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Abstract. Let k be a global field and let kv be the completion of k with respect to v, a
non-archimedean place of k. Let G be a connected, simply-connected algebraic group over
k, which is absolutely almost simple of kv-rank 1. Let G ¼ GðkvÞ. Let G be an arithmetic

lattice in G and let C ¼ CðGÞ be its congruence kernel. Lubotzky has shown that C is infi-
nite, confirming an earlier conjecture of Serre. Here we provide complete solution of the
congruence subgroup problem for G by determining the structure of C. It is shown that C

is a free profinite product, one of whose factors is F̂Fo, the free profinite group on countably
many generators. The most surprising conclusion from our results is that the structure of C

depends only on the characteristic of k. The structure of C is already known for a number
of special cases. Perhaps the most important of these is the (non-uniform) example
G ¼ SL2

�
OðSÞ

�
, where OðSÞ is the ring of S-integers in k, with S ¼ fvg, which plays a

central role in the theory of Drinfeld modules. The proof makes use of a decomposition
theorem of Lubotzky, arising from the action of G on the Bruhat-Tits tree associated with
G.

Introduction

Let k be a global field and let G be a connected, simply-connected linear algebraic
group over k, which is absolutely almost simple. For each non-empty, finite set S of places
of k, containing all the archimedean places, let OðSÞ denote the corresponding ring of S-
integers in k. The problem of determining whether or not a finite index subgroup of the
arithmetic group, G

�
OðSÞ

�
, contains a principal congruence subgroup (modulo some non-

zero OðSÞ-ideal), the so-called congruence subgroup problem or CSP, has attracted a great
deal of attention since the 19th century. As a measure of the extent of those finite index
subgroups of G

�
OðSÞ

�
which are not congruence, its so-called non-congruence subgroups,
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Serre [S1] has introduced a profinite group, CðS;GÞ, called the (S-)congruence kernel of G.
In his terminology [S1] the CSP for this group has an a‰rmative answer if this kernel is
finite. Otherwise the CSP has an essentially negative answer. The principal result in [S1] is
that, for the case G ¼ SL2, the congruence kernel CðS;GÞ is finite if and only if card S f 2.
Moreover Serre has formulated the famous congruence subgroup conjecture ([PR], p. 556),
which states that the answer to the CSP is determined entirely by the S-rank of G, rankS G.
(See [Mar], p. 258.) It is known ([Mar], (2.16) Theorem, p. 269) that CðS;GÞ is finite (cy-
clic), when G is k-isotropic and rankS Gf 2. It is also known that CðS;GÞ is infinite for
many ‘‘rank one’’ G (for example, G ¼ SL2). The conjecture however remains open for
some of these cases. (See, for example, [L3].) The congruence kernel CðS;HÞ can be defined
in a similar way for every subgroup H of GðkÞ which is commensurable with G

�
OðSÞ

�
.

(From this definition it is clear that CðS;HÞ is finite if and only if CðS;GÞ is finite.)

The books of Margulis [Mar], p. 268, and Platonov/Rapinchuk [PR], Section 9.5,
emphasise the importance of determining the structure of the congruence kernel. (Lubotzky
refers to this as the complete solution of the CSP.) In this paper we are concerned with the
structure of infinite congruence kernels. The first result of this type is due to Mel’nikov
[Me], who shows that, for the case where G ¼ SL2, k ¼ Q and S ¼ fyg (i.e.
G
�
OðSÞ

�
¼ SL2ðZÞ, the classical modular group), the congruence kernel is isomorphic to

F̂Fo, the free profinite group on countably many generators. Lubotzky [L1] has proved that,
when G ¼ SL2 and card S ¼ 1, the congruence kernel of SL2

�
OðSÞ

�
has a closed subgroup

isomorphic to F̂Fo, reproving Mel’nikov’s result in the process. (When char k ¼ 0 and
card S ¼ 1, it is known that k ¼ Q or Qð

ffiffiffiffiffiffiffi
�d

p
Þ, with S ¼ fyg, where d is a square-free

positive rational integer.) In [Mas2] it is shown that, when G ¼ SL2 and card S ¼ 1, the
congruence kernel maps onto every free profinite group of finite rank.

In this paper we use di¤erent methods to determine the structure of the congruence
kernel of an arithmetic lattice in a rank one algebraic group over a local field, providing a
complete solution of the CSP for this case. With the above notation let Vk be the set of
places of k and let (the local field) kv be the completion of k with respect to v. In addition
to the above hypotheses we assume that G has kv-rank 1. We denote the set of kv-rational
points, GðkvÞ, by G. Let G be a lattice in G, i.e. a discrete subgroup of (the locally compact
group) G for which mðG=GÞ is finite, where m is a Haar measure on G. As usual G is said to
be cocompact (resp. non-uniform) if G=G is compact (resp. not compact). We assume further
that G is (S-)arithmetic, i.e. G is commensurable with GðOÞ, where O ¼ OðSÞ is as above.

Example. When char k > 0, S ¼ fvg and G ¼ SL2, the group G ¼ SL2ðOÞ is a (non-
uniform) arithmetic lattice (in SL2ðkvÞ). This lattice, which plays a central role in the theory
of Drinfeld modules, is the principal focus of attention in Chapter II of Serre’s book [S2].

As in Margulis’s book [Mar], Chapter I, 3.1, p. 60 we assume that G is k-subgroup of
GLn, for some n. We consider the standard representation for GLnðkvÞ. For each O-ideal q,
we put

GLnðqÞ ¼ fX A GLnðOÞ jX 1 In ðmod qÞg:

We denote GXGLnðqÞ, the principal S-congruence subgroup of G (of level q), by GðqÞ. If
M is any subgroup of G commensurable with GðOÞ we put MðqÞ ¼ M XGðqÞ. It is clear
that MðqÞ is of finite index in M when q3 f0g. (We note that although the definition of
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G
�
OðSÞ

�
depends on the k-embedding of G into GLn, the class of the S-arithmetic sub-

groups does not.)

The finite index subgroups of GðOÞ define the S-arithmetic topology on G. The com-
pletion of G with respect to this topology is a profinite group denoted by ĜG. On the other
hand the subgroups GðqÞ, where q3 f0g, define the S-congruence topology on G and the
completion of G with respect to this topology is also a profinite group denoted by G. Since
every S-congruence subgroup is S-arithmetic, there is an exact sequence

1 ! CðGÞ ! ĜG ! G ! 1:

The (profinite) group CðGÞð¼ CðS;GÞÞ is called the (S-)congruence kernel of G. It is known
([Mar], Chapter I, 3.1) that the definition of CðGÞ does not depend on the choice of
k-representation. (The definition of congruence kernel extends to any S-arithmetic sub-
group of G, including any finite index subgroup of G.)

Our principal results are the following.

Theorem A. If G is cocompact, then

CðGÞG F̂Fo:

It is well-known that G is cocompact when, for example, char k ¼ 0. Here Theorem A
applies to the case where S consists of precisely one non-archimedean place, together with
all the archimedean places, and G is anisotropic over all the archimedean places. For ex-
amples of cocompact lattices of the above type in SL2ðQpÞ, where Qp is the p-adic comple-
tion of Q, see [S2], p. 84. This result however is not a straightforward generalization of
Mel’nikov’s theorem [Me]. On the one hand SL2ðZÞ is not a lattice in SL2ðQpÞ. On the
other hand SL2ðZÞ is a non-uniform lattice in SL2ðRÞ. (See [Mar], p. 295.) Moreover the
fourth author [Za2] has proved that the congruence kernel of every arithmetic lattice in
SL2ðRÞ is isomorphic to F̂Fo. Lattices to which Theorem A refers have a free, non-cyclic
subgroup of finite index. (See Lemma 2.1.) Consequently this result does not apply to the
Bianchi groups, SL2ðOdÞ, where Od is the ring of integers in the imaginary quadratic

number field Qð
ffiffiffiffiffiffiffi
�d

p
Þ, with d > 0.

Theorem B. If G is non-uniform and p ¼ char k, then

CðGÞG F̂Fo q NðGÞ;

the free profinite product of F̂Fo and NðGÞ, where NðGÞ is a free profinite product of groups,
each of which is isomorphic to the direct product of 2@0 copies of Z=pZ.

The most interesting consequence of Theorems A and B is that the structure of CðGÞ
depends only on the characteristic of k.

The proofs are based on the action of G, and hence G, on the associated Bruhat-Tits
tree T . The theory of groups acting on trees shows how to derive the structure of G from
that of the quotient graph GnT . For the cocompact case it is well known that GnT is finite.
Theorem A then follows from the theory of free profinite groups.
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For the non-uniform case the situation is much more complicated. Here Lubotzky
[L2] has shown that GnT is the union of a finite graph together with a (finite) number of
ends, each of which corresponds to P, a minimal parabolic kv-subgroup of G. The proof
that the torsion-free part of the decomposition of CðGÞ is F̂Fo involves substantially more
e¤ort than that of Theorem A. It is shown that the torsion part NðGÞ is a free profinite
product of groups each isomorphic to CðUÞ ¼ C

�
UðOÞ

�
, the S-congruence kernel of U,

where U is the unipotent radical of some P of the above type. Unlike the characteristic
zero unipotent groups, which have trivial congruence kernel, the congruence kernel CðUÞ
is huge in positive characteristic. The various ends of the quotient graph correspond to
certain unipotent subgroups and their congruence kernels contribute to NðGÞ. It is known
[BT2] that such a U, and hence CðUÞ, is nilpotent of class at most 2. In fact we show that
CðUÞ is abelian, even when U is not. In the proofs the various types of G, which arise
from Tits Classification [T], are dealt with separately. A crucial ingredient (when deal-
ing with non-abelian U) is the following unexpected property of ‘‘rank one’’ unipotent
radicals.

Theorem C. Let U be the unipotent radical of a minimal parabolic kv-subgroup of

G of the above type (so that U is defined over kv). If UðkvÞ is not abelian then U is defined

over k.

For our purposes the importance of Theorem C is that it ensures that the structure of
CðUÞ needs to be determined only for one particular U. Theorem B extends a number of
existing results. The fourth author ([Za1], Theorem 4.3) has proved Theorem B for the spe-
cial case G ¼ SL2 and S ¼ fvg. (This case is rather more straightforward since here U is
abelian, and so Theorem C, for example, is not required.) Lubotzky [L1] has proved that,
for this case, CðGÞ has a closed subgroup isomorphic to F̂Fo. Lubotzky has also shown ([L2],
Theorem 7.5) that CðGÞ is infinite when G is non-uniform.

Let H be any semisimple algebraic group over k. In addition to the S-congruence
kernel, CðS;HÞ, there is another group called the S-metaplectic kernel, MðS;HÞ, whose
definition (originally due to Moore) is cohomological. (See, for example, [PR], p. 557.) It
is known ([PRr], Theorem 9.15, p. 557) that these groups are closely related when CðS;HÞ
is finite. (The structure of MðS;HÞ has been determined for many such cases; see [PRap].)
In this paper however we are concerned with infinite congruence kernels.

1. Arithmetic lattices

This section is devoted to a number of properties of arithmetic lattices which are
needed to establish our principal results. From now we will use lattice as an abbreviation
for lattice in G ¼ GðkvÞ, where G and kv are defined as above. We begin with a general
property of lattices.

Lemma 1.1. If G is any lattice, then G is not virtually solvable.

Proof. It is known that G is Zariski-dense in G. (See [Mar], (4.4), Corollary, p. 93,
and [Mar], (2.3) Lemma, p. 84.) It follows that ½G;G� is Zariski-dense in ½G;G� ¼ G, by [B],
Proposition, p. 59, and [B], Proposition, p. 181. If G is virtually solvable then G is finite,
which contradicts the fact that it has kv-rank 1. r
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For each non-archimedean v A Vk, we denote the completion of O with respect to v by
Ov. This is a local ring with a finite residue field. Recall that the restricted topological pro-

duct is defined as

GðÔOÞ ¼
Q

v BS

GðOvÞ;

see [PR], p. 161. The group GðÔOÞ is a topological group with a base of neighbourhoods of
the identity consisting of all subgroups of the form

Q
v BS

Mv;(*)

where each Mv is an open subgroup of GðOvÞ and Mv ¼ GðOvÞ, for all but finitely many
v B S. Let m denote the maximal ideal of the (local) ring Ov. Then the ‘‘principal congru-
ence subgroups’’, Gðm tÞ, where tf 1, provide a base of neighbourhoods of the identity
in GðOvÞ; see [PR], p. 134. The group GðOÞ embeds, via the ‘‘diagonal map’’, in GðÔOÞ. Let
GðOÞ denote the ‘‘congruence completion’’ of GðOÞ determined by its S-congruence sub-
groups. The hypotheses on G ensure that the following holds.

Lemma 1.2 (‘‘The strong approximation property’’).

GðOÞGGðÔOÞ:

Proof. References for zero and nonzero characteristic versions of this well-known
result can be found in [PR], Section 7.4, pp. 427–433. r

We record another well-known property of G.

Lemma 1.3. With the above notation,

CðGÞ ¼
T

q3f0g
ĜGðqÞ:

It follows that, for all q3 f0g, there is an exact sequence

1 ! CðGÞ ! ĜGðqÞ ! GðqÞ ! 1:

More generally let M be any group of matrices over O. For each non-zero O-ideal q we
define the (finite index) subgroup MðqÞ of M in the natural way as above. Then the sub-
groups MðqÞ form a base of neighbourhoods of the identity in M for the congruence topo-

logy on M. We put

CðMÞ ¼
T

q3f0g
M̂MðqÞ;

where M̂MðqÞ is the usual profinite completion of MðqÞ with respect to all its finite index
subgroups. We call CðMÞ the congruence kernel of M. Then there is an exact sequence of
the above type involving CðMÞ, M̂MðqÞ and the completion of MðqÞ with respect to the con-
gruence topology.
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We may assume that G and, hence all its subgroups, act on the Bruhat-Tits tree T

associated with G without inversion. As usual the vertex and edge sets of a graph X will be
denoted by VðTÞ and EðTÞ, respectively. Given a subgroup H of G and w A VðTÞWEðTÞ,
we denote by Hw the stabiliser of w in H. Since G is discrete it follows that Hw is always
finite.

We deal with the cocompact and non-uniform cases separately.

2. Cocompact arithmetic lattices

For each positive integer s, let Fs denote the free group of rank s.

Lemma 2.1. If G is cocompact, then, for all but finitely many q,

GðqÞGFr;

where r ¼ rðqÞf 2. Moreover rðqÞ is unbounded in the following sense.

If rðqÞf 2 and

q ¼ q1 n q2 n q3 � � �

is an infinite properly descending chain of O-ideals, then

rðqiÞ ! y; as i ! y:

Proof. It is well-known that the quotient graph GnT is finite. Let v1; . . . ; vt denote
the vertices (in VðTÞ) of a lift j : GnT ! T . We put

Gi ¼ Gvi
ð1e ie tÞ:

It is clear that, for all but finitely many q,

GðqÞXGi ¼ fIng ð1e i e tÞ;

since each Gi is finite. For such a q all the stabilizers in GðqÞ of the vertices of T are trivial,
since GðqÞ is normal in G. Further jG : GðqÞj is finite and so GðqÞnT is finite. It follows that

GðqÞGFr;

for some r; see [S2], Theorem 4, p. 27. By Lemma 1 it is clear that rf 2. If rðqÞf 2 and

q ¼ q1 n q2 n q3 � � �

then by the well-known Schreier formula,
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rðqiÞ � 1 ¼ jGðqÞ : GðqiÞj
�
rðqÞ � 1

�
:

The result follows since jGðqÞ : GðqiÞj ! y, as i ! y. r

Theorem 2.2. If G is cocompact, then

CðGÞG F̂Fo:

Proof. Fix any q for which Lemma 2.1 holds. Let C ¼ CðGÞ. Then, by the exact se-
quence after Lemma 1.3,

F̂F r=C GGðqÞ:

Now jGðOÞ : GðqÞj is finite and so (by Lemma 1.2) GðqÞ embeds as an open subgroup of
GðÔOÞ and hence contains an open subgroup O of GðÔOÞ of type (*).

Since G is cocompact, GðqÞ is finitely generated. It follows that GðOÞ, GðqÞ and O are
all finitely generated profinite groups. Consequently the group O does not ‘‘satisfy Schreier’s
formula’’. (See [RZ], Lemma 8.4.5, p. 320.) Hence GðqÞ does not satisfy Schreier’s formula,
since jGðqÞ : Oj is finite. The result follows from [RZ], Corollary 8.4.4, p. 320. r

3. Non-uniform arithmetic lattices: discrete results

Here we assume that G=G is not compact, in which case k is a function field. We put
char k ¼ p. It is well-known that an element X of G has finite order if and only if X A Gv,
for some v A VðTÞ. In order to describe the structure of GnT we make the following

Definition. Let R be a ray in GnT , i.e. an infinite path without backtracking and
let j : R ! T be a lift. Let V

�
jðRÞ

�
¼ fv1; v2; . . .g. We say that j is stabilizer ascending, if

Gvi
eGviþ1

for if 1, and set

GðRÞð¼ GðR; jÞÞ :¼
�
Gv j v A V

�
jðRÞ

��
:

Using results of Raghunathan [R], Lubotzky ([L2], Theorem 6.1) has determined the struc-
ture of GnT . This extends an earlier result of Serre ([S], Theorem 9, p. 106) for the special
case G ¼ SL2, G ¼ SL2ðOÞ and S ¼ fvg. Baumgartner [Ba] has provided a more detailed
and extended version of Lubotzky’s proof.

Theorem 3.1. With the above notation,

GnT ¼ Y WR1 W � � �WRm;

where Y is a finite subgraph and R1; . . . ;Rm are rays. In addition,

(a) cardfVðY ÞXVðRiÞg ¼ 1 ð1e iemÞ,

(b) EðYÞXEðRiÞ ¼ j ð1e iemÞ,

(c) Ri XRl ¼ j ði3 lÞ.
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There exists a lift j : GnT ! T such that j : Ri ! T is stabilizer ascending for

1e iem.

Lemma 3.2. With the above notation, the group GðRiÞ is contained in PiðkvÞ, where Pi

is a minimal parabolic kv-subgroup of G, where 1e iem.

Proof. The group GðRiÞ stabilizes the end of T corresponding to jðRiÞ. It is well-
known from the standard theory of Bruhat-Tits that the stabilizer of an end in G is of the
form PiðkvÞ. r

We now restrict our attention to principal congruence subgroups.

Lemma 3.3. Let q be a proper O-ideal. Then every element of finite order of GðqÞ is

unipotent of p-power order.

Proof. Let k0 be the (full) field of constants of (the function field) k. Let g A GðqÞ
have finite order and let wgðtÞ denote its characteristic polynomial over k. Then

wgðtÞ1 ðt � 1Þn ðmod qÞ:

Now each zero of wgðtÞ is a root of unity and so each coe‰cient of wgðtÞ lies in the algebraic
closure of k0 in k, which is k0 itself. Since k0 eO it follows that wgðtÞ ¼ ðt � 1Þn. r

Lemma 3.4. With the above notation, for each proper O-ideal q, let

GðqÞXGðRiÞ ¼ YiðqÞ

and let Ui be the unipotent radical of Pi, where 1e iem. Then:

(i) YiðqÞ is a subgroup of finite index in UiðOÞ.

(ii) YiðqÞ is nilpotent of class at most 2 and is generated by elements of p-power order.

Proof. Since YiðqÞ consists of elements of finite order in GðqÞ it consists of unipotent
matrices by Lemma 3.3. Part (i) follows. (Recall that G is an arithmetic lattice.) For part (ii)
we note that G has kv-rank one and so Ui is nilpotent of class at most 2, by [BT2], 4.7.
Proposition. r

As we shall see some (but not all) such Ui are in fact abelian.

Theorem 3.5. For all but finitely many q,

GðqÞGFr �LðqÞ;

where LðqÞ is a free product of finitely many groups, each of which is a conjugate (in G) of

some YiðqÞ. (Then LðqÞ is generated by nilpotent groups of class at most 2, each consisting of

elements of p-power order.)

50 Mason, Premet, Sury, and Zalesskii, Congruence subgroup problem



In addition,

r ¼ rðqÞ ¼ rkZ

�
GðqÞ

�
¼ dimQ H 1

�
GðqÞ;Q

�
;

the ( finite) free abelian rank of GðqÞ.

Proof. By the fundamental theorem of the theory of groups acting on trees ([S2],
Theorem 13, p. 55) G is the fundamental group of the graph of groups given by the lift
j : GnT ! T as described in Theorem 3.1. For all but finitely many q,

GðqÞXGv ¼ fIng;

for all v A V
�

jðYÞ
�
. We fix such a q. Recall that GðqÞ is a normal subgroup of finite index in

G. From standard results on the decomposition of a normal subgroup of a fundamental
group of a graph of groups, GðqÞ is a free product of a free group Fr and a finite number
of subgroups, each of which is a conjugate of GðqÞXGðRiÞ, for some i. The rest follows
from Lemma 3.4. r

For the case G ¼ SL2, S ¼ fvg and G ¼ SL2ðOÞ, Theorem 3.5 is already known
([Mas2], Theorem 2.5).

Corollary 3.6. Let UðqÞ denote the (normal ) subgroup of GðqÞ generated by its uni-

potent matrices. Then, for all but finitely many q,

GðqÞ=UðqÞGFr;

where r ¼ rðqÞ ¼ rkZ

�
GðqÞ

�
.

Proof. We fix an ideal q for which Theorem 3.5 holds. Let LðqÞ� denote the normal
subgroup of GðqÞ generated by LðqÞ. Now every unipotent element of GðqÞ is of finite
order and so lies in a conjugate of some YiðqÞ, by Theorem 3.5. It follows that
LðqÞ� ¼ UðqÞ. r

We now show that rðqÞ is not bounded.

Lemma 3.7. With the above notation, for infinitely many q we have

rðqÞf 2:

If rðq 0Þf 2 and q 0 ¼ q1 n q2 n q3 n � � � is an infinite properly descending chain of O-ideals,
then

rðqiÞ ! y; as i ! y:

Proof. We note that, if GðqÞ ¼ Fs � H, where H is a subgroup of GðqÞ, then rðqÞf s.
By Theorem 3.1 together with [S], Theorem 13, p. 55, it follows that G ¼ A �W B, where

(i) B ¼ GðRÞ, for some ray R and a lift j : R ! T ;

(ii) W ¼ Gv, for some v A VðTÞ.
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Now B is infinite (since G is non-uniform) and W is finite. If A ¼ W , then GðqÞ is nilpotent
by Lemma 3.4, for any proper q. This contradicts Lemma 1.1. We conclude that W 3A.

It is well-known that, for any q,

rðqÞf 1 þ jG : W � GðqÞj � jG : A � GðqÞj � jG : B � GðqÞj:

We now restrict our attention to the (all but finitely many) q for which W XGðqÞ ¼ fIng.
Among these are infinitely many q 0 for which

jA � Gðq 0Þ : Gðq 0Þj > jW � Gðq 0Þ : Gðq 0Þj and jB � Gðq 0Þ : Gðq 0Þj > 2jW � Gðq 0Þ : Gðq 0Þj:

It follows that rðq 0Þf 2. For the second part, it is clear that

rðqiþ1Þf rðqiÞf 2 ðif 1Þ:

Fix i. Then, by Theorem 3.5, GðqiÞ ¼ Fr 0 � H, say, where r 0 ¼ rðqiÞ. For any t > i, it follows
from the Kurosh subgroup theorem and the Schreier formula that rðqtÞ > r 0, unless
GðqtÞXFr 0 ¼ Fr 0 and GðqiÞ ¼ GðqtÞ � Fr 0 . We choose t so that GðqiÞ3GðqtÞ. r

Lemma 3.7 is already known for the case G ¼ SL2, S ¼ fvg and G ¼ SL2ðOÞ. See the
proof of [Mas1], Theorem 3.6.

Before providing a complete description of CðGÞ for the non-uniform case we first es-
tablish a special property of unipotent groups in rank one algebraic groups.

4. The congruence kernel of a unipotent group

We assume that G, k, O and kv are as above. Let K be an algebraically closed field
containing kv. In view of Theorem 2.2 we will assume from now on that k is a function field,
with char k ¼ p. (Although a number of results in this section also hold for number fields.)
Throughout P denotes a minimal kv-parabolic subgroup of G and U denotes its unipotent
radical (also defined over kv). Let U ¼ UðOÞ. Now by [BT2], 4.7. Proposition, it follows
that the congruence kernel

CðUÞ ¼
T

q3f0g
ÛUðqÞ

is nilpotent of class at most 2. The principal aim of this section is to prove that CðUÞ is in
fact abelian.

We note that since G is k-isotropic it has k-rank one. Making use of [PRag], it follows
from Tits Classification [T] that G is isomorphic to one of a (finite) number of types. In Tits
notation [T] (adapted) we conclude that G is isomorphic to one of the following:

(a) inner type A;

(b) outer type A2dþ1 which becomes inner over kv;
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(c) outer types A2, A3;

(d) types C2, C3;

(e) types D3, D4, D5.

Now if G is an inner form of type A then GðkvÞ ¼ SL2ðDÞ where D is a central simple di-
vision algebra over kv. In this case it is known that U is abelian. This is also true when G is
of type C2. (See [PRag], 1.1, 1.3 for more details.) For case (b) the groups can be realised as
two-dimensional special unitary groups over a division algebra D of degree d with centre
K , where K is a separable quadratic extension of k. (The description of the groups involves
an involution (of the second kind) which is defined on D.) Now the place v of k splits over
K and so, over kv, G is of inner type A2dþ1. Here then U is also abelian. (See [PR], p. 352.)
For the purposes of this section therefore we need not consider these cases any further. For
outer forms of type A2 and A3 GD3 the Tits indices are

while for type C3 it has the following form:

Finally for types D4 and D5 the indices are

We now recall some generalities on reductive algebraic k-groups which will be useful
later on. Let G ¼ GðKÞ and g ¼ LieG, the Lie algebra of the algebraic group G. Let X�ðGÞ
denote the set of all cocharacters of G, i.e. the set of all rational homomorphisms from
the multiplicative group K� to G. Note that for any l A X�ðGÞ the group lðK�Þ is a 1-
dimensional torus in G.

Figure 1
Figure 2

Figure 3

Figure 4

Figure 5
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Given f A X�ðGÞ and g A G we say that the limit lim
t!0

fðtÞgfðt�1Þ exists if the

morphism from K� to G sending t A K� to fðtÞgfðt�1Þ A G extends to a morphism from K

to G. Let

PðfÞ :¼
�

g A G

���� lim
t!0

fðtÞgfðt�1Þ exists

�
;

UðfÞ :¼
�

g A G

���� lim
t!0

fðtÞgfðt�1Þ ¼ 1

�
:

It is well-known that PðfÞ is a parabolic subgroup of G and UðfÞ is the unipotent radical
of PðfÞ. Moreover, if the morphism f is defined over k, then both PðfÞ and UðfÞ are k-
defined subgroups of G; see [Sp], I, 4.3.4 and II, 3.3.1.

Crucial for our purposes is the following surprising result. It ensures that the structure
of any CðUÞ can be deduced from a detailed description of one particular U. (This result in
fact holds for any global field.)

Theorem 4.1. If U is nonabelian, then U is defined over k.

Proof. Let P ¼ PðKÞ and U ¼ UðKÞ. Obviously, P is a parabolic subgroup of G
and U ¼ RuðPÞ, the unipotent radical of P. Choose a maximal torus T of G contained in
P and let F denote the root system of G relative to T. Denote by XðTÞ the lattice of ra-
tional characters of T, and let D be a basis of simple roots in F. Adopt Bourbaki’s num-
bering of simple roots and denote by ~aa the highest root of F with respect to D.

Let a4 denote the coroot corresponding to a A F, an element in X�ðTÞHX�ðGÞ. Re-
call a4ðK�Þ is a 1-dimensional torus in T. As usual, we let Ua ¼ fxaðtÞ j t A Kg denote the
root subgroup of G corresponding to a; see [St], §3. Given x A G we denote by ZGðxÞ the
centraliser of x in G.

Case 1. We first suppose that G is not of type C3. The above discussion then shows
that G is of type A2, A3, D4 or D5. A quick look at the Tits indices displayed above reveals
that P is G-conjugate to the normaliser in G of the 1-parameter unipotent subgroup U~aa.
From this it follows that in our present case the derived subgroup of U has dimension 1
as an algebraic group and coincides with the centre Z of U. Moreover, Z is G-conjugate
to U~aa.

By our assumption, the derived subgroup ½U ;U � contains an element u3 1. Then

u A ½U ;U �H ½UðkvÞ;UðkvÞ�H ½U;U� ¼ Z:

Since the subgroup Z is T-invariant, the preceding remark implies that there is a long root
b A F such that U ¼ Ub. Then u ¼ xbðaÞ for some nonzero a A K. We claim that the cen-
traliser ZGðuÞ is defined over k. To prove this claim it su‰ces to verify that the orbit mor-
phism g 7! gug�1 of G is separable; see [Sp], II, 2.1.4. The latter amounts to showing that
the Lie algebra of ZGðuÞ coincides with gu :¼ fX A g j ðAd uÞðXÞ ¼ Xg.

After adjusting D, possibly, we can assume that b ¼ ~aa. For each a A F we choose a
nonzero vector Xa in ga ¼ LieUa and let t denote the Lie algebra of T. Denote by g 0 the
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K-span of all Xg with g B fG~aag and set gð~aaÞ :¼ g�~aa l tl g~aa. Clearly, g ¼ g 0 l gð~aaÞ. Using
[St], §3, it is easy to observe that both g 0 and gð~aaÞ are ðAd uÞ-stable and one can choose X~aa

such that

ðAd uÞðXgÞ ¼ Xg þ a½X~aa;Xg� ðEXg A g 0Þ:

Since ~aa is long, standard properties of root systems and Chevalley bases imply that if g A F
is such that g3�~aa and gþ ~aa A F, then ½X~aa;Xg� ¼ lgX~aaþg for some nonzero lg A K; see [St],
Theorem 1. From this it follows that gu X g 0 coincides with the K-span of all Xg such that
g B fG~aag and ~aaþ g B F. On the other hand, the commutator relations in [St], Lemma 15
imply that each such Xg belongs to Lie ZGðuÞ. Therefore, gu X g 0 HLie ZGðuÞ.

The di¤erential d~aa is a linear function on t. Since G is simply connected, the equality
d~aa ¼ 0 holds if and only if ~aa ¼ pm for some m A X ðTÞ. The latter holds if and only if p ¼ 2
and G is of type A1 or Cn. Thus, in the present case we have that d~aa3 0. As

ðAd uÞðhÞ ¼ h � aðd~aaÞðhÞX~aa ðEh A tÞ;

this implies that gu X gð~aaÞ ¼ g~aa l ker d~aa. But then gu X gð~aaÞHLie ZGðuÞ, forcing
gu LLie ZGðuÞ. Since Lie ZGðxÞL gx for all x A G, we now derive that the group ZGðuÞ is
defined over k. Hence the connected component (of the identity of) ZGðuÞ� is defined over
k, too; see [Sp], II, 2.1.1.

Let C denote the connected component of the centraliser ZGðU~aaÞ. The argument
above shows that LieC ¼ Lie ZGðuÞ. Since CLZGðuÞ�, we must have the equality
ZGðuÞ� ¼ C. Then C is a k-group, hence contains a maximal torus defined over k, say T 0.
As ker ~aaHZGðuÞ, the torus T 0 has dimension l � 1, where l ¼ rkG. Let H denote the cen-
traliser of T 0 in G. By construction, H is a connected reductive k-group of semisimple rank
1 containing U~aa. Since G is simply connected, so is the derived subgroup of H; see [SS], II,
Theorem 5.8. As U~aa is unipotent, it lies in ½H;H�. As 13 u A GðkÞX ½H;H�, the group
½H;H� is k-isotropic. The classification of simply connected k-groups of type A1 now shows
that ½H;H�G SL2ðKÞ as algebraic k-groups. As a consequence, u belongs to a k-defined
Borel subgroup of ½H;H�; call it B. Since u commutes with U~aa, it must be that
U~aa ¼ RuðBÞ.

Let S be a k-defined maximal torus of B. Since ½H;H� is k-isomorphic to SL2ðKÞ,
there exists a k-defined cocharacter m : K� ! ½H;H� such that

S ¼ mðK�Þ; mðtÞx~aaðt 0ÞmðtÞ�1 ¼ x~aaðt2t 0Þ ðEt; t 0 A KÞ:

Then S is k-split in G, and hence it is a maximal kv-split torus of G (recall that G has
kv-rank 1). Since S normalises U~aa, it lies in P. As P is defined over kv, there exists a kv-
defined cocharacter n : K� ! P such that P ¼ PðnÞ; see [Sp], II, 5.2.1. Since mðK�Þ and
nðK�Þ are maximal kv-split tori in P, they are conjugate by an element of U; see [Sp], II,
Theorem 5.2.3 (iv). In conjunction with the earlier remarks this yields that rn ¼ Int x � sm

for some x A U and some positive integers r and s. But then

PðmÞ ¼ PðsmÞ ¼ PðInt x � smÞ ¼ PðrnÞ ¼ P:

Since m is defined over k, so are P and U; see [Sp], II, 3.1.1.
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Case 2. Next suppose that G is of type C3 and p3 2. As before, we denote by n a
kv-defined cocharacter in X�ðPÞ such that P ¼ PðnÞ. Let Guni and gnil denote the unipotent
variety of G and the nilpotent variety of g, respectively. These are a‰ne varieties defined
over k. Since G is simply connected and p is a good prime for F, the Bardsley-Richardson
projection associated with a semisimple k-representation of G induces a k-defined, G-
equivariant isomorphism of varieties

h : Guni !@ gnil

such that hðUÞ ¼ LieU; see [McN], 8.5, for more detail. Set X :¼ hðuÞ, a k-rational nilpo-
tent element of g. Since X is an unstable vector of the ðAdGÞ-module g, associated with X

is a nonempty subset ~LLX HX�ðGÞ consisting of the so-called optimal cocharacters for X ;
see [P], 2.2, for more detail. Since in the present case the orbit map g 7! ðAd gÞðX Þ of G
is separable at X , by [SS], I, §5 for example, it follows from the main results of
[McN] that ~LLX contains a k-defined cocharacter l such that

�
Ad lðtÞ

�
ðXÞ ¼ t2X for

all t A K�. Since u A ½U;U�, it is immediate from Figure 3 and the definition of h

that ðAd nÞðtÞ ¼ t2mX for some positive integer m. But then lðtÞmnðtÞ�1 A ZGðXÞ for all
t A K�, where ZGðX Þ ¼ fg A G j ðAd gÞðX Þ ¼ Xg is the centraliser of X in G.

Since l gives an optimal torus for X , the instability parabolic subgroup PðlÞ contains
ZGðXÞ; see [P], 2.2, for example. Since l is defined over k, so is PðlÞ; see [Sp], II, 3.1.1. As
lðK�ÞHPðlÞ, the preceding remark yields nðK�ÞHPðlÞ.

Since nðK�Þ and lðK�Þ are maximal kv-split tori in PðlÞ, they are conjugate in PðlÞ;
see [Sp], II, 5.2.3. It follows that there exists x A PðlÞ such that rn ¼ Int x � sl for some pos-
itive integers r and s. But then rn A ~LLX ; see [P], 2.2, for example. As a result,

P ¼ PðnÞ ¼ PðrnÞ ¼ PðlÞ:

Since l is defined over k, so are P and U, see [Sp], II, 3.3.1.

Case 3. Finally, suppose that G is of type C3 and p ¼ 2. In this case we cannot
argue as in Case 2 because p ¼ 2 is bad for F. We shall argue as in Case 1 instead. Let
b0 ¼ a1 þ 2a2 þ a3 ¼ e1 þ e2, the highest short root in F, and

G0 :¼ fGa1;Ga3g;

G1 :¼ fa2; a1 þ a2; a2 þ a3; a1 þ a2 þ a3g;

G2 :¼ f2a2 þ a3; b0; 2a1 þ 2a2 þ a3g:

According to Figure 3, it can be assumed that U is generated by the unipotent root
subgroups Ug with g A G1 WG2. Moreover, hUg j g A G2i is a central normal subgroup
of U containing the derived subgroup of U. Furthermore, P is generated by T, U, and
hUg j g A G0i.

Since p ¼ 2, combining the above description of U with Steinberg’s relations [St],
Lemma 15, shows that ½U;U� ¼ Ub0

and P coincides with the normaliser of Ub0
in G. It

follows that ½U ;U � contains an element u ¼ xb0
ðaÞ for some nonzero a A K. Consequently,
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dim Lie ZGðuÞ ¼ dim ZGðuÞ ¼ dimP� 1:

We adopt the notation of t, Xg, gg, and gu introduced in Case 2. For i A fG1;G2g, we de-
note by gi the K-span of all Xg with g AGGi, and let g0 be the K-span of t and all Xg with
g A G0. Then LieP ¼

L
if0

gi. The decomposition

g ¼ g�2 l g�1 l g0 l g1 l g2

gives g a graded Lie algebra structure. In view of [St], §3, we have

ðAd u � IdÞðgkÞL
L
if2

gkþi ðEk f�2Þ:

Take x A gu and write x ¼
P

xi with xi A gi. Combining [St], §3 with the preceding remark
it is straightforward to see that

01 ðAd u � IdÞðx�2Þ1 a½Xb0
; x�2�

	
mod

L
if1

gi



:

On the other hand, standard properties of Chevalley bases (and the fact that G is simply
connected) ensure that ad Xb0

is injective on g�2. Therefore, x�2 ¼ 0. Arguing similarly we
obtain x�1 ¼ 0. As a result, gu LLieP.

Similar to Case 1 we observe that the di¤erential db0 is a nonzero linear function on t.
As ðAd uÞðhÞ ¼ h � aðdb0ÞðhÞXb0

for all h A t, this implies that gu is a proper Lie subalgebra
of LieP. But then dim gu ¼ dim Lie ZGðuÞ, forcing Lie ZGðuÞ ¼ gu. Hence ZGðuÞ is defined
over k. Then so is the connected component of ZGðuÞ; see [Sp], II, 2.1.1.

We now denote by C denote the connected component of the centraliser ZGðUb0
Þ.

The above argument shows that LieC ¼ Lie ZGðuÞ. Then ZGðuÞ� ¼ C, so that C is a k-
group. We let T 0 be a maximal k-defined torus in C and denote by H the centraliser of
T 0 in G. At this point we can repeat verbatim our argument in Case 1 to conclude that
there is a k-defined cocharacter m : K� ! ½H;H� such that mðK�Þ normalises Ub0

. Our ear-
lier remarks then yield mðK�ÞHP. As in Case 1 this implies that both P and U are defined
over k. This completes the proof. r

Remark. Let L=F be a field extension and let G be an absolutely simple, simply con-
nected algebraic F -group. Suppose that char F is either zero or a very good prime for G

(the list of very good primes is well-known and can be found in [McN], 2.1, for example).
Suppose further that G has L-rank 1 and let P be a minimal parabolic subgroup of G de-
fined over L. Let U be the unipotent radical of P and suppose that

½UðLÞ;UðLÞ�XGðFÞ3 f1g:

Then it follows from the argument used in Case 2 of the proof of Theorem 4.1 that U is
defined over F . (One should also keep in mind that ½U; ½U;U�� ¼ f1g, which one can see
by analyzing the list of Tits indices in [Sp], pp. 81–83.) Our proof of Theorem 4.1 suggests
that this might even be true without any restrictions on the characteristic of F .
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Lemma 4.2. Let Pi be a minimal parabolic k-subgroup of G with unipotent radical Ui

and let UiðOÞ ¼ Ui, where i ¼ 1; 2. Then

CðU1ÞGCðU2Þ:

Proof. By standard Borel-Tits theory P1, P2 (and hence U1, U2) are conjugate over
k. The result follows from [Mar], Lemma 3.1.1, p. 60. r

Our next result is especially important. We recall from [BT2], 4.7. Proposition, that
½U ;U � is a central subgroup of U .

Lemma 4.3. Let Z ¼ ZðOÞ be a (possibly trivial) central subgroup of U , containing

the commutator subgroup ½U ;U �, such that U=Z is a countably infinite elementary abelian p-

group. Suppose further that, if N is any subgroup of finite index in U , then

ZðqÞeN;

for some non-zero O-ideal q.

Then CðUÞ is isomorphic to the direct product of 2@0 copies of Z=pZ.

Proof. Let C ¼ CðUÞ and c ¼ 2@0 . Since any vector space of countably infinite di-
mension has c hyperplanes, the hypotheses ensure that U has c finite index subgroups. On
the other hand O has only countably many ideals and so U has @0 congruence subgroups.
It follows that

cardðCÞ ¼ 2c:

The hypotheses also ensure that

C XZ ¼ f1g;

where Z denotes the closure of Z in ÛU . It follows that C embeds in

ÛU=Z G V̂V ;

where V ¼ U=Z. The result follows. r

Note that Lemma 4.3 applies to the case where U is a countably infinite elementary
abelian p-group. For the remainder of this section we say that any U with a central sub-
group Z satisfying the hypotheses in the statement of Lemma 4.3 has property P. We now
proceed to prove that this lemma applies to all CðUÞ on a case-by-case basis.

Case 1. Outer types A2, A3. Let K be a (Galois) quadratic extension of k, and let s
be the generator of the Galois group of K=k. Let f be the s-hermitian, non-degenerate
form in n þ 1 variables over K determined by the matrix

F ¼
0 0 1

0 F0 0

1 0 0

0
B@

1
CA;
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where (i) F0 ¼ 1, when n ¼ 2, and (ii) F0 is a s-hermitian, anisotropic 2 � 2 matrix over K,
when n ¼ 3. As usual, for any matrix M over K , we put M � ¼ ðM sÞ tr. For n ¼ 2; 3 we
define

SUðK; f Þ :¼ fX A SLnþ1ðKÞ jX �FX ¼ Fg:

Clearly we can represent this group in SL2nþ2ðkÞ by means of any 2-dimensional represen-
tation of K over k. The following is an immediate consequence of [T].

Theorem 4.4. Let G be of outer type An where n ¼ 2; 3. Then there exist K, f of

above type such that

Gð¼ GðkÞÞGSUðK ; f Þ:

We now denote by UTðK; f Þ the set of all upper unitriangular matrices in SL2nþ2ðkÞ
contained in SUðK; f Þ.

Lemma 4.5. If G is of outer type An where n ¼ 2; 3, then there exists a minimal par-

abolic k-subgroup P0 of G with unipotent radical U0, such that

U0ðkÞGUTðK ; f Þ:

Proof. First, let us consider G of outer type A2. Let K=k and s be as before, and let
A be any commutative algebra over k. Then s extends uniquely to an A-linear involution
on the K-algebra Ank K . Let GðAÞ ¼ fg A SL3ðAnk KÞ j g�Fg ¼ Fg, where g� ¼ ðgsÞtr

and

F ¼
0 0 1

0 1 0

1 0 0

0
B@

1
CA:

It follows from the Tits classification that GðAÞ is the group of A-rational points of a simple
algebraic k-group k-isomorphic to G. Thus we may assume without loss of generality that
GðKÞ ¼ GðKÞ.

Identify K with Knk k HKnk K, and define n A X�
�
SL3ðKnk KÞ

�
by setting

nðtÞ :¼ diagðt; 1; t�1Þ ðEt A K�Þ:

Put S :¼ nðK�Þ. As S HGðKÞ, we have that n A X�
�
GðKÞ

�
. The above description of G

yields that the morphism n : K� ! GðKÞ is defined over k.

Direct computation shows that the parabolic subgroup of SL3ðKnk KÞ associated
with n is nothing but the group of all upper triangular matrices in SL3ðKnk KÞ. In other
words

�
PðnÞ

�
ðKÞ is nothing but the group of all upper triangular matrices in GðKÞ. As a

consequence, the unipotent radical of
�
PðnÞ

�
ðKÞ coincides with the group of all upper uni-

triangular matrices in GðKÞ. More precisely, for a; b; g A Knk K define
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Tða; b; gÞ :¼
1 a b

0 1 g

0 0 1

0
B@

1
CA:

Then
�
UðnÞ

�
ðKÞ ¼ fTða; b; gÞ j g ¼ �as; b þ bs ¼ �aasg. Since G has k-rank 1, the group�

UðnÞ
�
ðKÞ must be equal to the unipotent radical of a minimal k-parabolic subgroup of

GðKÞ.

We consider outer type A3 now. In this case also, K=k and s are as before, and for
any commutative algebra A over k, s extends uniquely to an A-linear involution on the K-
algebra K nk A. The group GðAÞ ¼ fg A SL4ðK nk AÞ j g�Fg ¼ Fg, where g� ¼ ðgsÞ tr and

F ¼

0 0 0 1

0 a b 0

0 bs d 0

1 0 0 0

0
BBB@

1
CCCA:

From the Tits classification, we have that GðAÞ is the group of A-rational points of a simple
algebraic k-group k-isomorphic to G. Thus we may assume without loss of generality that
GðKÞ ¼ GðKÞ.

Identifying K with Knk k HKnk K , we get a cocharacter n A X�
�
SL4ðKnk KÞ

�
by

setting

nðtÞ :¼ diagðt; 1; 1; t�1Þ ðEt A K�Þ:

Put S :¼ nðK�Þ. As S HGðKÞ, we have that n A X�
�
GðKÞ

�
. The above description of G

yields that the morphism n : K� ! GðKÞ is defined over k. Exactly, as in the case of A2,
an easy computation shows that the unipotent radical of the (minimal) k-parabolic sub-
group associated to n consists of the upper unitriangular matrices in GðKÞ. r

For n ¼ 2; 3 we denote the ðn þ 1Þ � ðn þ 1Þ matrix

1 a b

0 1 g

0 0 1

0
B@

1
CA

by Tða; b; gÞ, where a and b tr are 1 � ðn � 1Þ. We note that

Tða1; �; g1ÞTða2; �; g2Þ ¼ Tða1 þ a2; �; g1 þ g2Þ:

Lemma 4.6.

UTðK ; f Þ ¼ fTða; b; gÞ A SUðK; f Þ j a ¼ �g�F0; b þ bs ¼ �g�F0gg:

Proof. We note that any 2 � 2 unipotent matrix over k representing an element of
K is the identity. In addition the only upper unitriangular matrix Y over K such that
Y �F0Y ¼ F0 is the identity, since F0 is anisotropic. r
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The following is readily verified.

Lemma 4.7. Suppose that Tð�; bi; giÞ A UTðK ; f Þ, where i ¼ 1; 2. Then:

(a) Tð�; x2b1; xg1Þ A UTðK ; f Þ, for all x A k.

(b) ½Tð�; b1; g1Þ;Tð�; b2; g2Þ� ¼ Tð0; l� ls; 0Þ, where l ¼ g�1 F0g2.

The k-subspace of K

V ¼ fs � ss j s A Kg

has k-dimension 1. In choosing a pair of 2 � 2 matrices (with entries in O) as a k-basis for
K , we ensure that one of them, v, say, spans V . With the notation of Lemma 4.5 we put
UT ¼ U0ðOÞ.

Lemma 4.8. UT has property P.

Proof. There exist Tð�; �; giÞ A UT , where i ¼ 1; 2, such that g�1 Ag2 � g�2 Ag1 3 0.
Now let N be any finite index normal subgroup of UT . Then by Lemma 4.7(a) we may
assume that Tð�; �; g1Þ A N. It is easily verified from Lemmas 4.6, 4.7 (a) that

Zð¼ ZðOÞÞ ¼ fTð0; yv; 0Þ j y A Og

is a (non-trivial) central subgroup of UT , containing ½UT ;UT �. Now N XZ then contains
½Tð�; �; g1Þ;Tð�; �; yg2Þ�, for all y A O. It follows that ZðqÞeN, for some non-zero (princi-
pal) O-ideal, q. It is clear from the above that UT=Z is (infinite) elementary p-abelian. r

Case 2. Type C3. Let D be a quaternion division algebra over k and let s be an
involution of D of the first kind (i.e. an anti-homomorphism of D of order 2 which fixes
k). Suppose that Ds, the k-subspace of D containing all elements of D fixed by s, has k-
dimension 3. Let h be the s-skew-hermitian, non-degenerate form in 3 variables over D de-
termined by the matrix

H ¼
0 0 1

0 d 0

�1 0 0

0
B@

1
CA;

where d s ¼ �d 3 0. We define

SUðD; hÞ ¼ fX A SL3ðDÞ jX �HX ¼ Hg:

Clearly we can represent this group in SL12ðkÞ by means of any 4-dimensional representa-
tion of D over k. The following is an immediate consequence of [T].

Theorem 4.9. Let G be of type C3. Then there exist D, h of the above type such that

Gð¼ GðkÞÞGSUðD; hÞ:

61Mason, Premet, Sury, and Zalesskii, Congruence subgroup problem



As above we consider the subgroup UTðD; hÞ of all upper unitriangular matrices in
SL12ðkÞ contained in SUðD; hÞ.

Lemma 4.10. There exists a minimal parabolic k-subgroup P0 of G with unipotent

radical U0 such that

U0ðkÞGUTðD; hÞ:

Proof. The proof will be similar to that of Lemma 4.5. Here, D is a quaternion di-
vision algebra with an involution s of the first kind, and G is the special unitary group of a
non-degenerate s-skew-hermitian form on a 3-dimensional (right) D-vector space. The
form can be represented by the matrix

0 0 1

0 d 0

�1 0 0

0
B@

1
CA; d A D�; d s ¼ �d:

We get a rational homomorphism n : K� ! GðKÞ ¼ SL3ðKnk DÞ by setting

nðtÞ :¼ diagðt; 1; t�1Þ ðEt A K�Þ:

It is defined over k and S :¼ nðK�Þ is a maximal k-split torus of G. The rest of the proof is
as before. r

Continuing with the above notation we use Tða; b; gÞ to denote this time a 3 � 3 up-
per unitriangular matrix over D, where a; b; g A D.

Lemma 4.11.

UTðD; hÞ ¼ fTða; b; gÞ A SUðD; hÞ j a ¼ gsd; b � bs ¼ gs dgg:

Proof. We note that the only unipotent matrix over k representing an element of D

is the identity. r

Lemma 4.8 has the following equivalent.

Lemma 4.12. Suppose that Tð�; bi; giÞ A UTðD; hÞ, where i ¼ 1; 2. Then:

(a) Tð�; x2b i; xgiÞ A UTðD; hÞ, for all x A k.

(b) ½Tð�; b1; g1Þ;Tð�; b2; g2Þ� ¼ Tð0; lþ ls; 0Þ, where l ¼ gs1 dg2.

As we see later for our purposes this case is essentially identical to that of type D3,
when char k ¼ 2, by Lemma 4.11. For now therefore we assume that char k 3 2. The k-
subspace of D

fx A D j xs ¼ �xg
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has k-dimension 1. We may choose four 4 � 4 matrices over k, vi, where i ¼ 1; 2; 3; 4, as a
k-basis for D, with vsi ¼ vi, when i ¼ 1; 2; 3, and v4 ¼ d. We may assume that all the entries
of these matrices lie in O. By considering ðd 3Þs it is clear that d 2 ¼ m, for some (non-zero)
m A O. the following is very easily verified.

Lemma 4.13. When i ¼ 1; 2; 3,

½Tð�; �; riviÞ;Tð�; �; siv4Þ� ¼ Tð0; 2risimvi; 0Þ;

for all ri; si A k.

As before we put UT ¼ U0ðOÞ in the notation of Lemma 4.10.

Lemma 4.14. Suppose that char k 3 2. Then UT has property P.

Proof. We note that by Lemma 4.11 the element Tð�; �; 2rviÞ A UT , for all r A O,
where i ¼ 1; 2; 3; 4. Let

Zð¼ ZðOÞÞ ¼ fTð0; b; 0Þ A UT j bs ¼ bg:

Then from the above Z is a central subgroup of UT , containing ½UT ;UT �. Let N be a nor-
mal subgroup of finite index in UT . From the above, Tð�; �; riviÞ A N for some non-zero
ri A O. Let r0 ¼ r1r2r3. Then

Tð0; 2s1r0mv1 þ 2s2r0mv2 þ 2s3r0mv3Þ A N XZ;

for all s1; s2; s3 A O. It follows that ZðqÞeN, for some non-zero (principal) O-ideal, q. It is
clear from the above that UT=Z is an (infinite) elementary abelian p-group. r

Case 3. Types D3, D4, D5. Let D, s be as above. Let q be a s-quadratic, non-
degenerate form in n variables over D and let q 0 be its associated s-hermitian form, where
n ¼ 3; 4; 5. Suppose further that q has Witt index 1 over k. (When char k ¼ 2 it is assumed
also that q is non-defective.)

Theorem 4.15. Let G be of type Dn, where n ¼ 3; 4; 5. Then there exists q of the above

type and a central k-isogeny

p : G ! SOðqÞ:

In addition, if U is the unipotent radical of a minimal parabolic k-subgroup of G, then pðUÞ is

the unipotent radical of a minimal parabolic k-subgroup of SOðqÞ which is k-isomorphic to U.

Proof. Follows from [T] and [BT1], Propositions 2.20, 2.24. r

We now represent q 0 by means of the n � n matrix over D

L ¼
0 0 1

0 Q 0

1 0 0

0
B@

1
CA;
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where Q is an ðn � 2Þ � ðn � 2Þ anisotropic, s-hermitian matrix. Then the k-rational points
of SOðqÞ are given by

SUðD; q 0Þ ¼ fX A SLnðDÞ jX �LX ¼ Lg:

As before we can use any 4 � 4 representation of D over k to obtain a 4n � 4n representa-
tion of SUðD; q 0Þ over k. We let UTðD; q 0Þ denote the subgroup of all upper unitriangular
matrices in SL4nðkÞ contained in SUðD; q 0Þ. Adapting a previous notation we put

Tða; b; gÞ ¼
1 a b

0 1 g

0 0 1

0
B@

1
CA;

where a, b tr are matrices of type 1 � ðn � 2Þ over D ðn ¼ 3; 4; 5Þ.

Lemma 4.16. There exists a minimal parabolic k-subgroup of G with unipotent radi-

cal U0, such that

U0ðkÞGUTðD; q 0Þ:

Proof. We shall replace G by (and work with) the image of G under the central
k-isogeny in 4.15. Thus, we have a quaternion division algebra D, an involution s of the
first kind, and an n � n matrix ðn ¼ 3; 4; 5Þ

L ¼
0 0 1

0 Q 0

1 0 0

0
B@

1
CA

where Q is an ðn � 2Þ � ðn � 2Þ matrix which represents a s-hermitian, anisotropic form.
We are working with the subgroup of SLnðDÞ which preserves L. In this case the rational
homomorphism is:

n : K� ! GðKÞ ¼ SLnðKnk DÞ; t 7! diagðt; 1; . . . ; 1; t�1Þ ðEt A K�Þ:

The size of the matrix is 3, 4 or 5, according as we are in D3, D4 or D5. In all cases, the
proof is similar. r

Lemma 4.17.

UTðD; q 0Þ ¼ fTða; b; gÞ A SUðD; q 0Þ j a ¼ �g�Q; b þ bs ¼ �g�Qgg:

Proof. As before the only unipotent matrix over k representing an element of D is
the identity. In addition the only upper triangular unipotent matrix W over D, such that
W �QW ¼ Q is again the identity. r

Lemmas 4.7 and 4.12 have the following equivalent.

Lemma 4.18. Suppose that Tð�; bi; giÞ A UTðD; q 0Þ, where i ¼ 1; 2. Then:
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(a) Tð�; x2bi; xgiÞ A UTðD; q 0Þ, for all x A k.

(b) ½Tð�; b1; g1Þ;Tð�; b2; g2Þ� ¼ Tð0; l� ls; 0Þ, where l ¼ g�1 Qg2.

The hypotheses on D ensure that the k-subspace of D

fd � d s j d A Dg

has k-dimension 1. We can therefore choose a k-basis of D, consisting of four 4 � 4
matrices, with entries in O, one of which spans this subspace. Let UT ¼ U0ðOÞ, where U0

is as defined in Lemma 4.16. From the above, in a way very similar to Lemma 4.8 we can
prove the following.

Lemma 4.19. UT has property P.

We note that since Lemma 4.19 includes type D3, Lemma 4.14 also holds (for type
C3) when char k ¼ 2. We now come to the main conclusion of this section.

Theorem 4.20. Let U be the unipotent radical of a minimal parabolic kv-subgroup of

G and let U ¼ UðOÞ. Then the congruence kernel CðUÞ is isomorphic to the direct product of

2@0 copies of Z=pZ.

Proof. There are two possibilities. If U is abelian then, from [T], G is either inner
type A or type C2. From [PRag], 1.1, 1.3, and standard Borel-Tits theory it follows that
U is an elementary abelian p-group. We can now apply Lemma 4.3.

Alternatively U is defined over k by Theorem 4.1. The result follows from Lemmas
4.2, 4.3, 4.8, 4.14 and 4.19. r

5. Non-uniform arithmetic lattices: profinite results

Continuing from the previous section we assume that k is a function field with
char k ¼ p. Let A and B be profinite groups. We will denote by

A q B

the free profinite product of A and B. See [RZ], p. 361.

Let F̂F s denote the free profinite group of ( finite) rank s, where sf 1.

Lemma 5.1. With the above notation, for all but finitely many q,

ĜGðqÞG F̂F r q L̂LðqÞ;

where:

(a) L̂LðqÞ is a free profinite product of nilpotent pro-p groups, each of which is of the

type ŶYðqÞ, where
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YðqÞ ¼ GXUðqÞ

for some unipotent radical U of a minimal kv-parabolic subgroup of G. (In which case ŶYðqÞ is

nilpotent of class at most 2 and is generated by torsion elements of p-power order.)

(b) The normal subgroup of ĜGðqÞ generated by L̂LðqÞ is ÛUðqÞ.

(c) r ¼ rðqÞ is not bounded.

Moreover,

ĜGðqÞ=ÛUðqÞG F̂F r:

Proof. Follows from Theorem 3.5 and Lemma 3.7. r

A projective group is, by definition, a closed subgroup of a free profinite group.

Lemma 5.2. Let N be a normal, closed, non-open subgroup of ĜGðqÞ. Then, for all but

finitely many q,

N GP q NðqÞ;

where:

(a) NðqÞ is a closed subgroup of ÛUðqÞ and a free profinite product of nilpotent pro-p

groups, each of class at most 2 and each generated by torsion elements of p-power order.

(b) P is a projective group, all of whose proper, open subgroups are isomorphic to F̂Fo.

Proof. This follows from a result of the fourth author [Za1], Theorem 2.1. (See also
[Za1], Theorem 4.1, Lemma 4.2.) r

An immediate consequence of Lemma 5.2 and Lemma 1.3 is the following.

Lemma 5.3. With the above notation,

CðGÞGP q NðGÞ;

where:

(a) NðGÞ is a closed subgroup of all ÛUðqÞ and a free profinite product of elementary

abelian pro-p groups.

(b) P is a projective group, all of whose proper, open subgroups are isomorphic to F̂Fo.

Proof. We apply Lemma 5.1 and the proof of Lemma 5.2 to the case N ¼ CðGÞ.
Then CðGÞ is the free profinite product of P, as above, and (in the notation of Lemma
5.1) groups of the type CðGÞX ŶYðqÞ. By Lemmas 1.3 and 3.4 it follows that
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CðGÞX ŶYðqÞ ¼
T

q 03f0g
ĜGðq 0ÞX ŶYðqÞ ¼

T
f0g3q 0eq

ŶYðq 0ÞeCðUÞ:

The result follows from Theorem 4.20. r

Terminology. If we can replace P with F̂Fo in Lemma 5.3, we will say that the prin-

cipal result holds.

Lemma 5.4. Let A and B be profinite groups and let M be a normal, closed subgroup of

A q B:

Then M XA is a factor in the free profinite decomposition of M.

Proof. Follows from [Za1], Theorem 2.1. r

Lemma 5.5. Let P be as in Lemma 5.3 and F be isomorphic to F̂Fo. Then

P q F G F̂Fo:

Proof. See [RZ], Proposition 9.1.11, p. 370. r

Our next two lemmas deal with a special case for which the principal result holds.

Lemma 5.6. Suppose that the set of positive integers t for which there exists a

(continuous) epimorphism

CðGÞ ! F̂F t

is not bounded. Then the principal result holds.

Proof. This follows from the proof of [Za1], Lemma 4.6. r

An immediate application is the following.

Lemma 5.7. Suppose that, for all q, the closure of UðqÞ in G, UðqÞ, is open in G. Then

the principal result holds.

Proof. The hypothesis ensures that jGðqÞ : UðqÞj is finite. We confine our attention
to those (all but finitely many) q for which Theorem 3.5 and Lemma 5.1 hold. Let
CðGÞ ¼ C. Now C � ÛUðqÞ is of finite index in C � ĜGðqÞ ¼ ĜGðqÞ. It follows that

C=C X ÛUðqÞGC � ÛUðqÞ=ÛUðqÞ

is an open subgroup of

ĜGðqÞ=ÛUðqÞG F̂F r:

By [RZ], Corollary 3.6.4, p. 119, C maps onto F̂F r 0 , for some r 0 f r ¼ rðqÞ. The result fol-
lows from Lemmas 3.7 and 5.6. r
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Lemma 5.7 applies, for example, to the case G ¼ SL2, S ¼ fvg and G ¼ SL2ðOÞ (as
demonstrated in [Za1]). It is known ([Mas1], Theorem 3.1) that, when G ¼ SL2ðOÞ, the
‘‘smallest congruence subgroup’’ of G containing UðqÞ,

T
q 03f0g

UðqÞ � Gðq 0Þ ¼ GðqÞ;

for all q. It follows that in this case GðqÞ ¼ UðqÞ, for all q.

We now make use of the Strong Approximation Property for G. We will identify
GðOÞ with the restricted topological product GðÔOÞ. (See Section 1.) We record a well-
known property.

Lemma 5.8. For all v B S, GðOvÞ is virtually a pro-p group.

Proof. In the notation of Section 1, the subgroup GðmÞ is of finite index in GðOvÞ
and is a pro-p group. (See, for example, [PR], Lemma 3.8, p. 138.) r

It is convenient at this point to simplify our notation. We put

C ¼ CðGÞ and L ¼ GðqÞ:

It will always be assumed that Theorem 3.5 applies to q and (by Lemma 3.7) that rðqÞf 2.
We identify L with its embedding in GðÔOÞ (via the ‘‘diagonal’’ embedding of L). We also
identify each GðOvÞ with its embedding as a normal subgroup of GðÔvOvÞ. Let

f : L̂L ! L

denote the natural epimorphism.

Lemma 5.9. For each v B S, the group Nv :¼ f�1
�
LXGðOvÞ

�
is a closed, normal sub-

group of L̂L containing C. Moreover,

Nv GPv q NvðpÞ;

where:

(i) Pv is a projective group, all of whose proper, open subgroups are isomorphic to

F̂Fo.

(ii) NvðpÞ is a closed subgroup of ÛUðqÞ and is a free profinite product of nilpotent

pro-p groups, each of class at most 2 and each generated by torsion elements of p-power

order.

Proof. Follows from Lemma 5.2. r

Our next lemmas will be used to establish another condition under which the princi-
pal result holds.
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Lemma 5.10. Let jGðOÞ : Lj ¼ n and let

pðLÞ :¼
Q

v BS

�
LXGðOvÞ

�
:

Then gn! A pðLÞ for all g A GðÔOÞ.

Proof. Since

jGðOvÞ : LXGðOvÞj ¼ jL �GðOvÞ : Lje jGðÔOÞ : Lje n;

the assertion follows. r

Lemma 5.11. With the above notation,

jGðÔOÞ : pðLÞ:UðqÞj < y:

Proof. Set L� :¼ L=
�
pðLÞ � UðqÞ

�
. The (compact, Hausdor¤) group L� is finitely

generated by Lemma 5.1 and periodic by Lemma 5.10. It follows from Zel’manov’s cele-
brated result [Ze] that L� is finite. r

We are now able to prove the principal result.

Theorem 5.12. If G is non-uniform, then

CðGÞG F̂Fo q NðGÞ;

where NðGÞ is a free profinite product of elementary abelian pro-p groups, each isomorphic to

the direct product of 2@0 copies of Z=pZ.

Proof. There are two possibilities, the first of which can be readily dealt with.

Case A. For all q, we have Pv eC, for all v B S.

For all q and all v B S, it follows from Lemma 5.9 that pðLÞeUðqÞ. The principal
result then follows from Lemmas 5.7 and 5.11. We consider the remaining case.

Case B. There exists q and v B S such that Pv KC.

For such a v there exists an open, normal subgroup L of Nv, containing C, such that
LXPv 3Pv. It follows from Lemma 5.4 that

LG F̂Fo q � � � :

Restricting f to L, there are again two possibilities. If fðF̂FoÞ is trivial, then C X F̂Fo ¼ F̂Fo.
Since C is a closed normal subgroup of L, the principal result follows from Lemmas 5.4
and 5.5.
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Thus, from now on we may assume that fðF̂FoÞ is non-trivial. Note that

LG F̂F n q � � �

for all nf 2. Again restricting f to L there are two cases.

Subcase B (i). fðF̂F nÞ is finite for all nf 2.

It follows that, for all nf 2 we have that C X F̂F n G F̂F n 0 for some n 0 f n; see [RZ],
Theorem 3.6.2, p. 118. Then, as C is a closed, normal subgroup of L,

C G F̂F n 0 q � � �

by Lemma 5.4. Thus C maps onto F̂F n 0 . The principal result follows from Lemma 5.6.

Subcase B (ii). There exists nf 2 such that fðF̂F nÞ is infinite.

We consider fðF̂F nÞ as a subgroup of GðOvÞ. Let M ¼ GðmÞ, as defined in the proof of
Lemma 5.8. Then

�
f�1

�
M XfðF̂F nÞ

��
X F̂F n G F̂F n 0

for some n 0f n, by [RZ], Theorem 3.6.2, p. 118, and, intersecting both sides with C, it fol-
lows that

C X F̂F n ¼ C X F̂F n 0 :

Suppose that M X fðF̂F nÞ is non-abelian. Then by [BL] and Lemma 5.8 this group is
not free pro-p and hence does not satisfy Schreier’s formula [RZ], p. 320, by [RZ],
Theorem 8.4.7, p. 321. It follows that F̂F n=C X F̂F n does not satisfy Schreier’s formula. But
then

C X F̂F n G F̂Fo

thanks to [RZ], Corollary 8.4.4, p. 320. The principal result follows from Lemmas 5.4 and
5.5.

It remains to consider the case where M X fðF̂F nÞ is a finitely generated, infinite abe-
lian group. Then by [RZ], Lemma 8.4.5, p. 320 this group does not satisfy the Schreier for-
mula (in which case the principal result holds as above) unless it is infinite cyclic. In the
latter case we can use [RZ], Theorem 8.4.3, p. 319, to conclude that again

C X F̂F n G F̂Fo;

from which the principal result follows as above. r
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ing a number of points, in particular for providing the reference in [BT2] used in Lemma
3.4.

Added comment. The referee has indicated that a recent paper of P. Gille, ‘‘Unipo-
tent subgroups of reductive groups in characteristic p > 0’’, Duke Math. J. 114 (2002),
307–328, can be used to provide a shorter proof of Theorem C. However our proof is
more elementary. Moreover our proof can, in principle, be generalized to the case of a re-
ductive group of K-rank 1, where K is any field of positive characteristic. (See the Remark
in Section 4.) Gille’s argument only applies to non-zero characteristic fields with some extra
special properties.
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