can(S1;R) is of the form
ma1
p1m

a2
p2 . . .man

pn for points p1, . . . , pn.

Before proving this theorem, we observe the following very interesting fact.

Corollary 2. Can(S1;R) is a Dedekind domain that has class number 2.

Proof. This immediately follows from Theorem 1, Corollary 1, and Lemma 4. �

Remarks on Dedekind domains and class groups. Let us recall briefly the role of
Dedekind domains in number theory. Dedekind domains are precisely the class of inte-
gral domains in which the fractional ideals are invertible. The rings of algebraic integers
in finite extension fields of Q are natural examples of Dedekind domains. Moreover,
any PID is a Dedekind domain. The class group of a Dedekind domain is the group of
fractional ideals modulo the principal fractional ideals. A Dedekind domain is a UFD
if and only if the class group of fractional ideals is trivial. Many subtleties involved in
solving Diophantine equations arise from the fact that many rings of algebraic integers
arising in their study have nontrivial class group. The Fermat equation cannot be stud-
ied by elementary algebraic methods due to the (amazing) fact that the ring of integers
in the field generated by the pth roots of unity for a prime p is not a UFD for any prime
p ≥ 23. By a theorem of Claborn (see [2]), every abelian group can be realized as the
class group of some Dedekind domain; the analogous problem is open for rings of al-
gebraic integers. In other words, it is expected but still unknown whether every finite
abelian group can be realized as the class group of a ring of integers in an algebraic
number field.

Finally, let us prove Theorem 1.

Proof of Theorem 1. Consider any proper, nonzero ideal I. Let {p1, . . . , pn} be the
common zeros of I—as we observed above, this is finite, as every nonzero analytic
function on S1 has only finitely many zeros. For each k ≤ n, let ak be minimal among
the orders of zeros of elements of I at pk. Then it is clear that

I ⊂ ma1
p1m

a2
p2 · · ·man

pn .

We will show that I = ∏n
k=1 m

ak
pk .

Let us first assume that a1 + · · · + an is even.
Let f be an element of I whose order of zero at pk is ak for 1 ≤ k ≤ n. Such an f

exists since I contains elements fk vanishing at pk with order ak, and we may consider
a suitable linear combination g1 f1 + · · · + gn fn. This function f may have other zeros
different from pk; we wish to change f such that the new element is in I, has zeros of
order ak at pk, and has no other zeros. This is accomplished as follows.

358 C© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 125



As we observed in the beginning, every analytic function changes signs an even
number of times by the intermediate value theorem. Let us write 0 ≤ p1 < p2 < · · · <

pn < 2π . In some of the intervals [pi, pi+1] (among [p1, p2], [p2, p3], . . . , [pn, p1]),
the function f changes sign an even number of times and in others, it changes sign
an odd number of times. The latter happens in an even number of intervals [pi, pi+1].
If we select some analytic function g that has simple zeros at some interior point of
each of these latter intervals and no other zeros, then the function f g ∈ I and has the
property that f g vanishes at each pi exactly to the order ai, and has an even number of
sign changes in each interval (p1, p2), (p2, p3), . . . , (pn, p1). It also changes signs at
an even number of the pi’s. At these even numbers of pi’s, there is an analytic function
h with simple zeros and no other roots. We may multiply the analytic function h by an
element φ ∈ I that has no zeros in any of the open intervals (pi, pi+1) (we may square
and assume the value of φ is positive in each of these open intervals). By changing
the sign of h if necessary, we may assume it has the same sign as f around each pi.
Then hφ ∈ I has simple zeros at the pi’s, no other zeros, and has the sign of f in each
open interval (pi, pi+1). Since continuous (hence analytic) functions are bounded on
a compact set, therefore, for a large constant c, the function f g+ chφ is in I and has
zeros of order ai at pi and no other zeros. Hence, I ⊇ ∏n

i=1 m
ai
pi , which shows that these

ideals are equal.
Now assume that a1 + · · · + an is odd. Let f ∈ ma1

p1m
a2
p2 · · ·man

pn . Since it must have
an even number of zeros (countingmultiplicity), it must have a zero q �∈ {p1, . . . , pn} or
it has a zero of order greater than ak at some pk (in which case we put q = pk). LetJ =
{g ∈ I|g(q) = 0} (in case q = pk, we take g to have zeros at pk with multiplicity greater
than ak). By the even case treated already, J = ma1

p1m
a2
p2 · · ·man

pnmq. Thus f belongs to
the right-hand side. Thus f ∈ J ⊂ I. This completes the proof. �

We end with a remark that is relevant to the fact that the ring of real analytic func-
tions on S1 has class number 2. Carlitz proved (in [1]) that Dedekind domains with
class number 2 are half-factorial domains; viz., different irreducible factorizations of
elements must have the same length. Finally, we mention that we are interested in gen-
eralizations of the above result to compact manifolds.
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