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We determine the irreducible trinomials X3 − aX + b for integers a, b which generate
precisely all possible Galois extensions of degree 3 over Q. The proof, although involved,
is elementary and one can parametrize all these polynomials explicitly. As an accidental
by-product of the results, we prove that infinitely many primes congruent to 1 or −1
mod 9 are sums of two rational cubes - thereby, giving the first unconditional result on
a classical open problem.
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1. Introduction

Let K be a Galois extension of Q of degree 3. Then, we can identify K ∼= Q[X]
(X3−aX+b)

for some irreducible polynomial X3−aX + b ∈ Z[X ] whose discriminant 4a3−27b2

is a perfect square.
The aim of this paper is to explicitly describe the irreducible trinomials which

give all the cubic Galois extensions of Q. This is done in the main Theorem 4.6 at
the end. It is surprising that this seems to have been not done before.

A classical open problem asks for a classification of all cube-free natural numbers
which can be expressed as sums of cubes of two rational numbers. As an accidental
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by-product of our main result, we prove that infinitely primes congruent to ±1 mod-
ulo 9 can be expressed as a sum of two rational cubes. Our proof seems to be the
first unconditional one.

We call two polynomials f(X) = X3 − a1X + b1 ∈ Z[X ] and g(X) = X3 −
a2X + b2 ∈ Z[X ] to be equivalent if there exists a rational number q ∈ Q∗ such
that a2 = q2a1 and b2 = q3b1. Note that Disc(g) = q6Disc(f). The aim of this
paper is to find all irreducible polynomials f(X) = X3 − aX + b ∈ Z[X ] (up to
equivalence) whose discriminant is a perfect square. Since we are only interested
in polynomials up to equivalence, we need to find all the irreducible trinomials
f(X) = X3 − aX + b ∈ Z[X ] each of which satisfies the following conditions:

(1) There exists an integer c such that Disc(f) = 4a3 − 27b2 = c2 �= 0.
(2) D = GCD(a, b) is cube-free and, for every prime number � such that �2 | D, we

have �3 � b.

We briefly explain why the study of cubic Galois extensions of Q reduces to the
study of polynomials of the form X3 − aX + b satisfying the above two conditions.
Note first that by a linear change of variables, a cubic irreducible polynomial over
Q can be taken to be of the form X3 +uX +v for rational u, v and a further scaling
by an integer w, where w is a common denominator for u and v, generates the same
field with a primitive element whose minimal polynomial is of the form X3−aX +b

for integers a, b. Condition (1) arises as the Galois group of a cubic polynomial is
cyclic, of order 3, if it is contained in the alternating group A3 - which happens if
and only if the discriminant is a perfect square ([5, Corollary 12.4]). Condition (2)
arises because if � is a prime such that �2 | GCD(a, b) and �3 | b, then the polynomial
X3 − aX + b is equivalent to the polynomial X3 − (a/�2)X + (b/�3).

We write (a, b) for the GCD of a, b. Let us note that the determination of cubic
trinomials f(X) whose discriminant is a perfect square reduces to integral solutions
(
√

Disc(f), b, a) of x2 + 27y2 = 4z3.
Let X1 denote the affine curve x2 + 27y2 = 4z3 and let

XD
1 (Z) = {(x, y, z) ∈ Z3 | x2 + 27y2 = 4z3, xyz �= 0, (y, z) = D}.

For a cube-free natural number D, in view of property (2) above, we define

XD
1 (Z)∗ = {(x, y, z) ∈ XD

1 (Z) : �2|D ⇒ �3 � y ∀prime �}.
We observe that if D is square-free, then XD

1 (Z) = XD
1 (Z)∗. Note that (x, y, z) ∈

XD
1 (Z)∗ gives us a trinomial X3 − zX + y which satisfies conditions (1) and (2).

As we vary (x, y, z) ∈ XD
1 (Z)∗ for all cube-free natural numbers D, the irreducible

trinomials X3−zX +y give us all irreducible trinomials in Z[X ] (up to equivalence)
whose discriminant is a perfect square. Thus, we start by understanding the sets
XD

1 (Z)∗.
We say a cube-free natural number D is admissible if XD

1 (Z)∗ is non-empty.
We will show that D is admissible if, and only if, D = D1 or 9D1 where either
D1 = 1 or each prime factor of D1 is congruent to 1 mod 3.
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So, we restrict our study to XD
1 (Z)∗ for admissible D.

Observing that any solution (x, y, z) ∈ XD
1 (Z) gives us a solution (X, Y, Z) of

X2 + 27Y 2 = 4DZ3 with (Y, Z) = 1 (where x = DX, y = DY, z = DZ), we let XD

denote the affine curve X2 + 27Y 2 = 4DZ3 for any admissible D. We think XD as
“level curves” and define

X1
D(Z) = {(x, y, z) ∈ Z3 : xyz �= 0, x2 + 27y2 = 4Dz3, (y, z) = 1}.

Then, we have a bijection from XD
1 (Z) → X1

D(Z) given by (x, y, z) �→ ( x
D , y

D , z
D ).

Moreover, this map induces a bijection from XD
1 (Z)∗ to X1

D(Z)∗, where

X1
D(Z)∗ = {(x, y, z) ∈ X1

D(Z) : �2|D ⇒ � � y ∀prime �}.
We study the sets X1

D(Z)∗; note that X1
D(Z) = X1

D(Z)∗ if D is square-free.
We observe that, for an admissible D with 3 � D, the solutions of X2 + 27Y 2 =

4DZ3 are related in a many-to-one fashion with those of X2 + 3Y 2 = 4DZ3 - here,
certain subtleties arise as follows:

When (x, y, z) is a solution to the first equation where 3 | z, there are two
solutions (x, 3y, z) and (y, x/9, z/3) for the latter equation.

Also, if (x, y, z) is a solution to the latter equation and 3 | y, we get two solutions
(x, y/3, z) and (9y, x, 3z) of the former equation.

Let YD denote the affine curve X2 + 3Y 2 = 4DZ3. Similar to the case of the
affine curve XD, we define

Y 1
D(Z) = {(x, y, z) ∈ Z3 : xyz �= 0, x2 + 3y2 = 4Dz3, (y, z) = 1};

Y 1
D(Z)∗ = {(x, y, z) ∈ Y 1

D(Z) : �2|D ⇒ � � y ∀prime �}.
In Sec. 2, for admissible D with 3 � D, we obtain X1

D(Z)∗ in terms of Y 1
D(Z)∗.

Also, for an admissible integer of the form 9D, in Sec. 2, we give a bijection between
Y 1

D(Z) and X1
9D(Z). As a consequence, this enables us to identify X1

9D(Z)∗ with a
certain subset of Y 1

D(Z)∗. Therefore, we need to study Y 1
D(Z)∗ for admissible integers

D with 3 � D.
In the study of Y 1

D(Z)∗, the case D = 1 is easy to deal with. The solutions
are obtained explicitly by reducing the equation X2 + 3Y 2 = 4Z3 to the equation
x2 − 3xy + 3y2 = z3 that is quickly solved using the arithmetic of the ring Z[ω],
where ω is a primitive third root of unity. A detailed proof of this can be found in
[1, Proposition 14.2.1(2)].

In Sec. 3, we construct Y 1
D(Z)∗ from Y 1

1 (Z) using maps between the integral
points of curves of the form X2 + 3Y 2 = 4DZ3 for varying D and keeping track of
the GCDs of Y and Z. These maps roughly “trade off” the GCD of (Y, Z) with a
coefficient of the Z3 term. Informally, we call these fundamental maps “level-raising”
and “level-lowering”. As the book-keeping is somewhat involved, it is convenient to
define and study the maps abstractly.

Keeping track of the bookkeeping in Secs. 2 and 3, we determine in Sec. 4, all the
irreducible trinomials (up to equivalence) whose discriminant is a perfect square.
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In Sec. 5, we relate integers expressible as sum of rational cubes with integral
solutions of x2 + 27y2 = 4z3 and as a consequence we prove that infinitely many
primes congruent to ±1 modulo 9 can be expressed as a sum of two rational cubes.

To summarize the flow of the paper, we make a few remarks. The set of solutions
of x2 + 27y2 = 4z3 with a given (y, z) = D is connected naturally to the study of
solutions of x2 + 3y2 = 4z3 with the same (y, z) = D (in a slightly subtle way - see
Lemma 2.10). The main work consists of constructing the relevant part of the set of
solutions of x2 +3y2 = 4z3 with gcd(y, z) = D (denoted by Y 1

D(Z)∗) from the set of
solutions of x2 + 3y2 = 4z3 with gcd(y, z) = 1, using level-changing maps. It seems
to us that if we directly perform the various level-changing transformations within
the sets of solutions of x2 + 27y2 = 4z3 with various (y, z)’s, and try to bypass the
equation x2 +3y2 = 4z3, it is artificial, and we are not able to ensure that all points
are obtained. Hence, we are led to considering the level sets Y 1

D(Z)∗.

Theorem 4.6 gives a complete list of irreducible trinomials which generate all
possible cubic Galois extensions of Q.

For convenience, we put down here a summary of notation that will appear often
in this paper.

• XD
1 (Z) = {(x, y, z) ∈ Z3 : xyz �= 0, x2 + 27y2 = 4z3, (y, z) = D}.

• XD
1 (Z)∗ = {(x, y, z) ∈ XD

1 (Z) : �2|D ⇒ �3 � y ∀ prime �}.
• X1

D(Z) = {(x, y, z) ∈ Z3 : xyz �= 0, x2 + 27y2 = 4Dz3, (y, z) = 1}.
• X1

D(Z)∗ = {(x, y, z) ∈ X1
D(Z) : �2|D ⇒ � � y ∀ prime �}.

• Y 1
D(Z) = {(x, y, z) ∈ Z3 : xyz �= 0, x2 + 3y2 = 4Dz3, (y, z) = 1}.

• Y 1
D(Z)∗ = {(x, y, z) ∈ Y 1

D(Z) : �2|D ⇒ � � y ∀ prime �}.
The idea is to define “level-changing” maps between these sets and determine

the sets XD
1 (Z)∗ = {(x, y, z) ∈ XD

1 (Z) : �2|D ⇒ �3 � y ∀ prime �} from Y 1
1 (Z) =

{(x, y, z) ∈ Z3 : xyz �= 0, x2 + 3y2 = 4z3, (y, z) = 1}; the latter set can be written
down explicitly.

2. Construction of X1
1(Z) and X9

1(Z)∗

Let X1 be the affine curve X2 + 27Y 2 = 4Z3 as defined in the introduction. We
define the set of trivial integral zeroes of X1 by

Xtriv
1 (Z) = {(x0, y0, z0) ∈ X1(Z)|x0y0z0 = 0}

= {(0,±2t3, 3t2), (±2t3, 0, t2) | t ∈ Z}.
Note that if (x0, y0, z0) ∈ Xtriv

1 (Z), then X3 − z0X + y0 is reducible. As we are
interested in irreducible trinomials (up to equivalence) with perfect square discrim-
inant, we study the sets XD

1 (Z)∗ = {(x, y, z) ∈ XD
1 (Z) : �2|D ⇒ �3 � y ∀prime �} as

D vary over cube-free integers.
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We first find all cube-free integers D for which the set XD
1 (Z)∗ can possibly

be non-empty. Towards that, we recall the following elementary fact. We include a
proof here.

Lemma 2.1. Let p ≥ 5 be an odd prime. Then there exists integer u and v such
that p = u2 + 3v2 if and only if, p ≡ 1 (mod 3). Also, u and v above are unique
up to sign, and (u, 3v) = 1. Moreover, any prime p ≡ 1 mod 3 is expressible as
s2 − st + t2 for positive integers s, t and the expression p = u2 + 3v2 has the unique
positive solution u = s+ t

2 , v = t
2 when s is odd and t is even and u = s+t

2 , v = |s−t|
2

when s, t are odd. Further, if an integer N is expressible in the form a2 + 3b2 with
(a, 3b) = 1, then its odd prime factors are of the form 3k + 1.

Proof. Clearly, if p �= 3 is of the form x2 + 3y2, then it is 1 mod 3. Conversely, let
p ≡ 1 mod 3 be a prime. As 3 divides |F∗

p| there exists an element of order 3 in the
cyclic group F∗

p. That is, there exists an integer a �≡ 1 mod p but a3 ≡ 1 mod p.
Thus, p divides a2+a+1 so that p divides |−a+ω|2 where ω is a primitive cube root
of unity. Clearly, p is not irreducible (as it is not prime) in the unique factorization
domain Z[ω]. Hence p = (a + bω)(c + dω) with each factor a non-unit, which gives
p = |a+ bω|2 = a2 − ab+ b2. Therefore, either a, b are both odd or one of them (say
a) is odd and the other even, In the first case, p = ((a + b)/2)2 + 3((a− b)/2)2 and,
in the second case, p = (a − b/2)2 + 3(b/2)2. This completes the proof of the first
statement. The fact that (u, 3v) = 1 is obvious.

To prove uniqueness (up to sign), let p = u2
1 + 3v2

1 = u2
2 + 3v2

2 . Now

(u1v2 − v1u2)(u1v2 + v1u2) = u2
1v

2
2 − v2

1u
2
2 ≡ −v2

1(u
2
2 + 3v2

2) ≡ 0 (mod p).

Thus, either p | (u1v2 − v1u2) or p | (u1v2 + v1u2).
If p | (u1v2−v1u2), then p | (u1(u1v2−v1u2)−pv2); that is, p | −v1(u1u2+3v1v2).

Hence p | (u1u2 + 3v1v2) as (p, v1) = 1. Since

1 =
(

u1u2 + 3v1v2

p

)2

+ 3
(

u1v2 − v1u2

p

)2

,

we get u1v2−v1u2
p = 0 and u1u2+3v1v2

p = ±1. Thus, u1v2 = u2v1 and u1u2 + 3v1v2 =
±p. So, ±pu1 = u2

1u2 + 3v1u1v2 = (u2
1 + 3v2

1)u2 = pu2.
We conclude that u1 = ±u2 and v1 = ±v2.
The case p | (u1v2 + v1u2) is similar. This concludes the proof of uniqueness of

u, v in the expression of a prime p = u2 + 3v2 (up to sign).
Finally, let N = a2 + 3b2 with (a, 3b) = 1. Let p be an odd prime such that

p | N . Since (a, 3b) = 1, we have p �= 3 and p � ab. since a2 + 3b2 ≡ 0 (mod p), we
see that −3 ≡ (

a
b

)2 (mod p), that is
(−3

p

)
= 1. From the quadratic reciprocity law,

it follows that p ≡ 1 (mod 3).

Proposition 2.2. Let D be a cube-free integer. Consider the set XD
1 (Z)∗ =

{(x, y, z) ∈ XD
1 (Z) : �2|D ⇒ �3 � y ∀prime �} where XD

1 (Z) = {(x, y, z) ∈ Z3 :
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xyz �= 0, x2 + 27y2 = 4z3, (y, z) = D}. If a prime � ≡ 2 (mod 3) divides D, then
XD

1 (Z)∗ is empty.

Proof. Let (x0, y0, z0) ∈ XD
1 (Z)∗. We divide the proof in two cases.

Case I. � = 2.

Write y0 = 2y1, z0 = 2z1, this implies 2 | x0. Write x0 = 2x1. Simplifying, we get

x2
1 + 27y2

1 = 8z3
1 .

Thus x2
1 +27y2

1 ≡ 0 (mod 8). For any integer a, we have a2 ≡ 0, 1, 4 (mod 8). Thus,
this implies either x1 ≡ y1 ≡ 0 (mod 4) or x1 ≡ y1 ≡ 2 (mod 4).

In the first case, 4 | x1 and 4 | y1 implies 2 | z1. Thus, 4 | (y0, z0) = D and 8 | y0

which implies (x0, y0, z0) /∈ XD
1 (Z)∗.

In the second case, writing x1 = 2(2r + 1) and y1 = 2(2s + 1), we obtain

(2r + 1)2 + 27(2s + 1)2 = 2z3
1 .

Since the left-hand side is divisible by 4, this implies z1 is even. Writing z1 = 2t we
obtain

(2r + 1)2 + 27(2s + 1)2 = 16t3,

which is not possible, as right-hand side ≡ 0 (mod 8) but left-hand side≡ 4
(mod 8).

Case II. 2 < � ≡ 2 (mod 3).

The proof of Lemma 2.1 implies that x2 + 3y2 = 0 has no solution other than
(0, 0) ∈ F2

� .
Suppose that X2 +27Y 2 = 4Z3 has a non-trivial solution (x0, y0, z0) with GCD

(y0, z0) = D. If � | y0 and � | z0, then � | x0. Writing x0 = �x1, y0 = �y1, z0 = �z1

and simplifying we see

x2
1 + 27y2

1 = 4�z3
1 hence x2

1 + 3(3y1)2 = 0 (mod �).

Hence (x1, 3y1) = (0, 0) ∈ F2
� , that is � | x1 and � | y1. This implies �2 | D and � | z1.

Writing x1 = �x2, y1 = �y2, z1 = �z2 and simplifying, we see that

x2
2 + 27y2

2 = 4�2z3
2 hence x2

2 + 3(3y2)2 = 0 (mod �).

Again by a similar argument we see that � | y2, hence (x0, y0, z0) /∈ XD
1 (Z)∗.

Proposition 2.3. Let D be a cube-free integer. If 3 || D, then XD
1 (Z)∗ is empty.

Proof. Suppose (x0, y0, z0) ∈ XD
1 (Z)∗. We see that 3 | z0 implies 27 | x2

0, hence
9 | x0. Now 9 | x0 and 3 | y0 implies 81 | z3

1 , hence 9 | z0. Next we see that 3 | y0

and 9 | z0 implies 35 | x2
0, hence 33 | x0. Lastly, note that 33 | x0 and 9 | z0 implies

36 | 27y2
0, hence 9 | y0. Thus, we see that 9 divides both y0 and z0, hence 9 | D,

which contradicts the fact that 3 || D.
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In view of the above two propositions when our set XD
1 (Z)∗ is empty, it is

meaningful to consider the following integers D only.

Definition 2.4. (i) We call a natural number D admissible if it is cube-free and of
the form D1 or 9D1, where D1 = 1 or all the prime factors of D1 are congruent
to 1 modulo 3.

(ii) For admissible D, we consider the curve XD : X2+27Y 2 = 4DZ3. As mentioned
in the introduction, let

X1
D(Z) = {(x, y, z) ∈ Z3 : xyz �= 0, x2 + 27y2 = 4Dz3, (y, z) = 1};

X1
D(Z)∗ = {(x, y, z) ∈ X1

D(Z) : �2|D ⇒ � � y ∀ prime �}.
We observe now that the sets X1

D(Z) and X1
D(Z)∗ are in natural bijection,

respectively, with the sets XD
1 (Z) and XD

1 (Z)∗.

Lemma 2.5. The map θD : X1
D(Z) → XD

1 (Z) given by (x, y, z) �→ (Dx, Dy, Dz) is
a bijection and restricts to a bijection from X1

D(Z)∗ to XD
1 (Z)∗.

Proof. Indeed, note that if (x, y, z) ∈ X1
D(Z), then (Dx)2 + 27(Dy)2 = D2(x2 +

27y2) = D2(4Dz3) = 4(Dz)3, hence (Dx, Dy, Dz) ∈ X1(Z). Also since (y, z) = 1,
this implies (Dy, Dz) = D, hence (Dx, Dy, Dz) ∈ XD

1 (Z). Also note that if D is an
admissible integer, then (x, y, z) ∈ X1

D(Z)∗ if and only if (Dx, Dy, Dz) ∈ XD
1 (Z)∗.

Conversely, suppose (x′, y′, z′) ∈ XD
1 (Z). Then (y′, z′) = D and hence D divides

x′, y′ and z′. Define the map

θ−1
D : XD

1 (Z) → X1
D(Z); (x′, y′, z′) �→

(
x′

D
,
y′

D
,
z′

D

)
.

This is evidently the map θ−1
D and maps XD

1 (Z)∗ to X1
D(Z)∗.

We conclude that θD defines a bijection from X1
D(Z) to XD

1 (Z) and restricts to
a bijection from X1

D(Z)∗ onto XD
1 (Z)∗.

2.1. A related curve

For an admissible integer D such that 3 � D, we consider the level curve YD :
X2 + 3Y 2 = 4DZ3. As before, we define

Y 1
D(Z) = {(x, y, z) ∈ Z3 : xyz �= 0, x2 + 3y2 = 4Dz3, (y, z) = 1};

Y 1
D(Z)∗ = {(x, y, z) ∈ Y 1

D(Z) : �2|D ⇒ � � y ∀prime �}.

Lemma 2.6. Let D be an admissible integer with 3 � D. Then the map

δD : Y 1
D(Z) → X1

9D(Z) given by δ(x, y, z) = (3x, y, z)

defines a bijection. We remark that the assumption 3 � D ensures that 9D is
admissible.
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Proof. A simple calculation shows that (x, y, z) ∈ Y 1
D(Z) implies (3x, y, z) ∈

X1
9D(Z).

Conversely, suppose that (x, y, z) ∈ X1
9D(Z). Then x2 + 27y2 = 36Dz3, hence

3 | x. Again an easy calculation shows (x
3 , y, z) ∈ Y 1

D(Z).

Corollary 2.7. Let D be an admissible integer with 3 � D. Then the map δD above
defines a bijection of

S′
D = {(x, y, z) ∈ Y 1

D(Z)∗ | 3 � y}
with X1

9D(Z)∗.

Proof. If (x, y, z) ∈ S′
D, then δD(x, y, z) = (3x, y, z) ∈ X1

9D(Z). It is obvious that
for a prime � ≡ 1 (mod 3), �2 | D ⇐⇒ �2 | 9D and in this situation � � y as
(x, y, z) ∈ Y 1

D(Z)∗. Moreover, 3 � y as (x, y, z) ∈ S′
D. Hence δD(x, y, z) ∈ X1

9D(Z)∗.
Conversely, if (a, b, c) ∈ X1

9D(Z)∗ ⊂ X1
9D(Z), then for a prime � ≡ 1 (mod 3),

�2 | D ⇐⇒ �2 | 9D and in this situation � � b as (a, b, c) ∈ X1
9D(Z)∗. Moreover, we

have 3 � b. We conclude that (a
3 , b, c) ∈ S′

D.

We recall the easy parametrization of the set Y 1
1 (Z) as mentioned in the intro-

duction.

Theorem 2.8 ([1, Proposition 14.2.1(2)]). The equation X2 + 3Y 2 = 4Z3 in
nonzero integers x, y and z with x and y coprime has two disjoint parametrizations

(x, y, z) = ((s + t)(2s − t)(s − 2t), 3st(s − t), s2 − st + t2)

(x, y, z) = (±((s + t)3 − 9st2), s3 − 3s2t + t3, s2 − st + t2),

where in both cases s and t are co-prime integers with 3 � (s + t). The first
parametrization corresponds to the case 6 | y and the second where 6 is coprime
to y.

Using this we obtain the following description of X9
1 (Z)∗ as follows:

Theorem 2.9.

X9
1 (Z)∗ = {±27((s + t)3 − 9st2), 9(s3 − 3s2t + t3), 9(s2 − st + t2)}

where s and t are co-prime integers with 3 � (s + t).

Proof. Composition of the maps δ9 and θ9 gives us a bijection

θ9 ◦ δ9 : S′
1 → X1

9 (Z)∗ → X9
1 (Z)∗ given by (x, y, z) �→ (27x, 9y, 9z).

Since S′
1 = {(±((s + t)3 − 9st2), s3 − 3s2t + t3, s2 − st + t2) | (s, t) = 1, 3 � s + t} the

result follows.
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We are interested in determining the set X1
D(Z)∗ = {(x, y, z) ∈ Z3 : xyz �=

0, x2 +27y2 = 4Dz3, (y, z) = 1, �2|D ⇒ � � y ∀prime �} in terms of the set Y 1
D(Z)∗ =

{(x, y, z) ∈ Z3) : xyz �= 0, x2 + 3y2 = 4Dz3, (y, z) = 1, �2|D ⇒ � � y ∀prime �}.
Lemma 2.10. Let D be an admissible integer with 3 � D. Then

X1
D(Z)∗ = {(9y, x, 3z) | (x, y, z) ∈ Y 1

D(Z)∗}

∪
{(

x,
y

3
, z

)
| (x, y, z) ∈ Y 1

D(Z)∗, 3 | y
}

.

Proof. Let us write X1
D(Z)∗ as a disjoint union of the sets TD and T ′

D, where

TD = {(x, y, z) ∈ X1
D(Z)∗ | 3 � z}, T ′

D = {(x, y, z) ∈ X1
D(Z)∗ | 3 | z}.

First, we show there is a bijection between TD and SD = {(x, y, z) ∈ Y 1
D(Z)∗|3|y}.

We have a natural map βD : TD → SD given by βD(x, y, z) = (x, 3y, z). Note that
it is essential that 3 � D for the map βD to make sense (if 3 | D, then 9 | D, which
will imply that the set SD is empty). We also have a natural map αD : SD → TD

given by αD(x, y, z) = (x, y
3 , z). Observe that αD ◦ βD = idTD and βD ◦ αD =

idSD . As a consequence, we can identify TD with αD(SD) = {(x, y
3 , z) | (x, y, z) ∈

Y 1
D(Z)∗, 3 | y}.

Now we will show that there is a bijection between T ′
D and Y 1

D(Z)∗ as follows.
We define a map β′

D : T ′
D → Y 1

D(Z)∗ given by β′
D(x, y, z) = (y, x

9 , z
3 ). To ensure

that the map is well defined, we need to check

(i) 9 | x, (ii) GCD(x
9 , z

3 ) = 1 and (iii) if �2 | D, then � � x
9 .

Now if (x, y, z) ∈ X1
D(Z) and 3 | z, then it follows that 9 | x. Moreover in

this situation, it follows that if GCD(x
9 , z

3 ) = d > 1, then d | y, which contradicts
GCD(y, z) = 1. Further, as (x, y, z) ∈ X1

D(Z)∗, it follows that if �2 | D, then � � y.
Hence � � y2 = (4D( z

3 )3 − 3(x
9 )2), which implies � � x

9 (as � �= 3). This shows that
the map β′

D is well defined.
We also have a map α′

D : Y 1
D(Z)∗ → T ′

D given by α′
D(x, y, z) = (9y, x, 3z). To

ensure that the map is well defined, we need to check

(i) GCD(x, 3z) = 1 and (ii) if �2 | D, then � � x.

Note that if (x, y, z) ∈ Y 1
D(Z)∗ with 3 | x, then 3 | z (as 3 � D), which in turn

shows that 3 | y, which contradicts GCD(y, z) = 1. This shows that GCD(x, 3z) =
GCD(x, z) = d with 3 � d. Now if GCD(x, z) = d > 1, then d2 | 3y2 = 4Dz3 − x2

and hence d | y, which contradicts GCD(y, z) = 1. Thus GCD(x, 3z) = 1. Moreover,
as (x, y, z) ∈ Y 1

D(Z)∗, it follows that if �2 | D, then � � y. Hence � does not divide
x2 = (4Dz3 − 27y2) as �2 divides D and � �= 3. This shows that the map α′

D is well
defined.

Now observe that α′
D ◦ β′

D = idT ′
D

and β′
D ◦ α′

D = idY 1
D(Z)∗ .

As a consequence, we can identify T ′
D with α′

D(Y 1
D(Z)∗) = {(9y, x, 3z) |

(x, y, z) ∈ Y 1
D(Z)∗}. This completes the proof of the lemma.
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Using the parametrization of Y 1
1 (Z) and Lemma 2.10 above, we obtain

immediately

Theorem 2.11. The set X1
1 (Z) = {(x, y, z) ∈ Z3 : xyz �= 0, x2 + 27y2 =

4z3, (y, z) = 1} is given by the parametrizations

{(9(s3 − 3s2t + t3),±((s + t)3 − 9st2), 3(s2 − st + t2))}
∪ {(27st(s − t), (s + t)(2s − t)(s − 2t), 3(s2 − st + t2))}
∪ {((s + t)(2s − t)(s − 2t), st(s − t), s2 − st + t2)},

where s and t are coprime integers with 3 � (s + t).

Remark. We remark that the three sets that occur in the parametrization appear-
ing in Theorem 2.11 are disjoint. To see this, note that

(s + t)(2s − t)(s − 2t) = (s + t)(3s − (s + t))((s + t) − 3t)

≡ −(s + t)3 (mod 3) and

s3 − 3s2t + t3 = (s + t)3 − 3(2s2t + st2 ≡ (s + t)3 (mod 3).

Thus, the condition 3 � (s + t) implies 9 || 9(s3 − 3s2t + t3) and 3 � (s + t)(2s −
t)(s − 2t). This is equivalent to asserting that the first co-ordinate of an element
is exactly divisible by 9 in the first parametric set, is divisible by 27 in the second
parametric set, and is coprime to 3 in the third parametric set.

3. Integral Points on the Curve X2 + 3Y 2 = 4DZ3

Recall that YD denotes the affine curve X2 + 3Y 2 = 4DZ3. By YD(Z) we denote
the set of integral points on the affine curve YD, that is YD(Z) = {(a, b, c) ∈ Z3 |
a2 + 3b2 = 4Dc3}. In this section, for a cube-free natural number D, we describe
the set

Y 1
D(Z) = {(X, Y, Z) ∈ Z3 | X2 + 3Y 2 = 4DZ3, XY Z �= 0, (Y, Z) = 1}.

We observe that if for a prime � , �2 | D and (x, y, z) ∈ Y 1
D(Z) with � | y, then � | x

and we have (x
� , y

� , z) ∈ Y 1
D
�2

(Z).

Using this, we can inductively describe Y 1
D(Z) as follows:

Assume that 3 � D. Write D = �2
1 · · · �2

rD1, where D1 is square-free with �1 · · ·
�r � D1.

We have Y 1
D1

(Z) = Y 1
D1

(Z)∗.
Now

Y 1
�21D1

(Z) = {(x, y, z) ∈ Y 1
�21D1

(Z) | �1 � y} � {(x, y, z) ∈ Y 1
�21D1

(Z) | �1 | y}

= Y 1
�21D1

(Z)∗ � {(�1x1, �1y1, z) | (x1, y1, z) ∈ Y 1
D1

(Z)∗, �1 � z}.
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For the last equality, we have used the fact that �1 | y implies �1 | x and ( x
�1

, y
�1

, z) ∈
Y 1

D1
(Z) = Y 1

D1
(Z)∗.

Proceeding in this manner, let 1 < B1 �= B2 �= · · · �= B2r−1 ≤ �1 · · · �r be the set
of divisors of �1 · · · �r. We have

Y 1
D(Z) = Y 1

D(Z)∗ �2r−1
i=1 {(Bix, Biy, z) | (x, y, z) ∈ Y 1

D

B2
i

(Z)∗, Bi � z}.

Thus, for any cube-free integer D, with 3 � D, we can explicitly describe the set
Y 1

D(Z) if we know the set Y 1
D(Z)∗ for all cube-free integers D, with 3 � D.

We observe that for any cube-free integer D, with 3 � D, (a, b, c) ∈ Y 1
D(Z) implies

3 � c. We can construct Y 1
3D(Z) and Y 1

9D(Z) from Y 1
D(Z) as follows:

Y 1
3D(Z) = {(3b, a, c) | (a, b, c) ∈ Y 1

D(Z)} and

Y 1
9D(Z) = {(3a, 3b, c) | (a, b, c) ∈ Y 1

D(Z)}.
Thus, it suffices to understand the sets Y 1

D(Z)∗ for all cube-free D, with 3 � D.

Proposition 3.1. Let D be a cube-free integer, with 3 � D. If a prime � ≡ 2
(mod 3) divides D, then Y 1

D(Z)∗ is empty.

Proof. The proof is similar to that of Proposition 2.2; hence it is omitted.

In view of the above discussion, we see that it is enough to understand the sets
Y 1

D(Z)∗ for admissible integers D for which 3 � D. In the remaining part of the
section, we describe how to obtain Y 1

D(Z)∗ from Y 1
1 (Z) using level raising and level

lowering maps. We first describe the set Y 1
p (Z) for a prime p of the form 3k + 1.

The case for general admissible D for which 3 � D is similar, but more notationally
involved.

Definition 3.2 (Level Raising by A Prime p ≡ 1 (mod 3)). Let p be a prime
which is congruent to 1 modulo 3. Then, we can write p uniquely as p = u2 + 3v2

and (u, 3v) = 1 with u, v > 0. We define two-level raising maps by p as follows:

[p]+ : Y 1
D(Z) → YpD(Z) and [p]− : Y 1

D(Z) → YpD(Z)

given by

[p]+(x, y, z) = (ux + 3vy, uy − vx, z) and [p]−(x, y, z) = (ux − 3vy, uy + vx, z).

The definition is justified by the following calculation:

(ux ± 3vy)2 + 3(uy ∓ vx)2 = (x2 + 3y2)(u2 + 3v2) = 4pDz3.

Definition 3.3 (Level Lowering By A Prime p ≡ 1 (mod 3)). Let p be a
prime which is congruent to 1 modulo 3. Then we can write p uniquely as p =
u2 + 3v2 and (u, 3v) = 1 with u, v > 0. We define the level lowering map by p as
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follows:

[p]∗ : Y 1
pD(Z)∗ → YD(Z)

[p]∗(x, y, z) �→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
ux − 3vy

p
,
uy + vx

p
, z

)
if p | (uy + vx),

(
ux + 3vy

p
,
uy − vx

p
, z

)
if p � (uy + vx).

The definition is justified as follows:
If (x, y, z) ∈ Y 1

pD(Z), then

u2y2 − v2x2 ≡ −3v2y2 − v2x2 = −v2(x2 + 3y2) = −4pDv2z3 ≡ 0 (mod p).

Thus p divides either (uy + vx) or (uy − vx). Note that if (x, y, z) ∈ Y 1
pD(Z)∗ and

p divides both of uy + vx and uy − vx, then it implies that p divides both x and y.
Hence if p | D, then p2 | pD and p | y so that (x, y, z) /∈ Y 1

pD(Z)∗. On the other hand,
if p divides both x and y as above, and p � D, then p | z. Hence (x, y, z) /∈ Y 1

pD(Z).
So, we conclude that (x, y, z) ∈ Y 1

pD(Z)∗ implies p divides exactly one of {uy +
vx, uy− vx}. If p | (uy± vx), then p divides u(uy± vx)−py = ±v(ux∓3vy); hence
p | (ux ∓ 3vy).

Finally, note that

(
ux ∓ 3vy

p

)2

+ 3
(

uy ± vx

p

)2

=
1
p2

(u2 + 3v2)(x2 + 3y2) = 4Dz3.

Lemma 3.4. Let D be an admissible integer and p | D be a prime (which is nec-
essarily congruent to 1 modulo 3). Then, the level lowering map [p]∗ as defined in
Definition 3.3 maps Y 1

D(Z)∗ to Y 1
D
p

(Z)∗.

Proof. Suppose (x0, y0, z0) ∈ Y 1
D(Z)∗ and let [p]∗(x0, y0, z0) = (x̃, ỹ, z0). Suppose

that (ỹ, z0) = d, then (x̃, z0) = d, hence d | x̃ and d | ỹ. Thus d | (uỹ ∓ vx̃); in
particular, d | y0. Thus d | (y0, z0) = 1. So, [p]∗(x0, y0, z0) ∈ Y 1

D
p

(Z). Note that p2 � D
p

as D is cube-free. Let �1 �= p be a prime such that �2
1 | D and (x0, y0, z0) ∈ Y 1

D(Z)∗,
then �1 � y0. Now, note that

u2y2
0 − v2x2

0 = py2
0 − v2(x2

0 + 3y2
0) = py2

0 − 4Dv2z3
0 ≡ py2

0 �= 0 (mod �1).

Note that ỹ is either (uy0 + vx0)/p or (uy0 − vx0)/p. Thus �1 � ỹ. Hence (x̃, ỹ, z0) ∈
Y 1

D
p

(Z)∗.

Our aim is to construct Y 1
D(Z)∗ from Y 1

1 (Z) using level raising maps. For each
prime divisors p of D, we apply p-level raising maps (twice if p2|D). The main issue
is to prove that we have constructed the whole Y 1

D(Z)∗. For this, we need to use the
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level lowering maps. Now we study the image of the level lowering and level raising
map.

We make some observations which will be proved to be valid in general in the
proposition as follows:

Observe that the point (−1, 1, 1) ∈ Y 1
1 (Z) gives

[7]+(−1, 1, 1) = (1, 3, 1), [7]−(−1, 1, 1) = (−5, 1, 1) ∈ Y 1
7 (Z),

moreover

[7]∗ ◦ [7]+(−1, 1, 1) = [7]∗ ◦ [7]−(−1, 1, 1) = (−1, 1, 1),

but

[7]+ ◦ [7]∗(1, 3, 1) = (1, 3, 1), [7]− ◦ [7]∗(1, 3, 1) = (−5, 1, 1) �= (1, 3, 1).

The point (20, 18, 7) ∈ Y 1
1 (Z) gives

[7]+(20, 18, 7) = (94, 16, 7) ∈ Y 1
7 (Z),

[7]−(20, 18, 7) = (−14, 56, 7) ∈ Y7(Z) \ Y 1
7 (Z)

and we have

[7]+ ◦ [7]∗(94, 16, 7) = (94, 16, 7), [7]− ◦ [7]∗(94, 16, 7)

= (−14, 56, 7), [7]∗ ◦ [7]+(20, 18, 7) = (20, 18, 7).

These observations are quite general in nature and the general case is proved
in the proposition below. We remark that if p2 | D, then pD is not an admissible
integer, hence we are not concerned about the image of a point (x0, y0, z0) ∈ Y 1

D(Z)∗

under level raising by p-map if p2 | D.

Proposition 3.5. Let D be an admissible integer, p ≡ 1 (mod 3) be a prime. Let
(x0, y0, z0) be a point in Y 1

D(Z)∗.

(1) If p � Dz0, then both [p]±(x0, y0, z0) ∈ Y 1
pD(Z)∗.

Otherwise, exactly one of the two points [p]+(x0, y0, z0), [p]−(x0, y0, z0)
belongs to Y 1

pD(Z)∗ if p2 � D.
(2) If p | D, then exactly one of {[p]+ ◦ [p]∗(x0, y0, z0), [p]− ◦ [p]∗(x0, y0, z0)} is

(x0, y0, z0).
(3) Suppose p2 � D. If [p]±(x0, y0, z0) ∈ Y 1

pD(Z)∗, then [p]∗ ◦ [p]±(x0, y0, z0) =
(x0, y0, z0).

Proof. For convenience of notation, let us write [p]±(x0, y0, z0) = (x±
1 , y±

1 , z0) and
[p]∗(x0, y0, z0) = (x̃, ỹ, z0).

(1) First, consider the case p � D. Suppose �2
1 | D (so �1 �= p as we are in the case

p � D). Since (x0, y0, z0) ∈ Y 1
D(Z)∗, we have �1 � y0. We first show that �1 � (y+

1 y−
1 ).

Suppose �1 | y±
1 , then �1 divides 4pDz3

0 − 3(y±
1 )2 = (x±

1 )2; thus, �1 | x±
1 . Hence, �1

divides uy±
1 ± vx±

1 = py0, contradiction.
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Thus, if p � D and p � z0, then it follows that both (x±
1 , y±

1 , z0) ∈ Y 1
pD(Z)∗. We

remark that the condition p � z0 is essential as otherwise from Eq. (1) it follows
that p | y+

1 y−
1 and hence p | (y+

1 , z0) or p | (y−
1 , z0) which implies both (x±

1 , y±
1 , z0)

cannot be in Y 1
pD(Z)∗.

Now suppose p | Dz0 and p2 � D. Note that

y+
1 y−

1 = u2y2
0 − v2x2

0 ≡ −v2(x2
0 + 3y2

0) ≡ −4Dv2z3
0 ≡ 0 (mod p), (1)

hence p divides at least one of y+
1 and y−

1 . If p � D, but p | z0, then [p]±(x0, y0, z0) ∈
Y 1

pD(Z)∗ if and only if p � y±
1 . If p | y+

1 and p | y−
1 , then p divides y+

1 + y−
1 = 2uy0,

which is not possible as p � u and (y0, z0) = 1. Thus, p divides exactly one of y+
1

and y−
1 .

If p || D, then p2 || pD. Now from the definition of Y 1
pD(Z)∗ it follows that

[p]±(x0, y0, z0) = (x±
1 , y±

1 , z0) ∈ Y 1
pD(Z)∗ if and only if p � y±

1 . Now if p | y+
1 and

p | y−
1 , then p divides both y−

1 + y+
1 = 2uy0 and y−

1 − y+
1 = 2vx0. Thus, p | x0 and

p | y0, which implies that p2 divides x2
0 + 3y2

0 = 4Dz3
0 . This would mean that p | z0

as p2 � D. Then p | (y0, z0), contradiction. Hence, p divides exactly one of y+
1 and

y−
1 .

(2) As p | D, from Eq. (1) it follows that p divides exactly one of y−
1 = uy0 +vx0

and y+
1 = uy0 − vx0. If p | y−

1 , then x̃ = x−
1
p and ỹ = y−

1
p . We obtain

[p]+ ◦ [p]∗(x0, y0, z0) = [p]+
(

x−
1

p
,
y−
1

p
, z0

)
=

(
ux−

1 + 3vy−
1

p
,
uy−

1 − vx−
1

p
, z0

)

= (x0, y0, z0),

[p]− ◦ [p]∗(x0, y0, z0) = [p]−
(

x−
1

p
,
y−
1

p
, z0

)
=

(
ux−

1 − 3vy−
1

p
,
uy−

1 + vx−
1

p
, z0

)

= (x0 − 6vỹ, y0 + 2vx̃, z0).

Note that x̃ỹ �= 0 as (x̃, ỹ, z0) ∈ Y 1
D
p

(Z)∗, hence [p]− ◦ [p]∗(x0, y0, z0) �= (x0, y0, z0).

The case p | y+
1 is similar.

(3) Suppose that [p]+(x0, y0, z0) = (x+
1 , y+

1 , z0) ∈ Y 1
pD(Z)∗. Note that uy+

1 +
vx+

1 = py0 and ux+
1 − 3vy+

1 = px0. As p | (uy+
1 + vx+

1 ), we obtain [p]∗(x+
1 , y+

1 , z0) =
(x0, y0, z0). The case [p]−(x0, y0, z0) ∈ Y 1

pD(Z)∗ is similar.

Lemma 3.6. Let p and q be two distinct prime congruent to 1 modulo 3. Let
p = u2

1 + 3v2
1 and q = u2

2 + 3v2
2. Let u′ = u1u2 − 3v1v2, v

′ = u2v1 + u1v2 and
u′′ = u1u2 + 3v1v2, v

′′ = u2v1 − u1v2. We have

[p]+ ◦ [p]+(x0, y0, z0) := [p]++(x0, y0, z0)

= ((u2
1 − 3v2

1)x0 + 6u1v1y0, (u2
1 − 3v2

1)y0 − 2u1v1x0, z0),
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[p]− ◦ [p]−(x0, y0, z0) := [p]−−(x0, y0, z0)

= ((u2
1 − 3v2

1)x0 − 6u1v1y0, (u2
1 − 3v2

1)y0 + 2u1v1x0, z0),

[p]+ ◦ [q]+(x0, y0, z0) = [q]+ ◦ [p]+(x0, y0, z0) = (u′x0 + 3v′y0, u
′y0 − v′x0, z0),

[p]+ ◦ [q]−(x0, y0, z0) = [q]− ◦ [p]+(x0, y0, z0) = (u′′x0 + 3v′′y0, u
′′y0 − v′′x0, z0),

[p]− ◦ [q]+(x0, y0, z0) = [q]+ ◦ [p]−(x0, y0, z0) = (u′′x0 − 3v′′y0, u
′′y0 + v′′x0, z0),

[p]− ◦ [q]−(x0, y0, z0) = [q]− ◦ [p]−(x0, y0, z0) = (u′x0 − 3v′y0, u
′y0 + v′x0, z0).

Proof. A straightforward calculation works.

Remark 3.7. Observe that (u2
1−3v2

1, 6u1v1) = 1 and (u2
1−3v2

1)
2 +3(2u1v1)2 = p2.

This is the unique representation (up to sign) of p2 as α2 + 3β2 with (α, 3β) = 1.
Similarly, (u′, 3v′) = (u′′, 3v′′) = 1 and u′2 +3v′2 = u′′2 +3v′′2 = pq. Also, these are
the only representations of pq (up to sign) as α2 + 3β2 with (α, 3β) = 1.

We also remark that for any (x0, y0, z0) ∈ Y 1
D(Z) (with p � D), [p]+ ◦

[p]−(x0, y0, z0) = [p]− ◦ [p]+(x0, y0, z0) = (px0, py0, z0) /∈ Y 1
p2D(Z)∗.

Lemma 3.8. Let D be an admissible integer and p ≡ 1 (mod 3) a prime such that
p � D. Let (x0, y0, z0) be a point in Y 1

D(Z)∗. Then, [p]++(x0, y0, z0) ∈ Y 1
p2D(Z)∗ if

and only if [p]+(x0, y0, z0) ∈ Y 1
pD(Z)∗. Similarly, [p]−−(x0, y0, z0) ∈ Y 1

p2D(Z)∗ if and
only if [p]−(x0, y0, z0) ∈ Y 1

pD(Z)∗.

Proof. Let (x0, y0, z0) ∈ Y 1
D(Z)∗. For convenience of notation, let us write

[p]±(x0, y0, z0) = (x±
1 , y±

1 , z0) and [p]±±(x0, y0, z0) = (x±
2 , y±

2 , z0). Suppose �1 is
a prime such that �2

1 | D (this necessarily mean �1 �= p). Then, �1 � y0 by
the definition of Y 1

D(Z)∗. We first show that �1 � y+
2 y−

2 . Suppose �1 | y±
2 , then

�2
1 | 4p2Dz3

0 − 3(y±
2 )2 = (x±

2 )2, hence �1 | x±
2 . As a consequence, �1 divides

(u2 − 3v2)y±
2 ± 2uvx±

2 = p2y0, a contradiction.

Now note that

y+
2 y−

2 = (u2 − 3v2)2y2
0 − (2uv)2x2

0 ≡ −(2uv)2(x2
0 + 3y2

0)

≡ −4(2uv)2Dz3
0 (mod p).

Thus if p � z0, then p � y+
2 y−

2 , hence both [p]++(x0, y0, z0), [p]−−(x0, y0, z0) ∈
Y 1

p2D(Z)∗. Recall that (by Proposition 3.5) in this case both [p]±(x0, y0, z0) ∈
Y 1

p2D(Z)∗.
Now suppose that p | z0. Then [p]±(x0, y0, z0) ∈ Y 1

pD(Z)∗ if and only if p � y±
1 ,

which is equivalent to p � x±
1 . Then

y±
2 = (u2 − 3v2)y0 ∓ 2uvx0 ≡ ∓2v(ux0 ± 3vy0) = ∓2vx±

1 (mod p).
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Thus, if p | z0, then (x±
2 , y±

2 , z0) ∈ Y 1
p2D(Z)∗ if and only if p � y±

2 which is equivalent
to p � x±

1 which, in turn, is equivalent to (x±
1 , y±

1 , z0) ∈ Y 1
pD(Z)∗.

Lemma 3.9. Let D be an admissible integer with 3 � D > 1. Then every element of
Y 1

D(Z)∗ is the image of some element of Y 1
1 (Z). More precisely, let RD = {(uj , vj) ∈

Z2 | D = u2
j + 3v2

j , (uj , 3vj) = 1, uj > 0, vj > 0}. Then every element of Y 1
D(Z)∗ is

of the form (ujx0 ± 3vjy0, ujy0 ∓ vjx0, z0) for some (x0, y0, z0) ∈ Y 1
1 (Z) and some

(uj , vj) ∈ RD.

Proof. The lemma follows from the previous lemmata in this section but, in order
to make the proof more transparent, we give precise details here. Note that D is a
cube-free integer > 1 which is a product of primes of the form 3k + 1. It suffices to
prove the more precise assertion:

Claim. Every element of Y 1
D(Z)∗ is of the form (ux0 ± 3vy0, uy0 ∓ vx0, z0) for

some (x0, y0, z0) ∈ Y 1
1 (Z) and some (u, v) ∈ RD.

To prove this claim, we apply induction on Ω(D), the number of prime factors
of D counted with multiplicity.

If Ω(D) = 1, then D = p, a prime congruent to 1 modulo 3. So

Rp = {(u, v) | p = u2 + 3v2, u > 0, v > 0, (u, 3v) = 1}.
Let (x, y, z) ∈ Y 1

D(Z)∗. Then xyz �= 0, x2 + 3y2 = 4pz3, (y, z) = 1. As we already
observed, p = u2+3v2 for unique positive integers u, v such that (u, 3v) = 1. Hence,
(u, v) ∈ Rp. Further, as we have shown in the proof of Proposition 3.5, p divides
exactly one of the integers uy − vx, uy + vx.

If uy ≡ vx mod p, then uy + vx �≡ 0 mod p, and ux + 3vy ≡ 0 mod p.
If uy ≡ −vx mod p, then uy − vx �≡ 0 mod p, and ux − 3vy ≡ 0 mod p.
Thus, if uy ≡ vx mod p, then (x1, y1, z1) := (ux+3vy

p , uy−vx
p , z) ∈ Y 1

1 (Z) and

[p]−(x1, y1, z1) = (ux1 − 3vy1, uy1 + vx1, z) = (x, y, z).

Similarly, if uy ≡ −vx mod p, then (x1, y1, z1) := (ux−3vy
p , uy+vx

p , z) ∈ Y 1
1 (Z) and

[p]+(x1, y1, z1) = (ux1 + 3vy1, uy1 − vx1, z) = (x, y, z).

This proves the claim when Ω(D) = 1.
Now, let Ω(D) > 1 and assume that the statement holds for admissible integers

A co-prime to 3 for which Ω(A) < Ω(D). In other words, we assume for such A

that every element of Y 1
A(Z)∗ is of the form (ux0 ± 3vy0, uy0 ∓ vx0, z0) for some

(x0, y0, z0) ∈ Y 1
1 (Z) and some (u, v) ∈ RA.

Write D = Aq for a prime q = u2
1 + 3v2

1 congruent to 1 modulo 3. There are two
possibilities: either q | A or q � A.

First, we assume that q � A. Now, if (u, v) ∈ RA, then u2 + 3v2 = A, (u, 3v) =
1, u > 0, v > 0}. Then (|u+|, |v−|), (|u−|, |v+|) ∈ RAq, where u± = uu1±3vv1, v

± =
vu1 ∓ uv1.
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Let (x, y, z) ∈ Y 1
Aq(Z)∗. Then,

[q]∗(x, y, z) = (x1, y1, z) ∈ Y 1
A(Z)∗,

where x1 = u1x±3v1y
q , y1 = u1y∓v1x

q and the signs are such that the entries are
integers.

By induction hypothesis, any element of Y 1
A(Z)∗ is of the form (ux0±3vy0, uy0∓

vx0, z0) for some (x0, y0, z0) ∈ Y 1
1 (Z) and some (u, v) ∈ RA. Therefore (x1, y1, z) =

(ux0±3vy0, uy0∓vx0, z0) for some (x0, y0, z0) ∈ Y 1
1 (Z) and some (u, v) ∈ RA. Now

[q]∓(x1, y1, z1) = (x, y, z) where the signs are as in x1 = u1x±3v1y
q , y1 = u1y∓v1x

q .

In order to not confuse with the sign appearing in (x1, y1, z) = (ux0±3vy0, uy0∓
vx0, z0), we consider the two cases separately: (i) when x1 = u1x+3v1y

q , y1 = u1y−v1x
q ,

and (ii) when x1 = u1x−3v1y
q , y1 = u1y+v1x

q .
In Case (i), we have

x = u1x1 − 3v1y1 = u1(ux0 ± 3vy0) − 3v1(uy0 ∓ vx0)

= (u1u ± 3vv1)x0 + 3(±vu1 − v1u)y0 = u2x0 + 3v2y0

where u2 = u1u ± 3vv1, v2 = ±vu1 − v1u.
Also, in this Case (i), we have

y = u1y1 + v1x1 = u1(uy0 ∓ vx0) + v1(ux0 ± 3vy0)

= (∓vu1 + v1u)x0 + (u1u ± 3vv1)y0 = −v2x0 + u2y0.

As (x0, y0, z) ∈ Y 1
1 (Z) implies (±x0,±y0, z) ∈ Y 1

1 (Z), we may take u3 = |u2| and
v3 = |v2| such that (x, y, z) = (u3x

′
0 + v3y

′
0, u3y

′
0 − v3x

′
0, z). This proves the claim

in Case (i). The Case (ii) is completely analogous.
Finally, we consider the second possibility q | A; hence D = Bq2 where q � B (as

D is cube-free) and B is an admissible integer not divisible by 3.
Write q = u2

1 + 3v2
1 as before; we have q2 = α2 + 3β2 where α = u2

1 − 3v2
1 , β =

2u1v1.
Let (x, y, z) ∈ Y 1

Bq2(Z)∗. So, x2 + 3y2 = 4Bq2z3, and we have then

(αy + βx)(αy − βx) = α2y2 − β2x2 ≡ (α2 + 3β2) ≡ 0 mod q2.

So q divides one of αy±βx. If it divides both, then q | y which is a contradiction to
the fact (x, y, z) ∈ Y 1

Bq2(Z)∗ (as this implies q � y as q2 | D = Bq2). Hence q divides
exactly one of αy ± βx.

Consider first the case when q divides αy − βx and does not divide αy + βx.
Then the fact that q2 divides α2y2 − β2x2 implies that q2 divides αy − βx.

Again, the equality (αx + 3βy)2 + 3(αy − βx)2 = 4Bq4 gives that q2 divides
αx + 3βy.
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Observe

(x1, y1, z) :=
(

αx + 3βy

q2
,
αy − βx

q2
, z

)
∈ Y 1

B(Z)∗.

By induction hypothesis, one can write

(x1, y1, z) = (ux0 ± 3vy0, uy0 ∓ vx0, z)

where (x0, y0, z) ∈ Y 1
1 (Z) and (u, v) ∈ RB. We have

[q]−−(x1, y1, z) = (αx1 − 3βy1, αy1 + βx1, z) = (x, y, z).

Putting (x1, y1, z) = (ux0 ± 3vy0, uy0 ∓ vx0, z), we have

(x, y, z) = (x0(αu ± 3βv) + 3y0(±αv − βu), y0(αu ± 3βv) − x0(±αv − βu), z)

= u2x0 + 3v2y0, u2y0 − v2x0, z)

where (u2 = αu± 3βv, v2 = ±αv−βu. We change the signs of x0, y0 to ensure that
u2, v2 are positive. Note that then (u2, v2) ∈ RBq2 .

The case when q divides αy + βx and does not divide αy − βx is completely
analogous; we will use [q]++ in that case.

Hence, the lemma is proved.

Proposition 3.10. Let D be an admissible integer with 3 � D. Suppose (x0, y0, z0) ∈
Y 1

1 (Z) and (uj , vj) ∈ RD where RD is as in the lemma above. Then

((ujx0 − 3vjy0), (ujy0 + vjx0), z0) ∈ Y 1
D(Z)∗ ⇔ (D, z0, ujy0 + vjx0) = 1;

((ujx0 + 3vjy0), (ujy0 − vjx0), z0) ∈ Y 1
D(Z)∗ ⇔ (D, z0, ujy0 − vjx0) = 1.

Proof. First, suppose ((ujx0 − 3vjy0), (ujy0 + vjx0), z0) ∈ Y 1
D(Z)∗, where

(x0, y0, z0) ∈ Y 1
1 (Z). Then, (ujy0 + vjx0, z0) = 1 which evidently implies

(D, z0, ujy0 + vjx0) = 1. Conversely, suppose (D, z0, ujy0 + vjx0) = 1. We will
show that

((ujx0 − 3vjy0), (ujy0 + vjx0), z0) ∈ Y 1
D(Z)∗ ⇔

((ujx0 − 3vjy0), (ujy0 + vjx0), z0) ∈ Y 1
D(Z).

Assume that ((ujx0 − 3vjy0), (ujy0 + vjx0), z0) ∈ Y 1
D(Z) but that ((ujx0 −

3vjy0), (ujy0 + vjx0), z0) �∈ Y 1
D(Z)∗. Then (ujy0 + vjx0, z0) > 1 while (D, z0, ujy0 +

vjx0) = 1. Let q be a prime dividing (ujy0 + vjx0, z0) whereas q � D. But, then

(ujx0 − 3vjy0)2 + 3(ujy0 + vjx0)2 = 4Dz3
0 ⇒ q|(ujx0 − 3vjy0).

Hence q | (uj(ujx0 − 3vjy0) + 3vj(ujy0 + vjx0)); i.e. q |Dx0. So, q |x0 and hence
q |ujy0 as well as q | 3vjy0. As (uj , 3vj) = 1, we get q | y0. This implies q divides
x2

0 + 3y2
0 = 4z3

0 and hence q | z0 which is a contradiction to (y0, z0) = 1. Therefore,
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we have shown that ((ujx0 − 3vjy0), (ujy0 + vjx0), z0) ∈ Y 1
D(Z)∗ if and only if

((ujx0 − 3vjy0), (ujy0 + vjx0), z0) ∈ Y 1
D(Z) if and only if (D, z0, ujy0 + vjx0) = 1.

The other assertion is completely similar.

4. Irreducible Trinomials Up to Rational Equivalence

First, we describe the sets XD
1 (Z)∗. To do this, we essentially keep track of the

results proved in Secs. 2 and 3.

Theorem 4.1. Let D > 1 be an admissible integer with 3 � D. Let RD = {(uj, vj) ∈
Z2 | D = u2

j + 3v2
j , uj > 0, vj > 0, (uj, 3vj) = 1} and rD = |RD|. Then, the set

XD
1 (Z)∗ =

⋃rD

j=1 XD(j) where XD(j) is given by

{(9D(ujy ± vjx), D(ujx ∓ 3vjy), 3Dz) | (x, y, z) ∈ Y 1
1 (Z), (D, z, ujy ± vjx) = 1}

�
{

(D(ujx ∓ 3vjy), D
(

(ujy ± vjx)
3

)
, Dz) | (x, y, z) ∈ Y 1

1 (Z),

3 | (ujy ± vjx), (D, z, ujy ± vjx) = 1
}

.

The set X9D
1 (Z)∗ =

⋃rD

j=1 XD(j) where XD(j) is given by

{(27D(ujx ∓ 3vjy), 9D(ujy ± vjx), 9Dz) | (x, y, z) ∈ Y 1
1 (Z),

3 � (ujy ± vjx), (D, z, ujy ± vjx) = 1}.

Proof. Note that from Proposition 3.10, we have Y 1
D(Z)∗ =

⋃rD

j=1 ỸD(j) where

ỸD(j) = {(ujx ∓ 3vjy, ujy ± vjx, z) | (x, y, z) ∈ Y 1
1 (Z), (D, z, ujy ± vjx) = 1}.

Now statement (2) follows from Corollary 2.7 via the map δD.
For the statement (1), we first get X1

D(Z)∗ from Y 1
D(Z)∗ by Lemma 2.10. We

see that X1
D(Z)∗ =

⋃rD

j=1 XD(j), where XD(j) is given by

{(9(ujy ± vjx), (ujx ∓ 3vjy), 3z) | (x, y, z) ∈ Y 1
1 (Z), (D, z, ujy ± vjx) = 1}

�
{

((ujx ∓ 3vjy),
(

(ujy ± vjx)
3

)
, z) | (x, y, z) ∈ Y 1

1 (Z),

3 | (ujy ± vjx), (D, z, ujy ± vjx) = 1
}

.

Finally, using the map θD, we obtain XD
1 (Z)∗ =

⋃rD

j=1 XD(j).

Remark 4.2. We remark that starting from a point (x0, y0, z0) ∈ Y 1
1 (Z) it is not

so easy to determine exactly how many points we get in X1
D(Z)∗ using level raising

maps (even in the case when D = p a prime).
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For instance (−1, 1, 1) ∈ Y 1
1 (Z) gives three points (9,−5, 3), (27, 1, 3), (1, 1, 1) ∈

X1
7 (Z), the point (37, 1, 7) ∈ Y 1

1 (Z) gives only two points (351, 71, 21), (71, 13, 7) ∈
X1

7 (Z) and the point (20, 18, 7) ∈ Y 1
1 (Z) gives just one point (144, 94, 21) ∈ X1

7 (Z).
It is possible to show that if 3 | (u±v), where p = u2 +3v2, then one point in Y 1

1 (Z)
will give rise to at most three points in X1

p (Z). On the other hand if 3 | v, that is, if
p is a prime expressible as m2 +27n2, then from a point in Y 1

1 (Z) we get either 1 or
2 or 4 points in X1

p(Z). We remark that for a prime p ≡ 1 (mod 3), the condition
3 | v is equivalent to 2 being a cubic residue modulo p (see [4, Proposition 9.6.2]).

One can write XD
1 (Z)∗ for general admissible D in parametric form and charac-

terize those elements (x0, y0, z0) ∈ XD
1 (Z)∗ for which the trinomial X3 − z0X + y0

is irreducible. Towards that, we observe

Lemma 4.3. Let f(X) = X3 − aX + b ∈ Z[X ] be a cubic polynomial whose dis-
criminant is a perfect square. If (a, b) = d > 1 is cube-free and for each prime l

such that l2|d, we have l3 � b, then f(X) is irreducible.

Proof. If d > 1 is square-free, then for any prime divisor l of d, we have l2 � b. If
not, then this implies l || a and l2 | b. Hence, l3 | 4a3 − 27b2 = c2 and hence l2 | c,
which implies l4 | c2 + 27b2 = 4a3, which implies l2 | a, contradiction. Thus f(X)
satisfies Eisenstein criterion for the prime l and hence irreducible.

If l2|d for some prime l, then a = l2A, b = l2B with (l, B) = 1. If

X3 − aX + b = X3 − l2Ax + l2B = (X + r)(X2 + sX + t),

then rt = l2B, s = −r and r2−t = l2A. Now l divides r or t; if it divides only one of
them, we have a contradiction from r2 − t = l2A. Hence l|r, l|t. So, t = r2 − l2A ≡ 0
mod l2. But rt = l2B with (l, B) = 1 implies l2 � t which is a contradiction.
Therefore, X3 − aX + b is irreducible.

Theorem 4.4. For an admissible integer D > 1, the irreducible trinomials (up to
rational equivalence) of the form X3 − aX + b with (a, b) = D and discriminant
perfect square are given by X3 − zX + y, where y and z are integers such that
(x, y, z) ∈ XD

1 (Z)∗. Note that discriminant of the polynomial X3 − zX + y is x2.

Proof. For (x, y, z) ∈ XD
1 (Z)∗, X3 − zX + y ∈ Z[X ] has discriminant perfect

square and (y, z) = D. On the other hand, suppose X3 − aX + b has discriminant
c2 = 4a3 − 27b2 and (a, b) = D. Thus (c, b, a) ∈ XD

1 (Z). Since we are considering
polynomials up to rational equivalence, we may assume that if for any prime �,
�2 | a then �3 � b. This is equivalent to (c, b, a) ∈ XD

1 (Z)∗.
Since D > 1, irreducibility of X3 − zX + y follows from Lemma 4.3.

Remark 4.5. (i) When (a, b) = 1, the above theorem is not valid as some of the tri-
nomials coming from X1

1 (Z) are reducible. The irreducible ones are determined
in the main theorem below.
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(ii) We do not claim that these polynomials are rationally inequivalent. In fact the
four points (±x,±y, z) ∈ XD(Z)∗ generate only one trinomial up to rational
equivalence; so even though we have listed all the trinomials, we have listed
each multiple times — once for each occurrence of a point in XD(Z)∗.

Using the parametrization of Y 1
1 (Z) and combining Theorems 2.9, 2.11, 4.1 and

4.4, we may now write down all irreducible trinomials X3 − aX + b ∈ Z[X ] whose
discriminant is a perfect square (up to rational equivalence)

Theorem 4.6. Up to rational equivalence, any irreducible trinomial whose discrim-
inant is a perfect square is X3 − aX + b where gcd(a, b) must be D or 9D, where
3 � D and each prime divisor of D is congruent to 1 modulo 3. To describe all of
them, write D = u2

j + 3v2
j with uj , vj > 0 and (uj, 3vj) = 1, j ∈ {1, . . . , rD}. Let s

and t be co-prime integers with 3 � (s+ t). Up to rational equivalence, the irreducible
trinomials of the form X3 − aX + b ∈ Z[X ] whose discriminant is a perfect square
are given as follows:

(i) Polynomials with (a, b) = 1 are given by

f(s,t)(X) = X3 − 3(s2 − st + t2)X ± ((s + t)3 − 9st2).

(ii) Polynomials with (a, b) = 9 are given by

h(s,t)(X) = X3 − 9(s2 − st + t2)X + 9(s3 − 3s2t + t3).

(iii) Polynomials with (a, b) = D are given by

(a) fD,j,±,s,t,1(X) = X3 − aX + b where

a = 3D(s2 − st + t2), b = D(uj(s + t)(s − 2t)(2s − t) ∓ 9vjst(s − t))

if (D, s2 − st + t2, 3ujst(s − t) ± vj(s + t)(s − 2t)(2s − t)) = 1.
(b) fD,j,±,s,t,2(X) = X3 − aX + b where

a = 3D(s2 − st + t2), b = D(uj((s + t)3 − 9st2) ∓ 3vj(s3 − 3s2t + t3))

if (D, s2 − st + t2, uj(s3 − 3s2t + t3) ± vj((s + t)3 − 9st2)) = 1.
(c) gD,j,±,s,t,1(X) = X3 − aX + b where

a = D(s2 − st + t2), b = D
(
ujst(s − t) ± vj

3
(s + t)(s − 2t)(2s− t)

)

if 3 | vj , and (D, s2 − st + t2, 3ujst(s − t) ± vj(s + t)(s − 2t)(2s − t)) = 1.
(d) gD,j,±,s,t,2(X) = X3 − aX + b, where

a = D(s2 − st + t2), b =
D

3
(uj(s3 + t3 − 3s2t) ± vj((s + t)3 − 9st2))
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if 3 � vj (which means 3 | uj ± vj) and
(
D, s2 − st + t2, uj(s3 + t3 − 3s2t)±

vj((s + t)3 − 9st2)
)

= 1. We choose + (respectively,−) sign if and only if
3 | uj + vj (respectively, 3 | uj − vj).

(iv) Polynomials with (a, b) = 9D are given by

(a) h9D,j,±,s,t,1(X) = X3 − aX + b, where

a = 9D(s2 − st + t2), b = 9D(3ujst(s − t) ± vj(s + t)(2s − t)(s − 2t))

if 3 � vj , and (D, s2 − st + t2, 3ujst(s − t) ± vj(s + t)(2s − t)(s − 2t)) = 1.
(b) h9D,j,±,s,t,2(X) = X3 − aX + b, where

a = 9D(s2 − st + t2), b = 9D(uj(s3 − 3s2t + t3) ± vj((s + t)3 − 9st2))

if 3 � (uj±vj), and (D, s2−st+t2, uj(s3−3s2t+t3)±vj((s+t)3−9st2)) = 1.

Proof. The theorem is a consequence of Theorems 2.11, 2.9 and 4.4 as we explicitly
write down points (x, y, z) ∈ XD(Z)∗ using the parametrization of Y 1

1 (Z) as given
in Theorem 2.8 ([1, Proposition 14.2.1(2)]) and Theorem 4.1.

(i) If (a, b) = 1, then from Theorem 2.11, we see the corresponding trinomials
are X3− (s2−st+ t2)X +st(s− t), X3−3(s2−st+ t2)X +(s+ t)(2s− t)(s−2t) and
X3−3(s2−st+t2)X±((s+t)3−9st2). Note that X3−(s2−st+t2)X+st(s−t) has a
root t and hence is never irreducible. Also, X3−3(s2−st+t2)X+(s+t)(2s−t)(s−2t)
has a root (s + t) and hence is never irreducible.

Note that (s + t)3 − 9st2 and st(s − t) are always odd (as both s and t cannot
be even), hence

X3 − 3st(s − t)X ± ((s + t)3 − 9st2) ≡ X3 + X + 1 (mod 2),

as a consequence we see that X3 − 3st(s − t)X + (s + t)3 − 9st2 is irreducible.
(ii) The polynomials are obtained from Theorem 2.9. The statement regarding

irreducible polynomials follows from Theorem 4.4.
(iii) Combining the parametrization of Y 1

1 (Z) as given in [1, Proposition
14.2.1(2)] and Theorem 4.1 we get XD

1 (Z)∗ = ∪rD

j=1X
D(j), where XD(j) is the set

given explicitly as

{(9D(3ujst(s − t) ± vj(s + t)(s − 2t)(2s − t)),

D(uj(s + t)(s − 2t)(2s − t) ∓ 9vjst(s − t)), 3D(s2 − st + t2))|
(D, s2 − st + t2, 3ujst(s − t) ± vj(s + t)(s − 2t)(2s − t)) = 1}
∪ {(±9D(uj(s3 − 3s2t + t3) ± vj((s + t)3 − 9st2)),

±D(uj((s + t)3 − 9st2) ∓ 3vj(s3 − 3s2t + t3)), 3D(s2 − st + t2))|
(D, s2 − st + t2, uj(s3 − 3s2t + t3) ± vj((s + t)3 − 9st2)) = 1}
∪ {(D(uj(s + t)(s − 2t)(2s− t) ∓ 9vjst(s − t)),
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D(ujst(s − t) ± vj

3
(s + t)(s − 2t)(2s − t)), D(s2 − st + t2))|

3 | vj , (D, s2 − st + t2, 3ujst(s − t) ± vj(s + t)(s − 2t)(2s − t)) = 1}
∪ {±(D(uj((s + t)3 − 9st2) ∓ 3vj(s3 + t3 − 3s2t)),

±D

3
(uj(s3 + t3 − 3s2t) ± vj((s + t)3 − 9st2)),

D(s2 − st + t2))|3|uj ± vj , (D, s2 − st + t2, uj(s3 + t3 − 3s2t)

± vj((s + t)3 − 9st2)) = 1}.
We remark that

3 | 3ujst(s − t) ± vj(s + t)(s − 2t)(2s − t) ⇔ 3 | vj

and

3 | uj(s3 + t3 − 3s2t) ± vj((s + t)3 − 9st2) ⇔ 3 | (uj ± vj).

Since (uj , 3vj) = 1, we get 3 | (uj ± vj) if and only if 3 � vj .
Also note that the points (±x,±y, z) ∈ XD

1 (Z)∗ give rise to only one trinomial
up to rational equivalence; we only consider the expressions for x, y, z while writing
down the polynomials fD,j,±,s,t,2(X) and gD,j,±,s,t,2(X). The statement regarding
irreducibility of the trinomials follows from Theorem 4.4.

(iv) Combining the parametrization of Y 1
1 (Z) as given in [1, Proposition

14.2.1(2)] and Theorem 4.1 we get X9D
1 (Z)∗ = ∪rD

j=1X
9D(j), where X9D(j) is the set

{(27D(uj(s + t)(2s − t)(s − 2t) ∓ 9vjst(s − t)),

9D(3ujst(s − t) ± vj(s + t)(2s − t)(s − 2t)), 9D(s2 − st + t2)) | 3 � vj

(D, s2 − st + t2, 3ujst(s − t) ± vj(s + t)(2s − t)(s − 2t)) = 1}
∪ {(±27D(uj((s + t)3 − 9st2) ∓ 3vj(s3 − 3s2t + t3)),

± 9D(uj(s3 − 3s2t + t3) ± vj((s + t)3 − 9st2)),

9D(s2 − st + t2)) | 3 � (uj ± vj),(
D, s2 − st + t2, uj(s3 − 3s2t + t3) ± vj((s + t)3 − 9st2)) = 1}.

We remark that

3 � (3ujst(s − t) ± vj(s + t)(2s − t)(s − 2t)) ⇔ 3 � vj

and

3 � (uj(s3 − 3s2t + t3) ± vj((s + t)3 − 9st2)) ⇔ 3 � (uj ± vj).

Also note that the points (±x,±y, z) ∈ X9D
1 (Z)∗ give rise to only one trinomial

up to rational equivalence; we only consider the expressions for x, y, z while writing
down the polynomials hD,j,±,s,t,2(X). The statement regarding irreducible trinomi-
als follows from Theorem 4.4.
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5. Cube-Free Natural Numbers Expressible as Sums of Two
Rational Cubes

As an accidental byproduct of our results above, we can partially solve a classical
problem. A classical, open problem (see [9]) in number theory asks for a classification
of all cube-free natural numbers which can be expressed as sums of cubes of two
rational numbers.

We give an alternate description of these numbers in terms of non-trivial integral
points of X1(Z). Let n be a cube-free natural number. Observe that the affine curve
x3+y3 = n is isomorphic to the affine curve X2 = 4Z3−27n2 given by the following
change of variables:

x =
9n + X

6Z
and y =

9n− X

6Z
, (2)

and

X =
3n

x + y
and Y = 9n

x − y

x + y
. (3)

Let us denote by En the elliptic curve whose Weierstrass equation is given by
Y 2 = 4X3−27n2. (We remark that the elliptic curve En is isomorphic to Enm3 over
Q.) Then, we can identify (the projectivization of) x3+y3 = n with the elliptic curve
En. As a consequence, we see that n can be written as sum of two rational cubes
if and only if En(Q) is non-trivial. It is well known (see [2]) that En(Q)tors = {O}
if n > 2. Thus, a cube-free natural number n > 2 is can be expressed as a sum of
two rational cubes if and only if rk(En(Q)) > 0. The standard approach to study
this problem is via the theory of (mock) Heegner points. But, in what follows, we
relate this to the integral solutions of the equation X2 + 27Y 2 = 4Z3.

Definition 5.1. Let S denote the set of cube-free natural numbers given by

S = {n | n > 2, (a, nm3, b) ∈ XD
1 (Z)∗ for some a, b, m ∈ Z and

for some admissible D}.

Theorem 5.2. Let n > 2 be a cube-free natural number. Then n is a sum of cubes
of two rational numbers if and only if n ∈ S, where S is as defined above.

Proof. Let n ∈ S. Then there exist integers a, b, m such that (a, nm3, b) ∈
Xnon−triv

1 (Z) - or, equivalently - (a, b) satisfies the equation X2 = 4Z3−27(nm3)2.
Then from (2), it follows that

(
9nm3+a

6b , 9nm3−a
6b

)
satisfies the equation x3 + y3 =

nm3. As a consequence, we have

n =
(

9nm3 + a

6bm

)3

+
(

9nm3 − a

6bm

)3

.
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Conversely, let n be a cube-free natural number and suppose q1 = a1
db1

and
q2 = a2

db2
(with (a1, db1) = (a2, db2) = (b1, b2) = 1) are two rational numbers such

that q3
1 + q3

2 = n. Then

(a1b2)3 + (a2b1)3 = nd3b3
1b

3
2.

If � | b1, then �3 | b3
1, which implies �3 | (nd3b3

2 − a3
2)b

3
1 = (a1b2)3 or equivalently

� | a1b2. This is impossible as (a1, b1) = (b1, b2) = 1. A similar argument shows that
� | b2 is also impossible. We conclude that b1b2 = ±1. If necessary, changing the
signs of a1 and a2, we may assume that b1 = b2 = 1.

Since
(

a1
d , a2

d

)
satisfies x3+y3 = n, from (3), we see that

(
9na1−a2

a1+a2
, 3nd

a1+a2

)
(note

that a1 + a2 �= 0) satisfies X2 = 4Z3 − 27n2. Hence(
9n

a1 − a2

a1 + a2
, n,

3nd

a1 + a2

)
∈ X1(Q).

As a consequence, we see that
(
9na1−a2

a1+a2
m3, nm3, 3nd

a1+a2
m2

) ∈ X1(Q), for any nat-
ural number m. Since a3

1 + a3
2 = nd3, it follows that (a1 + a2) | nd3. Taking m = d,

we obtain (
9(a1 − a2)

nd3

a1 + a2
, nd3, 3

nd3

a1 + a2

)
∈ X1(Z).

Now note that a1 �= a2 as n �= 2. Thus (9(a1 − a2) nd3

a1+a2
, nd3, 3 nd3

a1+a2
) ∈

Xnon−triv
1 (Z), here Xnon−triv

1 (Z) = {(x, y, z) ∈ Z3 | x2 + 27y2 = 4z3, xyz �= 0},
which are the complements of the trivial integrals zeros Xtriv

1 (Z). Observe that
if (x, y, z) ∈ Xnon−triv

1 (Z) and �3 | y and �2 | z, then �3 | x and
(

x
�3 , y

�3 , z
�2

) ∈
Xnon−triv

1 (Z). As a consequence we see that if � | d is a prime such that �2 | 3 nd3

a1+a2
,

then �3 | 9(a1 − a2) nd3

(a1+a2)
and hence (9(a1 − a2) nd3

�3(a1+a2)
, nd3

�3 , 3 nd3

�2(a1+a2)
) ∈

Xnon−triv
1 (Z). Proceeding in this manner, we see that there exists a largest nat-

ural number k such that k | d and(
9(a1 − a2)

nd3

k3(a1 + a2)
,
nd3

k3
, 3

nd3

k2(a1 + a2)

)
:= (a, nm3, b) ∈ Xnon−triv

1 (Z).

Note that (a, nm3, b) ∈ XD
1 (Z) for D = gcd(nm3, b). If for a prime �, �3 | D,

then we see that (9(a1 − a2) nd3

(k�)3(a1+a2)
, nd3

(k�)3 , 3 nd3

(k�)2(a1+a2) ) ∈ Xnon−triv
1 (Z), which

contradicts the maximality of k. Hence D is cube-free.
Similarly, if �3 | nm3 and �2 | b, then again (9(a1 − a2) nd3

(k�)3(a1+a2)
, nd3

(k�)3 ,

3 nd3

(k�)2(a1+a2) ) ∈ Xnon−triv
1 (Z), which contradicts the maximality of k. Thus

(a, nm3, b) ∈ XD
1 (Z)∗ for an admissible D.

In order to deduce that certain primes are expressible as sums of two rational
cubes, we recall that (9(s3 − 3s2t + t3), (s + t)3 − 9st2, 3(s2 − st + t2)) ∈ X1

1 (Z) for
any co-prime integers s, t with 3 � (s + t). As a consequence, we obtain

Corollary 5.3. Let p ≡ ±1 (mod 9) be a prime and m be an integer such that
pm3 = (s + t)3 − 9st2 for some co-prime integers s and t. Then p can be written as
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a sum of two rational cubes. Explicitly

p =
(

s3 + t3 − 3st2

m(s2 − st + t2)

)3

+
(

3st(s − t)
m(s2 − st + t2)

)3

.

Remark 5.4. There are infinitely many primes which satisfy the hypotheses of
corollary 5.3; see [3, Theorem 1.1]. By work of Stagé [8], we know that odd primes p

which are congruent to 2, 5 modulo 9 cannot be expressed as a sum of two rational
cubes. Recent work of Dasgupta and Voight [2] shows that primes p congruent
to 4 or 7 modulo 9 can be expressed as a sum of rational cubes if 3 is not a
cubic residue modulo p. Rodriguez-Villegas and Zagier [6] - assuming the truth of
the BSD conjecture - give a criterion to decide whether a prime 1 modulo 9 can
be expressed as a sum of two rational cubes. The authors do not know of any
previous unconditional result describing when primes congruent to ±1 modulo 9
are expressible as sums of two rational cubes.

Remark 5.5. There are 49 primes less than 2000 which are congruent to 1 modulo
9 and, by the result of [6], we expect that 22 of them are expressible as sums of two
rational cubes. If we vary (s, t, m) ∈ Z3 with 0 < |s|, |t|, m < 1000, (s, t) = 1, then
all of these 22 primes satisfy pm3 = (s+ t)3−9st2 for some choice of (s, t, m). There
are 14 primes less than 500 which are congruent to −1 modulo 9 and all of these 14
primes satisfy pm3 = (s + t)3 − 9st2 for some choice of (s, t, m) with (s, t, m) ∈ Z3

with 0 < |s|, |t|, m < 1000. There are 50 primes less than 2000 which are congruent
to −1 modulo 9, at least 34 out of these 50 primes satisfy pm3 = (s + t)3 − 9st2 for
some choice of (s, t, m). All of these were verified using Sage [7].

From the above data, we may hazard a guess that there are infinitely many
primes congruent to 1 (respectively, −1) modulo 9 which satisfy the condition of
Corollary 5.3.

Further, one can verify that if a tuple (a, nm3, b) ∈ XD
1 (Z)∗, then (D, m) = 1.

Since elements of XD
1 (Z)∗ are of the form (Dx, Dy, Dz), it follows that D | nm3 and

hence D | n. Now, for a prime p which is congruent to −1 modulo 9, if (a, nm3, b) ∈
XD

1 (Z)∗ then it follows that D = 1, as Xp
1 (Z)∗ = ∅. As a consequence p ≡ −1

(mod 9) can be written as sum of two rational cubes if and only if there exists
integers s, t, m with (s, t) = 1 for which at least one of the following condition
holds:

(1) pm3 = (s + t)3 − 9st2,
(2) pm3 = st(s − t).

Note that as (s + t)(2s − t)(s − 2t) = 2(s + t)3 − 9st(s + t) ≡ ±2 (mod 9), we
did not include it in the list. We could not find any tuple (s, t, m) ∈ Z3 such that
pm3 = st(s− t). This leads us to believe that p ≡ −1 (mod 9) is expressible as sum
of rational cubes if and only if it satisfies the condition of Corollary 5.3.
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