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CONTINUOUS FUNCTIONS AND THE GAUSS
LEMMA
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Abstract. In Article 42 of his celebrated book ‘Disquisitiones Arith-
meticae’, Gauss proved the following result:
If the coefficients A,B,C, · · · , N ; a, b, c, · · ·n of two functions of the
form

xm +Axm−1 +Bxm−2 + Cxm−3 + · · ·+N (P )

xµ + axµ−1 + bxµ−2 + cxµ−3 + · · ·+ n (Q)

are all rational and not all integers, and if the product of (P) and (Q)

= xm+µ + Axm+µ−1 +Bxm+µ−2 + etc.+ Z

then not all the coefficients A,B, · · · ,Z can be integers.
This is the famous Gauss lemma which has been rephrased and gen-
eralized in several ways over 150 years. Some of the statements have
only existential proofs while some have surprisingly explicit proofs. We
discuss these aspects of the Gauss lemma and its generalizations.

1. Introduction

If f, g are polynomials in one variable over any commutative ring with unity,
a lemma due (independently) to Dedekind and Mertens from 1892 general-
izes the classical Gauss lemma and asserts that

c(f)deg(g)c(fg) = c(f)deg(g)c(f)c(g).

Here, for a polynomial f , one defines the content of f to be the ideal
c(f) generated by its coefficients. However, one thing that is true over
ANY commutative ring with unity is that, for any f and g, the equality
c(fg) = c(f)c(g) holds if c(f), c(g) are unit ideals. We start first by recall-
ing that the statement “c(fg) = c(f)c(g) if c(f), c(g) are unit ideals" has a
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purely existential proof, and that indeed, no proof is known that is either
constructive or, is accomplished by some algebraic manipulations. Follow-
ing that, we provide a twist in the tale for a certain ring of functions where
a Gauss-lemma-like proof does work. Finally, in the next few sections, we
give a brief tour of some generalizations that the subject of Gauss’s lemma
has led to over the years.

2. Thus spake Gauss

In Article 42 of his celebrated book ‘Disquisitiones Arithmeticae’, Gauss
proved the following result (here is an English translation of his statement):

If the coefficients A,B,C, · · · , N ; a, b, c, · · ·n of two functions of the form

xm +Axm−1 +Bxm−2 + Cxm−3 + · · ·+N (P )

xµ + axµ−1 + bxµ−2 + cxµ−3 + · · ·+ n (Q)

are all rational and not all integers, and if the product of (P) and (Q)

= xm+µ + Axm+µ−1 +Bxm+µ−2 + etc.+ Z

then not all the coefficients A,B, · · · ,Z can be integers.

This is the famous Gauss lemma which is often re-phrased in several ways,
one of which is the following statement:
Over a unique factorization domain (abbreviated as UFD), the product of
primitive polynomials is a primitive polynomial.
Here, the adjective ‘primitive’ refers to a polynomial whose coefficients have
no common divisor in the UFD other than units. The Gauss lemma has
been generalized over time. For instance, Kaplansky showed that the above
statement holds over any integral domain in which any two elements admit
a GCD (greatest common divisor) - these are now known as GCD domains
and we discuss them in a later section here.
Note that over a UFD, any two non-zero non-units have a GCD which is
unique up to multiplication by units. The Gauss lemma can also be thought
of as the assertion that over a UFD, the product of the GCDs of polyno-
mials f and g is the GCD of the polynomial fg (up to multiplication by
units).
The main implication of Gauss’s lemma is that for any UFD A, the poly-
nomial ring A[X] is also a UFD.
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For a polynomial f , one may define the content of f to be the ideal c(f) gen-
erated by its coefficients - this definition makes sense over any commutative
ring with unity. It is evident that we have an inclusion c(fg) ⊆ c(f)c(g) for
polynomials f, g.
The content ideal is the same as the ideal generated by the GCD when the
ring is a PID (principal ideal domain); hence the above is an equality in
this case.
However, it is interesting to observe the subtlety that the inclusion c(fg) ⊆
c(f)c(g) could be proper for polynomials f, g over UFDs A.
For instance, if A = K[X,Y ] for a field A, the polynomials f(t) = X + Y t

and g(t) = X − Y t have the property that fg = X2 − Y 2t2 and hence

c(f)c(g) = (X,Y )2 = (X2, XY, Y 2) ⊃ (X2, Y 2) = c(fg)

where the inclusion is proper.
Another example is A = Z[X] where f(t) = 2 +Xt, g(t) = 2−Xt give

c(f)c(g) = (2, X)2 = (4, 2X,X2) ⊃ (4, X2) = c(fg)

which is a strict inclusion.

3. Existential proofs - a twist in the tale

If f, g are polynomials in one variable over any commutative ring with unity,
a lemma due (independently) to Dedekind and Mertens from 1892 which
will be discussed in detail in the next section asserts that

c(f)deg(g)c(fg) = c(f)deg(g)c(f)c(g).

However, one thing that is true over ANY commutative ring with unity is
that, for any f and g, the equality c(fg) = c(f)c(g) holds if c(f), c(g) are
unit ideals.

Our purpose is to start first by recalling that the statement “c(fg) =

c(f)c(g) if c(f), c(g) are unit ideals" has a purely existential proof, and
that indeed, no proof is known that is either constructive or, is accom-
plished by some algebraic manipulations. This may be instructive to bring
to the notice of the students. Following that, we provide a twist in the tale
for a certain ring of functions where a Gauss-lemma-like proof does work.
Finally, in the next two sections, we give a brief tour of some generalizations
that the subject of Gauss’s lemma has led to over the years.
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First, we recall the existential argument alluded to:

Let R be a commutative ring with unity. Let f =
∑n

i=0 aiX
i, g =

∑m
j=0 bjX

j ∈
R[X] be such that c(f), c(g) are unit ideals; that is,

1 =

n∑
i=0

aiAi =

m∑
j=0

bjBj

for some Ai, Bj ∈ R. If fg =
∑m+n

k=0 ckX
k, then c(fg) is the unit ideal; that

is, there exist Ck ∈ R so that
∑m+n

k=0 ckCk = 1.

To prove this, suppose the ideal generated by c0, · · · , cm+n is a proper ideal,
and let M be a maximal ideal containing it. Then, under the natural ring
homomorphism from R[X] to (R/M)[X], the polynomial fg maps to zero.
However, neither the image of f nor that of g maps to zero which contradicts
the fact that (R/M)[X] is an integral domain.

As mentioned above, the proof is purely existential. Having said this, we
observe now that for a ring like C[0, 1], the ring of real-valued continuous
functions on [0, 1], which is far from being even an integral domain, we pro-
vide a twist in the tale by showing that a proof akin to Gauss’s lemma works.

Here is the result and a constructive proof.

Lemma. Let R = C[0, 1] with addition and multiplication of functions
given in terms of their values. Let F =

∑n
i=0 fiXi, G =

∑m
i=0 giX

i ∈ R[X].
If c(F ) = c(G) = R, then c(FG) = R; further, one can prove this construc-
tively.
Note that if FG =

∑m+n
i=0 hiX

i, then c(FG) = R if, and only if, h0, · · · , hm+n

have no common zero in [0, 1]. This is because if hi’s have no common zero,
the elements Hi =

hi∑
i h

2
i
∈ R satisfy

∑
i hiHi = 1, the constant function

1, which is the unity of R. Therefore, the assumptions c(F ) = c(G) = R

imply that the fi’s have no common zero and the gj ’s have no common zero
as well. Consider an arbitrary a ∈ [0, 1]. Then we would have a smallest
r with 0 ≤ r ≤ n for which fr(a) 6= 0; similarly, we would have a smallest
s with 0 ≤ s ≤ m so that gs(a) 6= 0. Evidently hr+s(a) = fr(a)gs(a) 6= 0,
which means all the hi’s cannot have a common zero. Hence c(FG) = R.
This proof is just like the Gauss-lemma proof for Z.
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4. Dedekind-Mertens

As mentioned in the previous section, if f, g are polynomials in one vari-
able over any commutative ring with unity, Dedekind and Mertens inde-
pendently, proved the so-called (by Krull) Dedekind-Mertens Lemma. It
has been generalized by Prüfer and many others in diverse directions. The
readers can refer to [6] for a recent description of some beautiful gener-
alizations. The paper [4] which defines and studies something called the
Dedekind-Mertens number mentions the interesting history of Dedekind and
Mertens’s works. One form of the original lemma asserts that

c(f)deg(g)c(fg) = c(f)deg(g)c(f)c(g).

Here is a lovely, simple Gauss-lemma-like proof due to Coquand - who
champions the cause of constructive mathematics.

Coquand’s Proof of Dedekind-Mertens

Let A be a commutative ring with unity. Suppose f =
∑n

i=0 fiX
i, g =∑m

j=0 gjX
j and h = fg =

∑m+n
r=0 hrX

r in A[X]. Write the content ideals
c(f) = (f0, · · · , fn), c(g) = (g), · · · , gm) and c(h) = (h0, · · · , hm+n). We
may take the ring A to be Z[f0, · · · , fn, g0, · · · , gm] where the fi’s and
gj ’s can be regarded as indeterminates. We wish to prove c(f)m+1c(g) ⊆
c(f)mc(h) because the reverse inclusion is evident. Let F,G,H denote, re-
spectively, the abelian subgroup of A generated by the coefficients of f, g, h.
We wish to prove:

Fm+1G ⊆ FmH.

This will be proved by induction on m where it is obvious when m = 0.
Assume m > 0 and let Gm denote the additive subgroup of G generated by
g0, g1, · · · , gm−1. As usual, a symbol fk for k < 0 or k > n stands for 0.
Note

hr = fr−mgm +
∑
s<m

fr−sgs.

Therefore, ∑
s<m

fr−sgs = hr − fr−mgm ∈ H + Fgm

which gives, by the definition of Gm that

FGm ⊆ H + Fgm.
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So, inductively, F 2Gm ⊆ FH + F 2gm,

F 3Gm ⊆ F 2H + F 3gm

etc. Inductively, we obtain

FmGm ⊆ Fm−1H + Fmgm.

Therefore, for 0 ≤ i ≤ n, we have

fiF
mGm ⊆ fiF

m−1H + fiF
mgm ⊆ FmH + fiF

mgm.

On the other hand, since

figm = hi+m −
∑
s<m

fi+m−sgs ∈ H + fi+1Gm + · · ·+ fnGm.

This implies that for all 0 ≤ i ≤ n,

fiF
mGm ⊆ FmH + fi+1F

mGm + · · ·+ fnF
mGm.

Taking respectively i = n, n− 1, · · · etc., we have for all 0 ≤ i ≤ n that

fiF
mGm ⊆ FmH.

Hence Fm+1Gm ⊆ FmH which proves the assertion.

5. GCD Domains

As we saw, some versions of Gauss’s lemma involve the GCD of elements.
The notions of GCD and LCM can be generalized to any integral domain D

in an obvious manner but they do not always exist for two given elements
and there are also some surprises. Before starting a discussion, recall that
the GCD and LCM of a set of integers is defined only up to sign; so, in
reality, one should call it “A" GCD (but understand that it is unique up to
multiplication by a unit).

In an integral domain D, define “a" GCD of two non-zero elements a 6= b

in D to be an element d such that d|a, d|b and any c dividing both a and
b divides d also. It is clear that if c, d are two GCDs of a and b, then they
are associates as we are in a domain. A similar definition of “a" LCM is
easily given. The first fact which may not be all that surprising is that two
elements may not have a GCD at all (because there is no reason to expect
they should). But, a fact that is surprising is that two elements may have a
GCD but may not an LCM. Moreover, the opposite implication is not true.
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For instance, it is a little exercise to check that in the domain K[X2, X3]

for a field K, the elements X2, X3 have GCD 1 (and its associates) but
do not have any LCM. We discuss these aspects in some detail now. The
readers are invited to read the beautiful exposition by D D Anderson in
[1]. For other interesting exercises on GCD domains, readers may refer to
Kaplansky’s book [5].

We shall use the symbol (a, b) for the ideal generated by a and b and write
the qualifiers GCD, LCM etc. explicitly. Anderson uses the symbols [a, b]

and ]a, b[ for GCD and LCM respectively but these are not so common. We
first state the following obvious lemma:

Lemma. Let D be an integral domain, and let 0 6= a, b ∈ D. Then,
GCD(a, b) exists if, and only if, the ideal ∩{(c) : (c) ⊃ (a, b)} is principal;
LCM(a, b) exists if, and only if, the ideal

∑
{(c) : (c) ⊂ (a) ∩ (b)} is

principal.
In the respective cases, a generator of the corresponding principal ideal is,
respectively, a GCD and an LCM of a and b.
The statements generalize to a finite number of elements.

Proposition. Let D be an integral domain and let 0 6= a, b ∈ D.
(i) If LCM(a, b) exists, then GCD(a, b) also exists and they satisfy

GCD(a, b)LCM(a, b) = ab

up to units.
(ii) If c ∈ D, and if GCD(ca, cb) exists, then GCD(a, b) exists and

c.GCD(a, b) = GCD(ca, cb).

Consequently, if GCD(a, b) exists, say d, then the GCD of a/d and b/d

exists, and equals 1.
(iii) LCM(a, b) exists if, and only if, GCD(ca, cb) exists for all c ∈ D.
(iv) GCD(a, b) exists for all 0 6= a, b ∈ D if, and only if, LCM(c, d) exists
for all 0 6= c, d ∈ D.
Proof. We prove (i) first.
Suppose LCM(a, b) exists; say `. We want to show that d := ab/` equals
GCD(a, b). As a = d`/b and b = d`/a, it follows that d divides both a and
b. Now suppose that h is a common divisor of a and b. Now as a, b both
divide ab/h, ` divides ab/h which implies that h divides ab/` = d. Thus,
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we have proved (i).
The proof of (ii) is obvious, and we skip it.
Now, we prove (iii). We first show that if LCM(a, b) exists, then so does
LCM(ca, cb) for all c ∈ D. Note that both ca, cb divide cLCM(a, b). Now
suppose m is a common multiple of ca, cb. Then c divides m and both a, b

divide m/c. Thus LCM(a, b) divides m/c and so cLCM(a, b) divides m.
Thus LCM(ca, cb) exists, and equals cLCM(a, b). In particular, by (i),
GCD(ca, cb) exists for every c.
Now, we claim that if GCD(ca, cb) exists for every c, then LCM(a, b) exists
and equals ab/GCD(a, b). Clearly both a, b divide ab/GCD(a, b). Now,
suppose both a, b divide m. Then ab is a common divisor of ma and mb

and so ab divides GCD(ma,mb) = mGCD(a, b) by (ii) above. This implies
that ab/GCD(a, b) divides m. Thus (iii) follows.
Finally, (iv) is an immediate consequence of (i),(ii),(iii).

Definition. A GCD-domain is an integral domain D such that the equiva-
lent properties in (iv) of the proposition holds; that is, each pair of non-zero
elements has a GCD as well as an LCM. The nomenclature is due to I. Ka-
plansky.

Remarks.
(a) In a commutative ring that is not an integral domain, there is no relation
between the existence of an LCM of two elements and the existence of a
GCD. For example, in the ring K[X2, X3]/(X9, X10], an LCM of X5 and
X6 is X8 whereas these elements do not have a GCD.
(b) In contrast with the polynomial ring over a UFD, it is known that there
exist UFDs D such that D[[X]] is not a UFD. It is a fact that these power
series rings cannot be GCD-domains also. The proof of this needs other
characterizations of GCD domains that we do not go into here, and refer to
Anderson’s article.

Since UFDs are GCD domains, one can show certain domains such as
Z[
√
−d] (d ≥ 3), are not GCD domains and hence not UFDs by exhibiting

two elements which do not have an LCM. In a proposition below, we will
observe that GCD domains are integrally closed; ‘one-third’ of the domains
in the corollary below (namely, when −d ≡ 1 mod 4) are not even integrally
closed.



CONTINUOUS FUNCTIONS AND THE GAUSS LEMMA 213

Corollary. In each of the domains Z[
√
−d] (d ≥ 3) with d square-free, there

exist two elements a, b such that GCD(a, b) exists but LCM(a, b) does not
exist. In particular, Z[

√
−d] (d ≥ 3), is not a GCD domain and hence, is

not a UFD.
Proof. Here Z[

√
−d] = {a+ b

√
−d : a, b ∈ Z}.

Firstly, suppose that d + 1 is not a prime number. Let d + 1 = pk, where
p is a prime and k ≥ 2. Clearly a2 + db2 6= p for any a, b ∈ Z because the
left hand side is bigger than p if b 6= 0. If p = (a + b

√
−d)(u + v

√
−d)

in Z[
√
−d], then taking complex conjugates we see that u = a, v = −b.

Thus, p = a2 + db2, which is impossible as observed above. Therefore, p
is an irreducible element in Z[

√
−d]. Also p does not divide 1 +

√
−d be-

cause p(a + b
√
−d) = 1 +

√
−d gives pa = 1 which is impossible. Thus,

GCD(p, 1 +
√
−d) exists, and equals 1.

We shall show that GCD(pk, (1+
√
−d)k) does not exist. If it did, then by

the proposition, GCD(pk, (1+
√
−d)k) = k. As 1+

√
−d divides pk = 1+d,

both (1 +
√
−d)k, 1 +

√
−d divide k. Let k = (1 +

√
−d)(a + b

√
−d) =

(a− bd) + (a+ b)
√
−d. This gives a = −b and a− bd = a+ ad = k. Thus

apk = a(1 + d) = k which is a contradiction. In view of the proposition, it
follows that LCM(p, 1 +

√
−d) does not exist.

Suppose now that d ≥ 3 and d + 1 is a prime. Then d is. Let d + 4 = 2k,
for some k > 1. As above, one easily checks that 2 is irreducible and 2 does
not divide 2+

√
−d. Thus GCD(2, 2+

√
−d) exists and equals 1. We show

that GCD(2k, (2+
√
−d)k) does not exist. If it did, then as above, 2+

√
−d

divides k and which in turn implies that 4 + d divides k = (4 + d)/2 in Z,
a contradiction which shows that LCM(2, 2 +

√
−d) does not exist.

Remark. In the above proof, note that when d+1 = pk, p divides d+1 =

(1 +
√
−d)(1 −

√
−d) but p clearly does not divide either of 1 +

√
−d and

1 −
√
−d, showing that p, which is irreducible, is not prime. Similarly in

the second part of the proof, 2 divides d + 4 = (2 +
√
−d)(2 −

√
−d) but

does not divide either of them, which shows that 2 is not prime. This also
proves that Z[

√
−d] (d ≥ 3), is not a UFD.

Proposition. GCD domains are integrally closed.
Proof. Let D be a GCD domain, with quotient field K. Let a/b ∈ K
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satisfy
(a/b)n + an−1(a/b)

n−1 + · · ·+ a0 = 0

where ai ∈ D, a0 6= 0 and GCD(a, b) = 1. The last condition can be
assumed without loss of generality because we have by a proposition above
GCD(a/d, b/d) = 1 if GCD(a, b) = d in a GCD domain. So, we get

an + an−1a
n−1b+ an−2a

n−2b2 + · · ·+ a0b
n = 0.

Then b|an. But GCD(a, b) = 1 implies GCD(am, b) = 1 for all m ≥ 1 by
induction on m; indeed, if this is true for m, then any common divisor c of
am+1 and b divides am+1 and ab but GCD(am+1, ab) = aGCD(am, b) = a.
This shows that b|1; that is, it is a unit. Hence a/b ∈ D.

5.1. Gauss Lemma in GCD domains. In any GCD domain D, Gauss’s
lemma is valid. Indeed, if we define f ∈ D[X] to be primitive if GCD of its
coefficients is 1, then over a GCD domain D, the polynomial fg ∈ D[X] is
primitive if f, g are. This is an easy exercise - the usual proof for UFDs can
be adapted here. But, now we mention another version of Gauss’s lemma
that is valid over integrally closed domains. This version is the closest in
spirit to what Gauss actually stated in his article 42 - albeit, in the case of
Z and Q. The proof is an easy exercise (indeed, it is Ex.8, P.42 of [5]).

Gauss Lemma for Integrally closed domains. If D is an integrally
closed domain with quotient field K, and if f ∈ D[X] is a monic polynomial
such that f = gh with g, h ∈ K[X] monic, then g, h ∈ A[X].

6. Kaplansky’s conjecture

Over any commutative ring A with unity, one defines a polynomial f ∈ A[X]

to be Gaussian if c(f)c(g) = c(fg) holds for all polynomials g ∈ A[X]. One
calls A a Gaussian ring if every polynomial f ∈ A[X] is Gaussian. Several
papers in the last six decades have been written on possible characteriza-
tions of Gaussian rings or Gaussian polynomials. It is known that being
Gaussian is a local property. In particular, it was known for a long time that
if c(f) is locally principal, then f is Gaussian. Similarly, over a domain, it
was known that if c(f) is an invertible ideal, then f is Gaussian. Kaplansky
conjectured that the converse holds:
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Kaplansky’s Conjecture If A is a commutative ring with unity and
f ∈ A[X] is Gaussian, then the ideal c(f) is either invertible or locally
principal.

The authors of [3] mention that this was a question one of them heard in
the 1960’s from Kaplansky. In fact, this conjecture also appeared in the
PhD thesis of Kaplansky’s student H. Tsang in 1965 but has not appeared
in print. Many cases of the conjecture have been proved by Sarah Glaz and
others but it is not completely proved yet, along with other questions raised
by Glaz and others.
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