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Composition of polynomials

B. SURY

Introduction
The motivation to write this paper arose out of the following problem

which was posed in a recent mathematical olympiad:
Given a polynomial P(%) with integer coefficients, show
that there exist non-zero polynomials Q (X), R (X) with
integer coefficients such that P (X) Q (X) is a polynomial
in X2 and P (X) R (X) is a polynomial in.r.

For instance, if P(X) = 2 - 5X + 3X2 + 12.r, then we notice that
Q (X) = 2 + 5X + 3X2 - 12.r serves the purpose for the first part, viz.,

P(X)Q(X) = (2 - 5X + 3X2 + luJ)(2 + 5X + 3r - luJ)
= ((2 + 3,r) - (5X - luJ))((2 + 3X2) + (5X - luJ))
= (2 + 3X2)2 - (5X - luJ)2 = (2 + 3X2)2 - X2 (5 _ 12X2)2.

A moment's thought makes it fairly evident that this trick easily solves
the first part of the problem for a general polynomial P(X). For example,
since P(X) factorises over the complex numbers, we can write

P(X) = c i~ (X - ai), and choose. Q(X) = c i~ (X + a;) so that

P(X)Q(X) = 2 i~ (X2 - af). That both Q(X) and P(X)Q(X) have integer
coefficients follows from the observation that Q (X) = p (-X).

What about the second part, or more generally, does the assertion hold
good if we replace X2, .r by any x* + I? As a matter of fact, it turns out that
we can retain the elementary level of the original problem and still give a
proof for x* which carries over to the general situation where x* is replaced
by an arbitrary, non-constant polynomial f (X). At the end, we indicate a
multi-variable generalisation which is at a slightly higher level of
sophistication. We mention in passing that the decomposability of
polynomials in one variable as a composition of polynomials of smaller
degree, has corne to be studied in depth in the past decade or so, in relation
to solving Diophantine equations of the form f (X) = g (Y) where f. g are
integer polynomials in independent variables X, Y.

I. The original problem for X2, .r
Let us first solve the original problem. Given P(X), consider the

polynomial Q(X) = PC-x)· In other words, if P(X) = ao + a1X + ... + aX",
then

P(X) = (ao + a2X2 + ... ) + X(al + ay¥2 + ... ) = f(X2) + Xg(,r)
for certain polynomials f, g with integer coefficients.
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Taking Q(X) = P(-X) = f(XZ) + Xg(XZ), we have

P(X)Q(X) = f(XZ)z - Xg(rr

This answers the first part.

One may adopt a similar approach for the second part. Write
P (X) = Po (X) + XP, (X) + XZPi (X) where,for example,

Po(X) ao + a~ + = f(X),

PI (X) aj + aX + = g(X),

Pz (X) az + a~ + = h (X3) .

Consider the cube roots of unity I, w, wZ• If

Q,(X) = Po(X) + wX~(X) + wZXz~(X)

and

Qz (X) = Po (X) + wZXPI (X) + wXz Pz (X) ,

then, using 1 + w + wZ = 0, it is easy to see that
Z 2 Zx" ZR(X) = QI (X) Qz (X) = Po (X) + X PI (X) + Pz (X)

- XPo (X) Pj (X) - XZPo (X) Pz (X) - X PI (X) Pz (X)

which is a polynomial with integer coefficients.
Finally,

P (X) R (X) = (po (X) + XP1 (X) + XZ~ (X))

x (po (X) + wXPI (X) + W
ZXZ ~ (X))

x (po (X) + (J}X~ (X) + wXZpz (X))

= Po (X)3 + X PI (X)3 + JtPz (X)3 - 3X Po (X) PI (X) Pz (X) ,

using the identity

(t + m + n)(P + mZ + nZ
- 1m - mn - n/) = P + m3 + n3

- 3lmn.
Thus, since P; (X) are polynomials are in .r for i = 0, I, 2, we have
solved the problem completely.

2. The polynomial X<for general k
The above elementary argument indicates that the case of X< for general

k in place of )(l, .r may be cumbersome to approach in this fashion. In this
section, we give an elementary proof for the case XC which is different from
the one above for k = 2, 3. Following that, we give another less
elementary proof for the same and show in the next section that this
argument carries over to show, for any non-constant polynomial f in one
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variable over the integers and for a given polynomial P (X) with integer
coefficients, there exist non-zero polynomials Q (X), R (X) with integer
coefficients such that P (X) Q (X) is the polynomial R if (X)).

Lemma 1: Let k be a positive integer. Then, for each polynomial P (X) with
integer coefficients, there exist non-zero Q (X), R (X) with integer
coefficients such that P (X) Q (X) = R (x*). One has an analogous
statement where coefficients are allowed to be rational numbers instead of
the integers.

It suffices to prove the version for polynomials over the rational
numbers for, if P(X) has integer coefficients and, if we get Q, R with
rational coefficients satisfying P (X) Q (X) = R (x*), then we may multiply
out Q (X), R (X) by a suitable integer to get corresponding integral
polynomials.

We first give a linear algebraic proof which is illustrated by the
following example.

Example: Let P(x) = I + 7x + ~ and suppose we wish to find a non-zero
Q(x) with integer coefficients such that P(x) Q(x) is of the form R(x3).

Suppose we try to find rational b, so that

Q (x) = bo + b.x + b2x2 + bJX3 + b4,i + bs:xs+ bf1X6

works. Then, the coefficients of x8, x7, xS, x4, x2, x in P(x) Q (x) are zero.
These conditions become the following linear equations for the b.:

b6 0

bs 0

7b4 + b3 0

b4 + 7b3 + bi 0

b2 + Tb, + bo 0

b, + 7bo O.
One non-trivial solution for these 6 equations in 7 variables can be obtained
recursively as follows:

b6 = 0, bs = O.

Put b4 = I; then bs = -7, bi = 48. Hence Tb, + bo = -48, b, + tbo = 0
which gives bl = -7, bo = 1. Therefore,

Q (x) = 1 - 7x + 48x2
- 7x3 + x4

•

Note that P(x) Q (x) = 1 + 322x3 + x6.
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First (linear algebra) proof of Lemma 1
n .

Let P(X) = I. a.X' be a polynomial of degree n with rational
1=0

m .
coefficients. Take an arbitrary non-zero polynomial Q (X) = L b)(l which

]-0
is a prospective candidate. The bj are rational numbers (not all zero) to be
determined. Now, expanding out P(X)Q(X), if the coefficients of X for
r " m + n with k r r vanish, then it is a polynomial in XC. Thus, putting
the coefficient of X in P (X) Q (X) to be zero for each r which is not a
multiple of k, there is a homogeneous system of linear equations in the
m + 1 variables bo, b., ... , bm• Since the number of terms X with k I r is
[em + n)/ k] + 1, while the total number of terms is m + n + 1, the number
of equations is m+n-[(m+n)/k]. If the number of variables m + 1 is
larger than m + n - [em + n)/ k], the system is over-determined and has a
non-trivial solution for rational b; Note that m + 1 > m + n - [(m + n)/ k] if,
andonlyif,[(m + n)/k] + 1> n; this happens ifm..p > n.

By choosing m large enough (for example, m = kn), it is clear that one
has a nontrivial solution for the bj.

Remark: We note that the above proof gives a polynomial Q(X) of degree
at the most kn. Thus, it gives Q (X) of degree at the most 2n for the case XZ

and degree at the most 3n for the case .r, whereas the argument in the
previous section gave polynomials of degrees n and 2n respectively.

Second (theory of equations) proof of Lemma 1
Consider a polynomial P (X) = ao + a1X + ... +a"x" of degree n

with rational coefficients. Write P(X) = ann (x - a;) where a, are the
1 = I

(complex) roots of P(X). Therefore, each coefficient a, of P(X) is (up to
sign) the i th elementary symmetric sum of the roots.

At this point, we recall the classical Girard-Waring identities relating
n

the coefficients a, of P (X) with the sums Pr = L a~ for r = 1, 2, ... , n (see
i~ I

[1] for instance):

L ± 1 (PI )'1 ... (fl.)';
tl! ... til 1 i

where the sum is over all tj with tl + 2tz + '" +iti = i.
This explicit expression is not really relevant but the conclusion that the

coefficients are polynomial expressions (with rational coefficients) in the
power sums Pr of the roots, is what we need here.

Define R(X) = ann (x - an. Its coefficients are polynomial functions
1= 1

n n

(with rational coefficients) of the numbers L a~k for r " n. But L a~k, for
i - I i - I

each r, is a polynomial expression (with rational coefficients) in the
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elementary symmetric functions of the a., and hence of the coefficients ~ of
P (X). In other words, the coefficients of R (X) are rational numbers as well.

Consider

R (xt) = nXC - a1 = rt ("Ie - I ,,Ie - 2 . Ie- J)
.Ii + .Ii a, + ... +a, .

P (X) i = I X - a, i = I

Call this polynomial Q (X). Since P (X) Q (X) = R (x*) where P (X), R (x*)
are both polynomials with rational coefficients, hence Q (X) must also have
rational coefficients by uniqueness of factorisation of polynomials. This
finishes the proof.

3. General polynomial f (X)
The above second proof carries over to a general f (X) in place of x*.

Thus, we can prove:

Lemma 2: Let f(X) be an arbitrary non-constant polynomial with integer
coefficients. Then, for each polynomial P (X) with integer coefficients, there
exist non-zero Q (X), R (X) with integer coefficients such that
P (X) Q (X) = R (( (X»). One has an analogous statement with the integers
replaced by the rational numbers.

Proof As before, we may consider the polynomials P, f over the rational
numbers. Write

n

P (X) = c n(X - a;)
i-I

where the a, are the roots of P (X). Then, the main observation is that the
polynomial

n

R(X) = c n (X - f(ai))
i= I

has rational coefficients. This follows as before, because f (X) is a sum of
monomials uXC and, for each XC, the elementary symmetric functions in the
a1 are rational numbers as before. In other words, all the coefficients of R (X)
(they are elementary symmetric polynomials in the f(al), ... ,f(an)} are

. I II A J(X) - f(ai) . I . I f h . Q(X) R(f(X»)ranona as we. s ---- IS a po ynomla or eac I, = ---
X- a, P(X)

is a polynomial also. As R (( (X»), P (X) have rational coefficients, Q (X)
must have rational coefficients by unique factorisation of polynomials.
Finally, we observe that R (( (X») is not the zero polynomial since f (X) is not
a constant; hence Q (X) is not the zero polynomial.

4. A multi-variable generalisation
What we proved earlier is evidently valid over any field K in place of

the rational numbers. Now, we go over to an analogous problem for
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polynomials in more variables. In other words, here is a natural question
which can be thought of as a multi-variable version of the earlier problem:

Let K be any field and let P e K [XI. ... , Xr]. Suppose
L; ... ,fr e K [XI. .. , , Xr] be arbitrary. Do there exist non-zero
Q, R e K[XI. ... , Xr] such that

p(XI. ... ,Xr)Q(XI. ... ,Xr) = RVI (XI. ... ,Xr), .. .fAxI. ... ,Xr))?

However, it is easy to see that there must be some restrictions on the Ii in
order not to have trivial counter-examples.

Necessary restrictions: If the I. are constants and if P is not (more
generally, if XI does not occur in any of the Ii and if P is XI), then evidently
PQ = R 0 (h ...,fr)for some Q, R only if Q = 0 = R 0 VI. ... ,fr)'

An example: For instance, if r = 2, P = XI - X2, 11 = X1X2, 12 = (XIX2i,
then for any R e K [XI> X2], R 0 VI. h) is of the form
Co + C,XIX2 + ... +Ck(XtXd. If this is of the form PQ for some
Q e K[XI> X2], then one can think of this equality R 0 (fI,h) = PQ in
X [XI. X2] where X is an algebraic closure of K. Hence, R 0 (fI. h)
vanishes at all points (x, x) as x varies over X. As these are infinitely many
points, this clearly forces all c, to be zero; that is, R 0 (fl, h) = O. Note
that, in fact, R (XI, X2) = xi - X~ is non-zero but R ir;h) = O.

More generally, if/I. ,Ir are algebraically dependent; that is, if there
exists F * 0 in K [XI. , Xr] such that F 0 (jI. ,fr) is the zero
polynomial, then it can happen that PQ * R 0 v; ,fr) for any non-
zero Q - indeed, it may even be possible that R * 0 but
R 0 VI. ... ,fr) = 0 e K[X1, ••• , Xr]. Thus, we may modify the
question; we make the modified statement now:

Theorem: Let K be a field and P e K[XI. ... , Xr]. Suppose
II> ... .f', e K [XI. ... , Xr] are arbitrary polynomials such that there is no
non-zero F e K [XI> ... , Xr] for which F 0 v: ..,,Ir) is the zero
polynomial. Then, there exist non-zero Q, R e K[XI> ... , Xr] such that

P'Q = R 0 VI> ... ,fr)'

We recall a few basic facts for the sake of self-containment of the
article. To prove the theorem, the basic notion required is that of
transcendence bases and transcendence degree.

Let K c L be fields; then a subset S = {tI. ... , ttl of L is said to be
algebraically independent over K if there is no non-zero polynomial p in k
variables over K such that p (tI. ... , tr) = 0 in L. A basic fact of the theory
is that any two maximal algebraically independent subsets of K (XI. ... , Xr)

have the same cardinality, which is called the transcendence degree of L
over K (and any such set is called a transcendence base). Moreover, every
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element of L is algebraic over the subfield generated by K and the
transcendence base.

Over a field K, the quotient field K (XJ, ... ,Xr) ofthe polynomial ring

K[X" '" , Xr] is the field of all rational functions ft" ,Xr~ for non-
g XJ, .X;

zero polynomials g. This field K (XI, ... , Xr) has transcendence degree r
over K and {Xl, ... ,Xk} is a transcendence base over K.

Proof of theorem: Consider flo ... ./r e K [X" ... , Xr] as in the
statement. The hypothesis means precisely that {rl' '" ,fr} is algebraically
independent over K (and is, hence, a transcendence base of the field
K (XJ, ... ,Xr) over K). In particular, the field K (X" ... ,Xr) is algebraic
over the subfield K (f" .., ./r)' If its degree is d, then the subset
{I, P, Jil, ... ,pi} ofK(XJ, ... , Xr) is linearly dependent over
K v: ,fr)' In other words, there is a polynomial p in one variable over
K (fJ, , fr)' say

p(t) = Co + Cit + C2P + ... +Cdtd

with c, e K v; ....r: such that

Co + c.P + C2P + ... +CdJP = 0 e K(X" ... .x).
By clearing denominators, we may assume that

c, e K[ft, ... ./r] C K[X" ... ,Xr]
for each i.

Writing Q(X" ... ,Xr) = Ci(J" ... ./r) e K[X" ... ,Xr] for i > 0
and Q = QI + Q2P + ... +Q?-l e K[X" ,Xr], we get

PQ = QIP+ Q2P + ... +QdJP = -co(f" ,fr) E K[X" ... ,Xr].
Taking R = -Co, we have the theorem.
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