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1 Public key cryptography

“Cryptography is communication in the presence of adversaries” - this cryp-
tic definition is due to Rivest, one of the pioneers of public key cryptography.
Ignoring the practical uses for the moment, we may think of cryptography
as a game where the cryptographer (the encoder) is in constant struggle to
elude the cryptanalyst (the codebreaker). In the cryptosystems discussed so
far, the sender and the receiver must have exchanged some secret key before
they communicate. This needs a secure channel. Moreover, this must remain
secret at both ends. An additional difficulty is that each transaction requires
a different key as two or more transactions with the same key can usually
lead to breaking of the message. Further, if n people need to exchange se-
cret messages, they need n(n−1)
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secret key exchanges. In all these (so-called

private key) cryptosystems discussed, anyone who could decipher messages
could, with little or no effort, determine the enciphering key. For a long time,
it was thought that deciphering was synonymous with finding the enciphering
key (an interesting letter from Casanova refers to this as if it were a foregone
conclusion). In public key cryptosystems which is our subject matter here,
the major advantage is that to send any number of secure messages to a
person A, just two keys are needed throughout - an enciphering key known
to the public and a deciphering key known only to A. In public key cryp-
tosystems, we shall see that someone who knows how to encipher cannot use
the enciphering key (in practical terms) to determine the deciphering key. In
other words, the enciphering function f which changes plaintext to a cipher-
text is easy to compute once the enciphering key is given, but it is very hard
in practice to compute the inverse function f−1 without the deciphering key.
Such functions are called trapdoor functions and number theory seems to
provide a wealth of such functions. It was a serendipitous discovery of Diffie
& Hellman which gave birth to public key cryptosystems. The reason for the
name ‘public’ key is that the enciphering key can be made public. One can
imagine a public directory containing the enciphering key EA of each person
A. Anyone wanting to send a secret message to A can use the key EA to enci-
pher the message and send. Now, the only person who knows the deciphering
key is A herself. The sender does not have to be known to the receiver nor
is a prior relation of trust necessary to be established between them. Unlike
private key cryptosystems where the time taken to encipher or to decipher
are of the same magnitude, in public key cryptosystems, deciphering takes
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much more time than (something like the exponential of) enciphering. Pub-
lic key cryptosystems, though secure, are much slower. Normally, one uses
them to exchange secure keys for a private cryptosystems which is used to
send the actual messages.
Here are a few comments on the state of the art. The vulnerability or security
of a popular cryptosystem like RSA, is based on the belief that factoring in
general is a hard problem. One should note that it is not known that breaking
RSA is equivalent to factoring. Although it was believed to be so until some
time ago, some recent work of Boneh & Venkatesan points evidence to the
contrary. On the other hand, cryptosystems based on class groups of orders
(of discriminant n) in number fields or, on the group of rational points of
elliptic curves over Z/nZ, can be proved to be as hard to break as factoring
n is. Also, it ought to be stressed that what is considered secure today could
be insecure tomorrow. There is no single system that has been proved to be
secure, at present.

Idea of signing messages

Each person A has a public enciphering transformation fA using which anyone
can send messages to A. Of course, A herself knows the inverse transformation
f−1

A which is very hard to invert in practice. Now, suppose Alka wants to
send her ‘signature’ S to Beena. It is not enough if Alka sends fBeena(S) to
Beena since anyone can do it and Beena will not know for certain that it is
from Alka. So, Alka sends Beena the message fBeenaf

−1
Alka(S). Since Beena

expects that Alka has sent the message, she will apply fAlkaf
−1
Benna and recover

the message knowing at the same time that for practical purposes only Alka
could have known f−1

Alka.
In the above, we have tacitly assumed that the set of plaintexts equals the set
of ciphertexts. One has to modify it otherwise.

RSA cryptosystem

This is the most popular of public key cryptosystems in use today. It was
a system described by Rivest, Shamir and Adleman in 1977. It is based on
the following elementary fact from number theory. If p 6= q are primes and
n = pq, then the number φ(n) = (p − 1)(q − 1) satisfies Euler’s congruence
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aφ(n) ≡ 1 mod n for any (a, n) = 1. Let us describe the RSA system now.

I. Each user A selects two large primes pA 6= qA. Write nA = pAqA.
II. Each user A selects a large random dA such that (dA, φ(nA)) = 1.
III. Each user A determines the unique eA ≤ φ(nA) such that eAdA ≡ 1 mod
φ(nA). Note also that (eA, φ(nA)) = 1.
IV. Each user A keeps pA, qA, dA private.
V. The numbers nA, eA are made public.
VI. Plaintexts are represented by a sequence of integers between 0 and nA−1.
VII. Public can use the enciphering transformation

fA : Z/nAZ → Z/nAZ ; P 7→ P eA mod nA

to send messages to A. The inverse of fA is C 7→ CdA mod nA is known only
to A.

Why it works :
First, mathematically, A can read the message because of the following rea-
son. If (P, nA) = 1, that is clear from Euler’s congruence. If pA|P , then
qA 6 |P as P < pAqA; so

P eAdA = P 1+t(pA−1)(qA−1) ≡ P mod qA.

Evidently
P eAdA ≡ 0 ≡ P mod pA.

Now, knowing pA.qA (which A does), it is easy to compute their product nA

as well as φ(nA) = (pA − 1)(qA − 1). Also, raising to a power is not consid-
ered time-consuming as it can be done by a method of repeated squaring.
However, only knowing nA, it is very difficult, in practical terms, to factorise
and obtain pA and qA. Knowing φ(nA) is also equivalent to knowing pA and
qA because φ(nA) = nA − pA − qA + 1 would give us pA + qA.
It is unknown as yet as to how to break RSA without factoring nA.

Signature through RSA
To send her signature S to Beena, Alka proceeds as follows. Note that the
numbers nA, nB for Alka and Beena (although public) are usually different.
To deal with this, Alka sends fBf

−1
A (S) if nA < nB and sends f−1

A fB(S) if
nA ≥ nB. These are, respectively, (SdA mod nA)eB mod nB and (SeB mod
nB)dA mod nA.
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Example.
As mentioned earlier, small primes p, q should be avoided in order that fac-
torisation is computaionally infeasible. However, for the sake of demon-
stration, let us take small primes. Let A have the public key (n, e) =
(6012707, 3674911). Actually, she has chosen the primes p = 2357 and
q = 2551 and has computed n = pq = 6012707 and φ(n) = 6007800. Her
enciphering key, she takes to be e = 3674911 and, therefore, her deciphering
key is d = 422191. To encipher the message m = 5234673 to be sent to A,
a sender B (computes and) sends c = me mod n; this equals 3650502. On
receiving this, A deciphers m by computing cd mod n.

Which choices are to be avoided ? :
(i) Small p, q should be avoided.
Typically, one works with prime numbers of the order of 1000 bits in order
that the factorisation problem is computaionally infeasible (that is expected
to take millions of years even with the aid of existing recent powerful attack-
ing factorisation methods like the quadratic sieve).
(ii) |p− q| should not be too small.
Otherwise, p ∼ √

n ∼ q and an eavesdropper can simply check for factors
close to

√
n.

(iii) Small enciphering key e should be avoided.
This is for two reasons. The first basic one is that if me < n, then the public
knowledge me mod n is already the whole of me and one can recover m sim-
ply by taking integer e-th roots ! The second reason (which applies especially
when the same message is being sent to several people) is that Chinese re-
mainder theorem can be easily solved knowing a few of the congruences. For
example, suppose e = 3 and the enciphered texts mi = m3 mod ni are sent to
three persons Ai for i = 1, 2, 3. If m3 < n1n2n3, then a common solution for
the 3 congruences x ≡ mi mod ni is x = m3 itself. An eavesdropper simply
comutes the cuberoot of x to know the message m.
(iv) Small d should be avoided.
If d has bit size at the most quarter of that of n, there is an efficient algorithm
to compute it from (n, e). One can avoid it by having d approximately of the
same bit size as n.
(v) Common n should be avoided.
Suppose Alka and Beena have a common n. Let (eA, eB) = 1. Imagine the
scenario when Chandra sends a message P to both Alka and Beena. Now
Chandra sends PA ≡ P eA mod n to Alka and sends PB ≡ P eB mod n to
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Beena. If an eavesdropper Damini intercepts these messages, she can deci-
pher the messages and recover P even without knowing dA, dB as follows.
She computes fA = e−1

A mod n and the number f = (eAfA − 1)e−1
B . Then,

P fA

A P−f
B ≡ P eAfA−eBf = P mod n.

Thus, the RSA protocol fails for a common modulus even if the deciphering
keys are kept secret.
Also, there is another way of seeing protocol failure for a commond modulus.
It is clear that in a community with a common n, if someone’s deciphering
key d is somehow divulged, then n is factored and then all the deciphering
keys d’s are known ! To see how finding d leads to factoring n, we proceed
as follows.
Now aed−1 ≡ 1 mod n for all (a, n) = 1. Write ed − 1 = 2st with t odd. It
can be shown that for at least half of the elements a in (Z/nZ)∗, there is a
common i with

a2it ≡ 1 mod n,

a2i−1t 6≡ ±1 mod n.

The GCD of a2i−1t − 1 and n is then a factor of n. The eavesdropper simply
looks at various random a and i ≤ s.

Further remarks on RSA
Compared to the conventional private key cryptosystems, RSA takes much
longer. Ironically, though public key cryptosystems like RSA were invented
to obviate the necessity of exchanging many keys, it is serving exactly that
purpose viz., it is used to exchange keys necessary for some private key cryp-
tosystem ! I have heard from a cryptologist who worked in a government
security agency that there is one more reason for not using RSA where gov-
ernment security is involved. Common sense tells us that one day if a suc-
cessful attack is launched which breaks RSA, then there will be nothing else
to fall back on! Therefore, it is mainly in financial transactions or signature
authentication or private key exchanges where RSA is principally used nowa-
days.
The RSA involves the permutation polynomial xe in Fq, and there have been
later cryptosystems based on other permutation polynomials like the Dickson
polynomials etc.
There are two main points which should be kept in mind :
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(i) It is not proved that finding fairly large primes p, q is easier than fac-
toring pq.
(ii) It is not known that breaking RSA is equivalent to factoring n. Al-
though it was believed to be so until some time ago, some recent work of
Boneh & Venkatesan points evidence to the contrary.
Later, we will discuss aspects of the problems of primality testing and factor-
ing so that we can compare the orders of difficulty in performing RSA and
in an eavesdropper breaking it.

Rabin cryptosystem

Recall the point (i) made above in relation to RSA. In contrast, here is a
public key cryptosystem invented in 1979, deciphering which can be proved
to be equivalent to the problem of factoring. This is as follows. To send
a message P to Beena, Alka considers Beena’s public key nB = pBqB. She
represents the message P as a positive integer < nB and coprime to nB, and
sends Beena the message S = P 2 mod nB. To decipher P , Beena essentially
uses the Euclidean algorithm. Knowing her pB, qB, it is possible to determine
four possible candidates for the square-root of S mod nB. Let us write this
when pB ≡ qB ≡ 3 mod 4 which is a slightly simpler case. Beena computes
numbers u, v such that up + vq = 1 (we have written p, q for pB, qB here).
Further, she computes the numbers r = S(p+1)/4 mod q and s = S(q+1)/4 mod
p. Then, P is one of the four numbers ±(ups± vqr) mod nB. One problem
is that Beena has to decide which of the four is the correct message. Note
that the problem that an eavesdropper has to solve is that of finding the
square-root of S mod nB. This is computaionally equivalent to factoring nB.

Diffie-Helman cryptosystem

Although we noted right in the beginning that public key cryptosystem was
a discovery emerging from the work of Diffie & Hellman, we discussed RSA
first as that is the most popularly used one. Now, we discuss the so-called
discrete log problem which is related to the Diffie-Hellman system.

Discrete log problem

In the finite cyclic group Z/nZ of integers mod n under addition mod n,
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suppose we are given a generator a; that is, an element a coprime to n.
Given any element b, it can be expressed as ax, and it is quite easy to find
x. Indeed, x = a−1b can be found by finding a−1 mod n using the Euclidean
algorithm. Thus, the time to find a solution to ax = b in Z/nZ is of a small
order. In contrast, consider the multiplicative group F ∗q of a finite field; it is
a cyclic group. If g is a generator, then any nonzero element of the field is
of the form gx. If the field and a generator g of its multiplicative group are
made public, and an element h = gx is also made public, it turns out to be
extremely hard to compute x. This x is known as the discrete logarithm of
h in Fq. In comparison, in real numbers, it very easy to find the logarithm
of a number. The discrete log problem for F ∗q is the problem of computing x
given g and gx (and q, of course). For the group-theorist who thinks any two
finite cyclic groups of the same order are absolutely alike, here is a shocker!
The discrete log problem is trivially solvable in Z/nZ but, so far, it has
proved computationally infeasible to solve the discrete log problem for F ∗q .
The U.S.Government’s digital signature algorithm is based on the discrete
log problem for subgroups of F ∗p . In some cases (for instance, when p is a
prime such that the prime factors of p − 1 are all small), the discrete log
problem (DLP) can be successfully attacked in Fp.

Diffie-Helman key exchange problem

This was discovered in 1976. As before, the finite field Fq is public knowledge.
So is a generator g of F ∗q . Persons A and B who wish to exchange a secret
message (a key perhaps) choose two secret numbers a, b respectively, each
less than q − 1. They send the messages (this is public knowledge) ga and
gb respectively. On seeing ga, B computes (ga)b = gab. Similarly, A also
knows gab = (gb)a. It is considered extremely hard to compute gab knowing
only g, ga, gb. This way, A and B can share gab as their common enciphering
private key to communicate via a conventional cryptosystem. Finding gab,
given ga and gb is also known as the Diffie-Hellman problem (DHP).

DLP versus DHP :
(i) If the discrete log problem is solved, then the Diffie-Hellman cryptosystem
will be broken.
(ii) As of today, it is unknown whether there is a way of finding gab directly
from ga and gb without knowing a and b i.e., without solving the discrete log
problem.
This is an open problem. However, ideas of Boneh, Lipton, Maurer & Wolf
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show that for certain special classes of groups, the DLP and the DHP are
polynomially equivalent. For this, one needs the choice of an elliptic curve E
over Fp such that E(Fp) is cyclic, and its order l is smooth in the sense that
all prime factors of l − 1 are at most as big as a polynomial function of log
p. The problem is that it is not yet clear whether such curves exist.

Massey-Omura cryptosystem

Imagine that I want to send you a diamond by post. The only condition
is that whatever we send each other by post is to be sent only in a locked
box and that anybody who intercepts it without the correct key cannot open
it. Assuming that we do not have any prior communication, how are we to
accomplish this? Before answering this, we inroduce a cryptosystem - this
looks like a digression from the task but it is really not.
To send a secret message P, I select a cyclic group G which you (and everyone
in the world also) know. Then, I select a random eI < O(G) which is coprime
to O(G). I compute dI = e−1

I in G. Then, I send you the message P eI . This
is meaningless to you (or any eavesdropper for that matter) when you receive
it. But, you don’t bother but simply choose a random eY of your own which is
coprime and less than O(G). You send me back the message (P eI )eY = P eIeY .
Since I know dI, I recover P eY which I send you back as it is. No eavesdropper
can make sense of this still. When you receive it, you can recover P as you
know eY !
In other words, to send you the diamond, I put it in a locked box and send it
to you. You receive it and put your own lock and send it back to me. Then,
I unlock my lock and send it back to you so that you can unlock the box !

El Gamal cryptosystem

This was invented in 1985. This is a system where the receiver not only
receives the secret message but also an authentication of the sender’s signa-
ture. It works as follows. A finite cyclic group G and a generator g are made
public. Typically, a finite field Fq and a generator g of G = F ∗q are made
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public. Alka and Beena select random integers a, b < q and make public ga

and gb respectively. In order to send a message P ∈ G to Beena, Alka sends
the message (ga, P gab). She knows gab since she knows gb and a. On receiving
this, Beena computes (ga)b and then P . Such a message P can serve as a key
exchange. In order to authenticate her signature in addition, Alka proceeds
as follows. She selects a random a < q and computes ga as before. In addi-
tion, she chooses a secret s < q which is coprime to q − 1 and computes gs.
She solves for t to satisfy gP = (ga)gs

(gs)t. Indeed, t := s−1(P − gsa) mod
q − 1. Note that only Alka could have solved for t since she alone knows a.
She sends Beena the tuple (ga, P gab, gs, t). Beena first computes P as before
which enables her to compute gP and verify that it equals (ga)gs

(gs)t. Once
she verifies that, she is sure that P has been sent by Alka.

Knapsack problem

This is important for historical reasons - it was the first concrete realization
of a public key scheme. The original Merkle-Hellman cryptosystem is now
known to be insecure and, in fact, a polynomial time algorithm is known to
break it. One version of the knapsack problem known as the Chor-Rivest
knapsack scheme has at present resisted breaking. What is the knapsack
problem? Given positive integers a1, a2, · · · , an, and given a positive integer
N , can N be written as a sum of some of the ai’s? If yes, how does one
choose an n-bit integer (t1, · · · , tn)2 such that

∑n
i=1 tiai = N? Indeed, in-

terestingly, both these problems are computaionally equivalent. Imagining
the ai’s to be the volumes of items to be packed in a knapsack of volume
N , the problem is to achieve perfect efficiency. As a general problem, it
is extremely hard (NP-complete). However, the Merkle-Hellman cryptosys-
tem involves the knapsack problem for superincreasing sequences ai (that is,∑j

i=1 ai < aj+1 for all j < n). For such sequences, the problem is easily
solved in polynomial time by the “greedy algorithm”.

The Merkle-Hellman cryptosystem

(i) There is a common n chosen for the whole public.
(ii) Each person privately chooses a super-increasing sequence (b1, · · · , bn)
and a modulus M >

∑n
i=1 bi.

(iii) Each person privately chooses an integer w coprime to and less than M .
(iv) Each person privately chooses a disguising permutation σ and computes
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ai = wbσ(i).
(v) Each person’s public key is the sequence a1, · · · , an.

With this background, the Merkle-Hellman cryptosystem can be described
as follows. Let us say Beena wants to send Alka a message P which is
represented as an n-bit m1m2 · · ·mn.
Beena sends Alka the message m = m1a1 + · · ·+mnan, where ai’s are Alka’s
public sequence described above.
Alka recovers the message bits mi’s as follows. She solves the knapsack
problem for her super-increasing sequence b1, · · · , bn to compute

w−1m = u1b1 + · · ·+ unbn

where the left hand side is to be understood as the residue mod M . Since

w−1m = w−1
∑

miai =
∑

mibσ(i),

we have mi = uσ(i).

Why Merkle-Hellman cryptosystem is insecure

One knows now a polynomial-time algorithm to break it (this is not the
most powerful method though). This finds integers w0,M0 such that w0/M0

is close to w−1/M and such that ci = v0ai mod M form a super-increasing
sequence. If an eavesdropper uses this sequence in place of the sequence bi,
then she can decipher the message.

Zero knowledge protocol

Before proceeding, we just recall the connotation of the word ‘protocol’ here.
Here, it means a specific distributed algorithm defined by a sequence of steps
specifying the actions of two or more persons to achieve a specific security
objective. There are some people who claim to ‘know’ and predict your
future etc. They give a few feelers to let you know that they are capable.
Suppose I want to communicate to you that I have found a solution to some
problem and I want to do it in such a way that I do not tell you the solution
but still convince you that I have solved the problem. This is known as a
zero-knowledge proof.
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Example : Fiat - Shamir protocol
Suppose you have chosen a secret message P less than and coprime to your
public key n = pq. Suppose you make public knowledge the message S = P 2

mod n. I claim that I have found your P . To verify this, you can proceed as
follows. You ask me to choose a random r and send you the value of r2 mod
n. Once I do that, you toss a coin and you ask me to send you the value of
r or of rP according as whether you get haids or tails, say. Note that I can
answer both questions correctly only if I really know P . Thus, after d trials,
you will be able to verify with probability 1 − 1

2d that I know what P is.

Example : Discrete log protocol
As another example, suppose G is a group of order N and g ∈ G is fixed.
Let us assume that gx is public knowledge but only you know x and I claim
that I have found it. I demonstrate my claim in the following manner :

(i) I generate a random r < N and send you gr.
(ii) You toss a coin. According to whether it is heads or tails, you ask me to
reveal r or x + r. Once again, I can answer both questions only if I knew x.
Therefore, after several trials, you will be able to know with high probability
if I commit a fraud.

In conclusion

In 1994, Peter Shor brought the idea of a quantum computer on which one
could perform computations like factorisation and finding discrete logs us-
ing polynomial-time algorithms. Until date, one does not know whether a
quantum computer can indeed be built. In another development in 1996,
Adleman showed that it was feasible to use techniques from molecular biol-
ogy to solve some NP-complete problems. The problem instance was encoded
in molecules of DNA, and the steps of the computation were performed with
standard protocols and enzymes. The fastest supercomputers today can per-
form 1012 operations per second while it is thought plausible that a DNA
computer performs more than 1020 operations per second. Until date, no-
body knows whether it is possible to build a DNA computer. However, it
cannot be denied that if either of these computers becomes a reality one day,
then that day the existing public key cryptosystems are likely to be rendered
insecure.
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2 Primality testing and factorisation

All the public key cruptosystems require keys which involve producing large
prime numbers. How does one do that? The general approach of a primal-
ity test is the following : find a random odd number, use the test to check
whether it is composite and if it is start over again. In other words, if a
primality test returns a value as composite, it is certainly composite but in
most of the tests, if the value is returned as a prime, it is only a proba-
ble candidate for a prime. Although popularly called ‘primality tests’, these
‘probabilistic primality tests’ should really be called ‘compositeness tests’. Of
course, there are obvious (deterministic) tests which can tell us for certain
if a number is prime but they may not be time-efficient. Only very recently
this fundamental problem of the existence and construction of a polynomial-
time deterministic algorithm for primality testing has been proved by three
Indians - Agrawal, Kayal and Saxena. However, it should be borne in mind
that most of the polynomial-time probabilistic algorithms are more powerful
and are considered safe enough to be in usage today. Moreover, there are
some deterministic algorithms which are slightly worse than polynomial time
but are still powerful enough to determine primality of a 100-digit number
in a few seconds on a powerful computer. Such an algorithm was found by
Adleman-Pomerance-Rumely. Interestingly, the Miller-Rabin test (to be de-
scribed below) turns out to be a deterministic one if we assume the so-called
generalised Riemann hypothesis. In 2002, 3 Indians - Agrawal, Kayal & Sax-
ena astonished the world by coming up with a very simple algorithm to test
primality which is polynomial time, deterministic and does not depend on
any unproved hypotheses. It must be borne in mind though, that the prob-
abilistic algorithms are already powerful enough for all practical purposes.

Carmichael numbers and pseudoprimes

Fermat’s little theorem tells us that an−1 ≡ 1 mod n when n is prime and
(a, n) = 1. However, this may happen for a composite n also for some a
coprime to it. For instance, 341 = 31 × 11 satisfies 2340 ≡ 1 mod 341.
This statement is rephrased as saying that 341 is a pseudoprime to the base
2. Moreover, 2 is called a Fermat liar for 341. Note that 3340 ≡ 56 6≡ 1
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mod 341; so, 341 is not pseudoprime to the base 3 and, therefore, indeed
composite. When we conclude compositeness using this analysis, note that
this does not give us factors. Now, can it happen that an odd composite
number is a pseudo-prime to the base a for every a coprime to n ? Indeed,
it can, and such n are called Carmichael numbers. The first example is
561 = 3× 11× 17. There is a very neat (and easy to prove) characterisation
of Carmichael numbers :

A composite number n is a Carmichael number if, and only if, it is square-
free and each prime divisor p of n satisfies the property (p− 1)|(n− 1).
Proof.
If n = p1 · · · pr with n − 1 divisible by pi − 1 for i = 1, · · · , r, then for each
(a, n) = 1, an−1 = (api−1)? ≡ 1 mod pi for all i, which shows that an−1 ≡ 1
mod n.
Conversely, suppose n is a Carmichael number. Let p|n be a prime. Let a
be a primitive root mod p. Since an−1 ≡ 1 mod n by hypothesis, we have
an−1 ≡ 1 mod p. Therefore, p− 1 (being the order of a mod p) divides n− 1.
Moreover, if p2|n, then for a primitive root a mod p2, the property an−1 ≡ 1
mod p2, shows similarly that p(p − 1) = O(a) divides n − 1. But then p
divides n− 1, an impossibility.

It was proved only a few years back that there are infinitely many Carmichael
numbers - in fact, there are at least N 2/7 Carmichael numbers less than N
if N >> 0. Therefore, a primality test just based on Fermat’s little theorem
would be wrong infinitely many times; that is, each Carmichael number would
be returned as a prime number by such a test. The Miller-Rabin test uses a
modification of pseudoprimes called strong pseudooprimes.

Miller-Rabin test

This is in wide usage especially for RSA. Let n be an odd prime; write
n− 1 = 2sr with r odd. For (a, n) = 1, we have a2s−1r ≡ ±1 mod n. Thus,
either a satisfies at least one of the conditions :
ar ≡ 1 mod n or a2ir ≡ −1 for some 0 ≤ i < s.
A composite n which satisfies this last-mentioned property is called a strong
pseudoprime to the base a. One also calls such a base a strong liar for n.
When n is not a strong pseudoprime to some base a (that is, if each of the
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s+ 1 congruences fails), then evidently n is composite, and a is known as a
strong witness to the compositeness of n.
For example, the Carmichael number 561 has 2 as a strong witness. This is
so because 560 = 16 × 35 and 235 ≡ 263, 22×35 ≡ 166, and 24×35 ≡ 67 mod
561. Also 28×35 ≡ 1 mod 561.
Miller-Rabin test starts by picking a random a < n−1 and checking whether
ar mod n is ±1. If it is, then one concludes that n (passes the test and) is
a (probable) prime; move to the next a. If it is not ±1, keep squaring (upto
s− 1 times) and checking until we reach −1. If it does, then again n passes
the test and is a probable prime; move to the next a. If −1 is never reached,
then n must be composite.
We shall see now that at the most 1/4-th of the numbers a < n can be
strong liars for a composite n. Thus, after d iterations, the probability that
the Miller-Rabin test concludes primality of a composite n is at the most
(1/4)d.

If n is composite, then the set {1, 2, · · · , n−1} contains at the most (n−1)/4
strong liars.
Proof.
Among strong liars for n, there are those a which satisfy one of the s con-
gruences a2ir ≡ −1 for some 0 ≤ i < s. Indeed, if a < n is a strong liar for n
which satisfies ar ≡ 1 mod n, the strong liar b = n− a satisfies br ≡ −1 mod
n. Let d be the maximum value of i for which a2ir ≡ −1 mod n for some
(a, n) = 1. Then, we have the inclusions A ≤ B ≤ C ≤ D of the following
four subgroups of (Z/nZ)∗ :

A = {a : a2dr = 1},

B = {a : a2dr = ±1},
C = {a : a2dr ≡ ±1 mod pnp ∀ p|n}, and

D = {a : an−1 = 1}.
An easy counting of indices can be done which tells us that the index of B
in (Z/nZ)∗ is at least 4.

Miller-Rabin test is deterministic if we assume GRH (the generalised Rie-
mann hypothesis.
Proof.
We shall just give a sketch. A consequence of the GRH is that for any prime
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p ≥ 3, the least quadratic nonresidue is < 2(log p)2. We show that if the
Miller-Rabin test is performed for all a < 2(log n)2 then it finds a strong
witness for n.
Let us consider only the case when n has two prime divisors p, q with p− 1
and q−1 having different 2-adic valuations; say v2(p−1) > v2(q−1). Take a
to be a quadratic nonresidue mod p with a < 2(log p)2. Recall our notation
n−1 = 2sr. Now a(p−1)/2 ≡ −1 mod p since a is a quadratic nonresidue mod
p. Evidently, then v2(p− 1) is also the power of 2 dividing the order of a in
(Z/pZ)∗. In particular, the order of a in (Z/pZ)∗ is even.
Suppose, if possible, that the test produces a as a strong liar. Then, either
ar ≡ 1 or a2ir ≡ −1 mod n for some 0 ≤ i < s. The former case is an
impossibility since it would imply that a has odd order in (Z/pZ)∗. In the
latter case, suppose the congruence a2ir ≡ −1 mod n holds. This implies
that the order of a in (Z/pZ)∗ as well as in (Z/qZ)∗ have v2 equal to i + 1.
But, the power of 2 dividing the order of a mod q is at the most v2(q − 1)
(this is true for any prime). Therefore, we have

v2(Ordp(a)) = v2(p− 1) > v2(q − 1) ≥ v2(Ordq(a))

which is a contradiction. The other case when v2(p− 1) = v2(q − 1) can be
analysed in a similar fashion once one chooses a with the quadratic residue
symbols of a mod p and mod q being different.

Deterministic algorithms for special sequences

The AKS algorithm is recent; the above one is deterministic only under
GRH. However, there are some algorithms which are deterministic and work
efficiently for special sequences. One such is the Lucas-Lehmer deterministic
polynomial-time test for the sequence of Mersenne numbers 2s − 1. It is
based on the fact that 2s − 1 is prime if, and only if, s is prime and the
sequence u0 = 4, uk+1 = u2

k − 2 mod n satisfies us−2 = 0. Note that the first
condition “s is prime” can be checked by checking for factors until

√
s and

this is polynomial-time (i.e., polynomial in log n).

Pocklington’s primality test

This test determines primality of n when n − 1 has a big prime factor. An
analogue of this using elliptic curves has also been formulated. Suppose n−1
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has a prime divisor q >
√
n. Then, one can determine whether n is prime by

using the following fact :
If there exists a such that an−1 ≡ 1 mod n and (a(n−1)/q − 1, n) = 1, then n
must be prime.
Proof.
If not, then let p ≤ √

n be a prime factor. Then, q > p − 1 implies that
qr ≡ 1 mod p− 1 for some r. But then a(n−1)/q ≡ ar(n−1) ≡ 1 mod p, which
gives (a(n−1)/q − 1, n) ≥ p, a contradiction.

This fact can be used in the following manner to test the primality of n :
Write n− 1 = ab where (a, b) = 1, a > b and suppose the factorisation of a
is known. If, for each prime p|a, we can find ap with an−1

p ≡ 1 mod n, and

(a
(n−1)/p
p − 1, n) = 1, then and only then n is prime.

Example.
Let n = 105554676553297 whose primality we wish to test. Now n − 1 =
24.3.1048583.2097169 = ab where b = 24 say. If we take a3 = a1048583 =
a2097169 = 2, we conclude that n is prime, if we assume that p = 1048583 and
q = 2097169 are primes. Thus, we have reduced primality testing to smaller
numbers; that is, we have done what is known as a down run. Writing p−1 =
2.29.101.179 = ab where we have set a = 29.101, the choices a2 = a101 = 2
prove primality of p (for primes up to 1000, primality can be checked by
hand). Similarly, as q− 1 = 24.3.43691, it can be seen that a3 = 5, a43691 = 2
proves that q is prime if we know that r = 43691 is prime. Since r − 1 =
2.5.17.257 = ab, taking a = 257 and a257 = 3, we conclude that 43691 is a
prime.

Agrawal-Kayal-Saxena algorithm

We mention very briefly their algorithm. Most algorithms start with Fermat’s
little theorem which, apart from other shortcomings, are also infeasibile on
the first glance because of having to compute p coefficients in order to check
the validity of the congruence (x − a)p ≡ xp − a mod p. The basic idea of
the A-K-S algorithm is to make it feasible by evaluating both sides modulo a
polynomial of the form xr − 1. Their algorithm would take O(r2log3p) time
to verify (x − a)p ≡ xp − a mod xr − 1 in Fp[x]. As there are composites
also which satisfy this congruence, one has to choose r nad a suitably. One
general comment to note is that it is far easier to test a polynomial over Fp

for irreducibility than to test primality of a natural number. In a nutshell,
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here is the A-K-S algorithm :

A-K-S algorithm to check primality of n
Step I
Check if n is a perfect power; if not go to the next step.
Step II
Find a prime number r = O(log6n) such that r − 1 has a prime divisor
q > 4

√
rlogn where q divides the order of n mod r.

Step III
With r as above, check for each a ≤ 2

√
rlogn, if

(x− a)n ≡ xn − a mod xr − 1 in (Z/nZ)[x].

If the congruence is not satisfied for some a, declare n is composite. If it is
satisfied for all a, declare n prime.

Factorisation

For a composite number n, the primality tests we discussed (except the silly
one where one checks for factors until

√
n) can help only in deciding whether

it is composite and not in finding any factors.
As we pointed out while discussing RSA, there are some cases where factori-
sation can be done efficiently (these are cases to be avoided in RSA). For
example, if n = pq with the primes p, q close to each other. This means that
n = ((p + q)/2)2 − ((p − q)/2)2 is close to a square. Thus, one starts with
t >

√
n and t ∼ √

n and computes t2 − n to check whether it is a square.
One method which works more generally is the following one.

Pollard’s rho method

This is a method adapted to finding small factors of a composite number
which is not a prime power. It depends on random maps between finite
sets. If we are attempting to find a factor of n, let Fn denote the set of all
functions from {1, 2, · · · , n}. Thus, note that the probability of choosing a
particular function is 1/nn. For such a function f , the algorithm attempts
to find duplicates/collisions among an orbit of a point x0 under iterates of
f . Of course, since the set is finite, any such sequence is eventually cyclic.
The hope is that when there is a collision, say xi = xj (where these are the

18



i-th and j-th iterates of x0), the GCD of n and the difference xi − xj is > 1.
The choice of x0, f etc. can be varied in the event of failure. To describe the
algorithm, let us first describe a directed graph that one can associate to f .
The graph is defined simply by drawing an edge from each point x to f(x).
Some points have no predecessors but each point leads by a unique path to
a unique cycle. Starting with a point x0, the number of edges one has to
travel to hit a cycle is called the tail length of x0 and the number of edges in
that terminating cycle is known as the cycle length of x0. The total of these
lengths (the rho length) is denoted by ρ(x0) - this is the origin of the name
‘rho method’. Here are a few facts which are known about the expectations
of the various parameters :

Facts on expectations.
As n→ ∞, for a random point x0 and a random function f , the expected :
(i) number of points with no predecessors is n/e,
(ii) tail length is

√
nπ/8,

(iii) cycle length is
√
nπ/8, and

(iv) rho length is
√
nπ/2.

Thus, note that the expected number of inputs starting with any point x0

before we hit an xi which is a duplicate, is
√
nπ/2 as n→ ∞.

In Pollard’s rho method, one usually chooses the function f(x) = x2 + 1
mod n. Starting with x0 = y0 = 2, one computes x1 = f(x0), y1 = f(f(x0))
and also d = (n, x1 − y1). If 1 < d < n, then the algorithm terminates
with the assertion that we have successfully found a factor n > d > 1 of
n. If d = 1, compute x2, y2 etc. in the obvious manner. Check whether
(n, x2 − y2) is a proper divisor. Proceeding in this manner, if d = n, at
some point, then the algorithm terminates as a failure. Assuming that the
function f(x) = x2 +1 mod n behaves randomly, the expected time to find a
nontrivial factor is O(n1/4) which is much larger than polynomial-time in log
n. Thus, systems like RSA which depend on the difficulty of factorisation
are not yet vulnerable.

Here is an example to factorise n = 455459 = 743 × 613 (we write x, y, d for
the xi, yi and the GCD (xi − yi, n)) :
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x y d
5 26 1
26 2871 1
677 179685 1
2871 155260 1
44380 416250 1
179685 43670 1
121634 164403 1
155260 247944 1
44567 68343 743

Pollard’s p− 1 method

Let n be a number which we wish to find a factor of and suppose p is a prime
divisor of n such that all prime divisors of p− 1 are ‘small.’ Then, one can
find a factor of n with a high probability as follows. Fix a bound B and
consider k = B!. One may also choose k differently but the main point is to
consider it to be a multiple of most of the integers upto B. The idea is that
if p|n is a prime such that all prime factors of p− 1 are ≤ B, then (p− 1)|k.
Thus, one would have ak ≡ 1 mod p, so that (ak − 1, n) would be a multiple
of p. Thus, to perform the algorithm, we start with a random 1 < a < n− 1
and compute ak mod n and d = (ak −1, n). If d = 1 or n, then the algorithm
fails. This is unlikely to happen if n has at least two large prime factors. If
the algorithm fails, repeat with another a (and another k if necessary).
In cryptological parlance, one says that p−1 is B-smooth if all prime factors
of p − 1 are ≤ B. Thus, this method works when p − 1 is B-smooth for a
suitable B.

Here is a way to write the algorithm :
(i) Start with some bound B.
(ii) Choose a random a with 1 < a < n and compute d = (a, n). If d > 1,
return the value of d; this is a factor.
(iii) For each prime p ≤ B, compute d = (apl − 1, n) mod n where pl ≤ n <
pl+1.
(iv) If d = 1 or d = n, the algorithm terminates as a failure. If not, return
the value of d as a factor.

Here is an example where n = 19048567, B = 19 and we start with the choice
a = 3 (note that (3, n) = 1) :
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p l a
2 24 2293244
3 15 13555889
5 10 16937223
7 8 15214586
11 6 9685355
13 6 13271154
17 5 11406961
19 5 554506

Note that (554505, n) = 5281. This is a prime and so is the factor n/5281 =
3607. Also note that 5280 = 25.3.5.11 which means that the prime factors of
p − 1 are all ≤ 19 whereas 3606 = 2.3.601 whose prime factor 601 is much
larger. The time taken is polynomial in Blog(n).
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3 Elliptic curves - a whirlwind tour

In this section, we recall the theory of elliptic curves rather superficially.
While this is by no means an introduction to the subject in any reasonable
sense, the discussion does give some details for someone who wants to get
into elliptic curve cryptography. Actually, we do not een use all of the results
in this section in the applications to cryptology since we do not get too deep
into elliptic curve cryptography in these lectures.
Formally, an elliptic curve over a field K is a non-singular, projective plane
curve of genus 1 having a specified base point O ∈ E(K). In simpler lan-
guage, an elliptic curve is the set of solutions in P2(K) of an equation of the
form Y 2Z + a1XY Z + a3Y Z

2 = X3 + a2X
2Z + a4XZ

2 + a6Z
3 with ai ∈ K,

with one of three partial derivatives non zero at any given solution. That the
first definition implies the second can be proved using the so-called Riemann-
Roch theorem. If char K 6= 2, 3, then (using a change of variables), an elliptic
curve can also be described as the set of solutions set P2(K) of an equation
of the form Y 2Z = X3 + aXZ2 + bZ3, where the cubic X3 + aX + b has
distinct roots. The above form of the equation is known as the Weierstrass
form. In the above definition, a canonical point O ∈ E(K) is the “point at
infinity” (0, 1, 0); this is the only point with Z = 0.

The name ‘elliptic curve’ comes from the fact that these equations arise when
one tries to measure the of an ellipse. If E is an elliptic curve over the field
C of complex numbers (that is, if the coefficients of the equation are from
C), then E(C) can also be thought of as a complex manifold of dimension
one. Thus, E(C) is a compact Riemann surface of genus one and hence, a
complex torus of dimension one. i.e., C/Λ where Λ is a lattice in C. This
follows from the classical theory of elliptic functions. In other words, there
is an isomorphism of Riemann surfaces E(C) and C/Λ. As we know, the
(singly periodic) trigonometric functions parametrize arc length of the unit
circle, and, therefore, the addition formulae of trigonometric functions give
the addition formulae for the arc length on the unit circle. For elliptic curves
over C, there are the (doubly periodic) elliptic functions which parametrize
the arc length. There are addition formulae for elliptic functions which lead
to analogous formulae for arc length of the ellipse.
There is an invariant which classifies elliptic curves up to isomorphism over
an algebraically closed field. This is the j-invariant of E. Let us assume
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that characteristic of K is 6= 2, 3 for simplicity of notation. If E(a, b) :
Y 2Z = X3 + aXZ2 + bZ3 is an elliptic curve, one defines the j-invariant to
be j(E) = 1728 4a3

4a3+27b2
. Note that :

(i) E(a, b) : Y 2Z = X3 + aXZ2 + bZ3 defines an elliptic curve over K (with
O = (0, 1, 0) ∈ P2(K)) if, and only if, a, b ∈ K and 4a3 + 27b2 6= 0.
(ii) Every elliptic curve over K is isomorphic to E(a, b) for some a, b ∈ K.
(iii) An elliptic curve over K is isomorphic to the curve E(a, b) if, and only
if, there exists t ∈ K∗ such that its Weierstrass form can be written as
Y 2Z = X3 + t4aXZ2 + t6bZ3.
So, note that it makes sense to define j(E) = j(E(a, b)) if E is isomorphic
to E(a, b).
(iv) (when K = K̄) j(E) = j(E ′) if, and only if, E ∼= E ′.

Group law

The most important aspect of elliptic curves is that the set of points form
an abelian group. Over C, this just comes from the addition formula for the
Weierstrass p-function. Over a general field K, the first thing to notice is
that there is a point (exactly one with Z = 0) on it viz., the point O with
projective co-ordinates (0, 1, 0). This will be our identity element. However,
it is much more convenient to work with the affine curve; that is, where
each point (X, Y, Z) on the projective curve corresponds to the unique point
(x = X/Z, y = Y/Z) excepting the point O which has no corresponding point
since Z = 0 there. In that case, the point O is thought of as ‘the point at
infinity’. Once again, we assume the characteristic of K is 6= 2, 3 and that
the (affine) elliptic curve E is given by solutions of the Weierstrass equation
y2 = x3 + ax + b with a, b ∈ K and 4a3 + 27b2 6= 0 along with ‘a point
O at infinity’. Let us now define the ‘sum of two points of E’. We first
define P + O = P for any P . The line joining two points P1 = (x1, y1)
and P2 = (x2, y2) (the tangent in case P1 = P2) meets the cubic in a third
point unless x2 = x1 - note that the latter case happens only if y2 = ±y1.
If (x2, y2) = (x1,−y1), define the sum P1 + P2 to be O. In the case when
x1 6= x2, the third point Q of intersection of the line P1P2 with the curve is
taken to satisfy

P1 + P2 +Q = O.
The line P1P2 has the equation y = mx+c wherem = y2−y1

x2−x1

and c = y1x2−y2x1

x2−x1

.
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Thus, when x1 6= x2, one has P3 = (x3, y3) with

x3 = m2 − x1 − x2 , y3 = −mx3 − c.

Finally, when P1 = P2 6= O, the tangent line is y = mx + c with m =
3x2

1
+a

2y1

and c =
−x3

1
+ax1+2b

2y1

. Thus, in this case P1 + P2 = 2P1 = (x3, y3) with

x3 = m2 − 2x1 , y3 = −mx3 − c and m, c as last stated.
Note the important point that the co-ordinates of P3 are also in K. Notice
also that even if the co-ordinates of Pi are integers for i = 1, 2, and K = Q,
the co-ordinates of P3 are only rational; they may not be integers. It should
be noted that in this geometric definition of the group law, associativity is
not obvious.
We point out one convention which is always used; when E1, E2 are elliptic
curves defined over some field K, one means by a homomorphism from E1

to E2, a homomorphism on the K̄-points; that is, from E1(K̄) → E2(K̄).

Torsion points of Elliptic curves

Let E be an elliptic curve defined over an algebraic number field K. The
most basic result on them is the so-called Mordell-Weil theorem. It asserts
that the group E(K) is a finitely generated abelian group. The finite group of
torsion points as well as the rank of E(K) are both rather mysterious objects
- the latter more so. We mention in passing that although one expects
curves of arbitrarily large ranks to exist over a nummber field K, this is
unknown as yet. As everyone knows, elliptic curves over number fields form
the link between a concrete classical number-theoretic problem like FLT and
the modern, technically powerful Langlands’s program (via modular forms
and Galois representations). That elliptic curves over number fields play a
role in elementary number-theoretical problems can be seen even without
going to FLT etc. An ancient Greek problem was to determine all congruent
numbers n; that is, natural numbers n which occur as the area of a right
triangle with rational sides. Equivalently, for which n is there an arithmetic
progression x2 − n, x2, x2 + n of rational squares ? As it turns out (not very
hard to see this), n is a congruent number if, and only if, the rank of E(Q)
for the elliptic curve E : y2 = x3 − n2x is positive.
Let K be an arbitrary field and E be an elliptic curve defined over K. A
point P of E(K) such that nP = O, for some integer n ≥ 1, is called a torsion
point of E over K. Here, we have denoted by nP the point P + · · ·+P added

24



−n times (if n < 0). If K = K̄, and n 6= 0, then the n-torsion subgroup is
defined as

E[n] := {P ∈ E(K) : nP = O}.
One has:
If n 6= 0 is not a multiple of the characteristic of K, then

E[n] ∼= Z/nZ ⊕ Z/nZ.

Over an algebraically closed field whose characteristic does divide n, it can
happen that E[n] is not as above.
Also, over a field K which is not algebraically closed, the group of n-torsion
can be different (of course, it must be a subgroup of the above group).

Remarks
(i) If E is an elliptic curve defined over R, then one may consider E(R)∩E[n].
It turns out that this is either a cyclic group or it is isomorphic to Z/2×Z/2m
for some 2m dividing n. This can be seen quite easily on using the so-called
Weil pairing and the fact that ±1 are the only roots of unity in R.
(ii) If E is an elliptic curve defined over Q, then the subgroup E(Q)tor of all
points of finite order in E(Q) is a finite group (by the Mordell-Weil theorem).
Using (i), it is either a cyclic group or it is isomorphic to Z/2 × Z/2m for
some m.
(iii) It is a far more difficult problem to determine which subgroups of Z/nZ⊕
Z/nZ occur as n-torsion subgroups of an elliptic curve over K. For example,
Mazur proved that over Q, only finitely many (exactly 15) groups can occur
as torsion groups.
(iv) Over general number fields K, it is a result of Merel that the order of
the torsion group E(K)tor is bounded purely in terms of the degree [K : Q].

We saw in the above discussion that for each integer n and any elliptic curve
E, there is a map [n] : E(K) → E(K) defined by P 7→ nP . This is an
example of an isogeny, when n 6= 0. In general :
A non constant morphism φ : E1 → E2 between elliptic curves E1 and E2

such that φ(O) = O is called an isogeny.
Therefore, an isogeny must be surjective and must have finite kernel. In fact,
the rigidity property of projective varieties implies that an isogeny must be a
group homomorphism. Moreover, as a trivial consequence of the fact about
the fibres of a morphism of curves, we see that, if φ : E1 → E2 is an isogeny,
then, # Kerφ = degsep φ.
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One denotes by Hom(E1, E2), the abelian group of all isogenies from E1 to
E2.

Elliptic curves over finite fields

Let E be an elliptic curve E defined over a finite field Fq. The groups E(Fq)
are the groups which arise in cryptological applications. In fact, typically
they will be elliptic curves over Q and one would reduce the coefficients mod
p for a prime p and consider the elliptic curve over Fp. Given E over Q,
this can be done for almost all primes p. The most important information
encoded in E over Fq is the order |E(Fq)|. Given an equation for E, to find
the order of this group is a nontrival problem. A theorem of Hasse tells us
that this order must be within an error of 2

√
q from the number q + 1 of

points on the projective line on Fq. The order of E(Fq) can be computed in
terms of a certain isogeny known as the Frobenius isogeny which is defined
as the map (x, y) 7→ (xq, yq) on points (x, y) 6= O. If E is defined over Fq

and πq,E : E → E is the Frobenius morphism, then note that E(Fq) = Ker
(1 − φq,E). The Frobenius isogeny is purely inseparable, of degree q. The
trace t of the Frobenius plays a fundamental role in the theory of elliptic
curves over Fq. We shall see in a while that a result of Hasse tells us that
|t| ≤ 2

√
q. One has, for every (x, y) ∈ E,

(xq2

, yq2

) + [t](xq, yq) + [q](x, y) = O.

To discuss these aspects in some detail, we recall some notions which will be
used.

Remarks
(a) The notion of a dual isogeny is defined by the characterizing property:
Let φ : E1 → E2 be an isogeny. Then, there is a unique isogeny φ̂ : E2 → E1

satisfying φ̂ ◦ φ = [deg φ]. φ̂ is called the dual of φ.
A more down-to-earth description of φ̂ is as follows:

φ̂(y) = [deginsepφ]{
∑

z∈φ−1(y)

z −
∑

w∈Kerφ

w} = [degφ](z)

for any y ∈ E2 and any z ∈ φ−1(y).
(b) For K = C, an isogeny φ : C/L → C/L′ has degree d = [L′ : φ(L)].
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Thus, dL′ ⊆ φ(L) ⊆ L′. Then, φ̂ : C/L′ → C/L is the map d/f where φ is
‘multiplication by f ’.

As we noted, an isogeny has finite kernel. On the other hand, here is a rather
startling fact:
Let E1 and E2 be isogenous elliptic curves defined over Fq. Then #E1(Fq) =
#E2(Fq).

Some important facts on dual maps are :

(i) φ̂+ ψ = φ̂+ ψ̂

(ii) [̂n] = [n]
(iii) deg [n] = n2

(iv) deg φ̂ = deg φ

(v)
̂̂
φ = φ

(vi) deg (−φ) = deg φ
(vii) d(φ, ψ) := deg (φ + ψ)− deg φ− deg ψ is symmetric, bilinear on
Hom(E1, E2) , where E.1, E2 are elliptic curve over a field, and
(viii) deg φ > 0 for any isogeny φ.

Hasse’s theorem - Riemann hypothesis for elliptic curves

For an elliptic curve E defined over a finite field Fq, the most important
parameter and the most obvious one that one can think of is the number
of points in E(Fq). Let us heuristically estimate #E(Fq); this will be one
(corresponding to the point at infinity) more than the number of solutions
(x, y) of the equation y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6 with x, y ∈ Fq.
Each value of x yields at the most two values of y and thus #E(Fq) ≤ 1+2q.
Heuristically, one might expect a random quadratic equation (for y in terms
of x) to have a solution with probability 1/2. Thus, perhaps #E(Fq) ∼ q+1.
As a matter of fact, we shall prove that this is true for any E upto an error
of 2

√
q i.e., |#E(Fq) − q − 1| ≤ 2

√
q. This is a theorem of Hasse and,

when rewritten in terms of the so-called zeta function of E, turns out to be
analogous to the classical Riemann hypothesis.

Let E be an elliptic curve defined over Fq. Let πq,E : E → E denote the
Frobenius endomorphism. Recall that πq,E is a purely inseparable isogeny
with deg πq,E = q.

Riemann hypothesis for elliptic curves (Hasse 1934).
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Let E be an elliptic curve defined over Fq. Then,

|#E(Fqn) − 1 − qn| ≤ 2qn/2 ∀n ≥ 1.

Tate modules and the Weil pairing

We first recall the Tate module and its relation to isogenies on an elliptic
curve. Let E be an elliptic curve defined over Fq. These are crucially used
not only in the Weil conjectures for elliptic curves but have also been used
in elliptic curve cryptography (the Menezes-Okamoto-Vanstone attack on
elliptic curve DLP). Suppose ` is a prime not dividing q. We know that the

`n-division points of E i.e., E[`n]
d
= Ker [`n] is ' Z/`n × Z/`n. The inverse

limit of the groups E[`n] with respect to the maps E[`n+1]
[`]→ E[`n] is the

Tate module T`(E) = lim
←
E[`n]. Since each E[`n] is naturally a Z/`n-module,

it can be checked that T`(E) is a Z`(= lim
←
Z/`n)-module. It is clearly a free

Z`-module of rank 2.

Evidently, any isogeny φ : E1 → E2 induces a Z`-module homomorphism
φ` : T`(E1) → T`(E2). In particular, we have a representation : End (E) →
M2(Z`);φ 7→ φ`, if ` 6 |q. Note that End E ↪→ End T`(E) is injective because
if φ` = 0, then φ is 0 on E[`n] for large n i.e., φ = O.

Finally, let us recall the Weil pairing. This is a non-degenerate, bilinear,
alternating pairing

e : T`(E) × T`(E) → T`(µ)
d
= lim
←
µ`n

∼= Z`.

It has the important property that e(φx, y) = e(x, φ̂y).

Weil conjectures for elliptic curves

In 1949, A. Weil made a series of general conjectures about varieties de-
fined over finite fields. Let us use the notation Kn = Fqn. If V is a projective
variety defined over K1 (i.e., the zero set of a collection of homogeneous poly-
nomials with coefficients from K1), we want to keep account of the number
#V (Kn). The natural way to do this is by means of a generating function
which codifies the data. This is known as the zeta function of V and is
defined as the formal power series

Z(V/K1;T ) = exp

(
∞∑

n=1

#V (Kn)
T n

n

)
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Note that #V (Kn) = 1
(n−1)!

dn

dT n logZ(V/K1;T )]T=0. The reason for defining

the zeta function in this manner is that the series
∑
n≥1

#V (Kn)T n

n
often looks

like the log of a rational function of T .

The following result is crucial for the Weil conjectures for elliptic curves and
uses Weil pairings in its proof.
Let φ ∈ End (E) and ` 6 |q be a prime. Then,

det φ` = deg φ,

trφ` = 1 + deg φ− deg (1 − φ).

In particular, det φ`, trφ` are independent of `, and are integers.

A consequence of this result is the evident fact that the characteristic poly-
nomial of φ` has coefficients in Z when ` 6= char Fq.
Write det (T.Id− φ`) = (T − α)(T − β);α, β ∈ C.
Moreover, ∀ m

n
∈ Q, we get

det
(m
n
Id− φ`

)
=

1

n2
det(mId− nφ`) = deg(m− nφ)

1

n2
> 0.

This implies α = β̄. Noting, by triangularising, that det (Id.T − φn
` ) =

(T − αn)(T − βn), we get:

Theorem For all n ≥ 1, #E(Kn) = 1 − αn − ᾱn + qn where |α| = q1/2.

In particular, Z(E/K1;T ) = 1−aT+qT 2

(1−T )(1−qT )
, where a ∈ Z and 1 − aT + qT 2 =

(1 − αT )(1 − ᾱT ). Further, Z
(
E/K1;

1
qT

)
= Z(E/K1;T ).

Remark Putting ζE/Fq
(s) = Z(E/K1; q

−s), one has

ζE/Fq
(s) =

1 − aq−s + q1−2s

(1 − q−s)(1 − q1−s)
= ζE/Fq

(1 − s).

Note that the Riemann hypothesis for Z(E/K1;T ) is equivalent to the fact
that the zeroes of ζE/Fq

(s) are on the line Re(s) = 1
2
.

Supersingularity

Supersingular curves are a special class of elliptic curves which arise naturally.
One of the properties they have is that their definition forces them to be
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defined over a small finite field and, over any field, there are only finitely
many elliptic curves isogenous to a supersingular one. An elliptic curve E
defined over a field of characteristic p > 0 is said to be supersingular if
E[p] = O.
The following characterisation of supersingular elliptic curves is useful and
not hard to prove.

Let K be a perfect field of characteristic p > 0. Then, the following state-
ments are equivalent:
(a) E is supersingular.
(b) [p] : E → E is purely inseparable and j(E) ∈ Fp2.
(c) E[pr] = {O} for some r ≥ 1.
(d) E[pr] = {O} for all r ≥ 1.
(e) EndK̄(E) is an order in a quaternion division algebra over Q.

For p = 2, Y 2 + Y = X3 is the unique supersingular curve.
For p > 2, we have :

Theorem Let K = Fq with char K = p odd.
(i) Let f(X) ∈ K[X] be a cubic polynomial with distinct roots in K̄ and
E be the elliptic curve defined by the equation Y 2 − f(X) = 0. Then E is

supersingular ⇔ coefficient of Xp−1 in f(X)
p−1

2 is 0.

(ii) Consider the Deuring polynomial Hp(t) =
∑(

p−1
2

i

)
ti. Let λ ∈ K̄, λ 6=

0, 1. Then, the elliptic curve E : Y 2 = X(X − 1)(X − λ) is supersingular
⇔ Hp(λ) = 0.

As a corollary, here is a criterion for an elliptic curve over a field of positive
characteristic to be supersingular.

Corollary Let K = Fp. Then the elliptic curve Eλ defined by the equation
Y 2 = X(X − 1)(X − λ) is supersingular if and only if #Eλ(Fp) = p+ 1.

(Mass formula) p−1
24

=
∑

1
Aut(E)

where the sum is over isomorphism classes
of supersingular elliptic curves over a field of characteristic p > 0.

Structure of E(Fq)

In this section, we finally point out what possible groups can arise as groups
of rational points of elliptic curves over finite fields:
A group G of order N = q + 1 −m is isomorphic to E(Fq) for some elliptic
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curve E over Fq if, and only if one of the following holds:
(i) (q,m) = 1, |m| ≤ 2

√
q and G ∼= Z/A× Z/B where B/(A,m− 2).

(ii) q is a square, m = ±2
√
q and G = (Z/A)2 where A =

√
q ∓ 1.

(iii) q is a square, p ≡ 1(3), m = ±√
q and G is cyclic.

(iv) q is not a square, p = 2 or 3, m = ±√
pq and G is cyclic.

(v) q is not a square, p 6≡ 3(4), m = 0 and G is cyclic
or q is a square, p 6≡ 1(4), m = 0 and G is cyclic.
(vi) q is not a square, p ≡ 3(4), m = 0 and G is either cyclic or G ∼=
Z/M × Z/2 where M = q+1

2
.

31



4 Elliptic curve cryptosystems

Problems like the discrete log and others discussed make sense for any fi-
nite abelian group. Of course, the complexity depends on the group. For
instance, the discrete log is easy for the additive group Z/nZ whereas it is
hard for F ∗q . Our choice of group should be such that the group operations
are simple enough to program on a computer and the elements of the groups
should be stored conveniently on a computer. A general-purpose algorithm
due to Pohlig & Hellman shows that a problem like the discrete log problem
on a group reduces easily to solving the problem over a prime order sub-
group. Thus, our group should have large prime order subgroups in order
that cryptosystems based on such a group is not vulnerable. In 1986, Miller
and Koblitz came up with the idea of basing cryptosystems on the group
E(Fq) for an elliptic curve E. Indeed, it turns out that the discrete log
problem over such a group is, at present, orders of magnitude harder than
the corresponding problem on a finite field of comparable cardinality. There
are other groups like the class groups of orders in number fields based on
which, cryptosystems have been studied. It can be proved that these cryp-
tosystems are as hard to break as factoring integers is. However, the group
operation here is rather complex to perform quickly enough. Once the DLP
is analysed over elliptic curves, it is easy to see that it can be used to do a
Diffie-Hellman key exchange. Before we start studying cryptosystems based
on elliptic curves, we point out why elliptic curves are better to use than, say,
F ∗q . First of all, there are many curves over the same field (there is a choice
of about q2 over Fq) and, for the same level of security as, say RSA, the key
sizes needed are much smaller. For instance, an elliptic curve group over a
160-bit prime compares favourably with F ∗p for a 500-bit prime. Another
advantage is due to the following fact. The so-called index calculus method
can be used fruitfully for attacking the discrete log problem in F ∗p ’s because
there is a wide choice for the so-called factor bases since Q∗ is infinitely gen-
erated (there are infinitely many prime numbers). But, as E(Q) is finitely
generated, such choices of factor bases may not be possible.
We shall not discuss analogues of RSA involving elliptic curves as the per-
formance is worse in comparison with RSA and it has not been proved that
breaking them is equivalent to factoring. We discuss the discrete log prob-
lem and the ‘Baby step giant step’ method of solving it. There is another
method depending on random walks known as the method of tame and wild
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kangaroos which is of comparable efficiency but we do not discuss it here. We
also point out that cryptosystems like El Gamal, Massey-Omura etc. can be
described over elliptic curves.

Representing plaintext on E

Before proceeding further, we would like to discuss how plaintext can be
represented as points on an elliptic curve. Let E : y2 = x3 + ax + b be an
elliptic curve over Fq where q = pr is assumed to be large and odd. Since
this will be a probabilistic method of representing plaintext on E(Fq), we fix
a number k and we would be bounding the probability of failure by 1/2k.
In practice, k = 50 does the job. Let M be so large that the plaintext
is represented as a string of integers m with 0 ≤ m < M . On the other
hand, the finite field is taken to be so large that q > Mk. We write the
integers < Mk in the form mk + j with 1 ≤ j ≤ k. These can be regarded
as distinct elements of Fq. This sets up a 1-1 correspondence from the set
of integers in [0,Mk] to a set of elements in Fq. A number mk + j would
be the x co-ordinate of a point on E(Fq). We compute the square-roots of
x3 + ax + b in Fq if they exist. If they do, call one of them y and we have
a point Pm = (x, y) on E(Fq). If there is no square-root in this case, then
change j to j + 1 and proceed. If we can get a square by the time j reaches
k, we can recover m = [(x̃ − 1)/k], where x̃ is the integer corresponding to
the element x of Fq. Since x3 + ax + b will be a square half of the time, the
probability of failing to find a square as j varies, is 1/2k.

Baby step giant step for DLP

Of course, this method is not special for elliptic curves but is common to
all finite abelian groups G. Given elements Q = mP , one would like to
determine the discrete log m. If the order of G is n, write m = [

√
n]0a + b

with 0 ≤ a, b < [
√
n]0 where we have written [∗]0 for the upper ceiling

function. Then
Q− bP = a[

√
n]0P.

One computes a table of values of Rb = Q−bP as b ranges from 0 to [
√
n]0−1.

This is called the table of baby steps. After this, the giant steps Sa = a[
√
n]0P

are computed for a between 0 and [
√
n]0 − 1. After computation of each Sa,
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one checks with the table of baby steps to see if there is a match. Thus, a
match is reached in [

√
n]0 giant steps. The main drawback of the method is

that one needs to store [
√
n]0 group elements.

Here is an example :
Consider the elliptic curve

E : y2 = x3 + 71x+ 602

over the field F1009. We wish to solve for m satisfying Q = (592, 97) = mP =
m(32, 737). The point P has order 53 and the whole group E(F1009) has
order 1060. We need to work just in this subgroup of order 53 generated by
P . Thus, in this example, n = 53. Note that [

√
n]0 = 8, there are 8 baby

steps. These values Rb = Q− bP are tabulated below.

The table of baby steps Rb = Q− bP are as follows :

b Rb

0 (592,97)
1 (728,450)
2 (537,344)
3 (996,154)
4 (817,136)
5 (365,715)
6 (627,606)
7 (150,413)

The table of giant steps Sa = 8aP are as follows :

a Sa

1 (996,855)
2 (200,652)
3 (378,304)
4 (609,357)
5 (304,583)
6 (592,97)

Thus, we see there is a match for a = 6, b = 0 which means that m = 8a+b =
48.

Pohlig-Hellman’s reduction of DLP - an example
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The discrete log problem on any finite abelian group can easily be reduced to
prime power order subgroups using the Chinese remainder theorem. Further,
suppose P ∈ G has order pr, and that we wish to solve Q = mP . Note that m
is determined mod pr. One considers Q′ = pr−1Q = mP ′ where P ′ = pr−1P
has order p. If we solve Q′ = mP ′, we can determine m mod P . Call this
m0. One can then look at Q−m0P = (m−m0

p
)(pP ). As before, we can solve

for m−m0

p
mod p. Call this m1. Then, we would have m ≡ m0 +m1p mod p2.

Proceeding in this manner, we would have all the p-adic digits of m.

Let us look at an example to see how the whole procedure of applying Chinese
remainder theorem, baby step giant step etc. works.
We consider once again the elliptic curve

E : y2 = x3 + 71x+ 602

over the field F1009. Suppose we wish to solve Q = mP where Q = (190, 271)
and P = (1, 237). One can compute the order of P and find it to be 530. As
530 = 2.5.53, we need to solve this discrete log problem mod 2, mod 5 and
mod 53.
To solve mod 2, look at Q2 = 265Q = mP2 where P2 = 265P . It is easily
computed that the points Q2, P2 of order 2 are the same, viz., (50, 0). One
finds that the solution of (50, 0) = m(50, 0) is m ≡ 1 mod 2.
To solve mod 5, we compute Q5 = 106Q = (639, 849), P5 = 106P =
(639, 160). Thus, P5 = −Q5, and so m ≡ −1 mod 5.
To solve mod 53, we compute Q53 = 10Q = (592, 97) and P53 = 10P =
(32, 737). In this case, the solution of Q53 = mP53 is not so easy as 53 is a
somewhat large prime. Thus, one uses the baby step giant step method. This
was exactly the example we gave to illustrate this method and we obtained
m ≡ 48 mod 53.
Combining all these, one has by the Chinese remainder theorem the solution
m = 419 for the original DLP.

Choice of E, Fq etc. for security of DLP

(i) The group E(Fq) should have a subgroup of a large prime order.
‘Large’ here means that it should withstand the square-root finding algo-
rithms in existence. At present, a 160-bit prime provides as much security
as a public key cryptosystem based on F ∗p with 1000-bit key length.
(ii) Avoid supersingular and anomalous curves.
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The reason is a method of attack (MOV) developed by Menezes, Okamaoto
and Vanstone which embeds certain elliptic curves over Fq in the multiplica-
tive group of Fql for some l, where the DLP is easier to attack. They use Weil
pairing on E[n]. This MOV attack can work (as shown by Balasubramanian
and Koblitz) only when the elliptic curve is supersingular or when the or-
der of q mod n (= |E(Fq)|) is small, or when q = n = p (such curves are
called anomalous). Thus, in addition to avoiding supersingular and anoma-
lous curves, one needs to choose curves for which the order of q mod n is
large.

El Gamal, Massey-Omura over E

Given our earlier formulations which were as general as possible, it is quite
clear how to describe over elliptic curve groups the various cryptosystems
like El Gamal and Massey-Omura. Also, the Diffie-Hellman key exchange
can be done fruitfully as we know that the DLP is intractable if we make
proper choices of E, q etc.
Indeed, for Diffie-Hellman, Alka and Beena exchange a secret key P as fol-
lows. They choose a public E, Fq and a point Q ∈ E(Fq) of large enough size
(comparable to |E(Fq)|). Then, Alka and Beena choose their private keys to
be random integers a and b in the range (1, |E(Fq)|). They make public the
points aQ and bQ respectively. Both of them can compute abQ which they
will take as their private key P .

Elliptic curve factoring method

The most popular method is the ECM method due to H.W.Lenstra which
is analogous to Pollard’s p − 1 method. The special fact which allows for a
wide choice of elliptic curves mod p is :

Lemma.
There is a constant 1 > c > 0 such that among all pairs of points (a, b) ∈
Fp × Fp with 4a3 + 27b2 6= 0, there are cp2 points (a, b) such that the curve

E : y2 = x3 + ax + b

over Fp satisfies | |E(Fp)| − p| < √
p.

Thus, there is a probability of c of choosing an elliptic curve whose order is
in the above interval.
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Lenstra’s ECM works as follows. To conveniently describe the method, let
us consider the case n = pq where p, q are primes. One considers an elliptic
curve E over the ring Z/nZ. One needs to be careful as the ring has zero
divisors. So, one writes the group law in terms of projective co-ordinates.
By the Chinese remainder theorem, E(Z/nZ) ∼= E(Fp)×E(Fq). Since there
is a large amount of choice of E possible, we are more likely (than the usual
Pollard’s p − 1 method) to find a curve for which the order of E(Fp) is a
B-smooth number for some reasonable B. First, one finds a curve with a
projective Z/nZ-point; that is,

Ea,b : y2z = x3 + axz2 + bz3

and (x, y, z) ∈ Ea,b(Z/nZ). If we assume that the discriminant ∆ of the
curve is coprime to n, then Ea,b has good reduction mod p (and mod q).
Considering it as a curve over Fp, Hasse’s theorem gives

| |Ea,b(Fp)| − p− 1| < 2
√
p.

Choosing a constant B, let k(B) = LCM(1, 2, · · · , B).
We compute k(B)(x, y, z) mod n, say, (xB, yB, zB). If |Ea,b(Fp)| divides k(B),
then p divides zB and we may be able to find factor as (zB, n). In practice,
such a factor is found while computing the multiple k(B)(x, y, z) where some
inversion will be impossible due to the zero divisors in Z/nZ. We demon-
strate this by an example now.

Example.
Let n = 187 and let E be y2 = x3 + x + 25. Consider the point P = (0, 5).
Take B = 3. Then k(B) = 6. Recall that the slope m of the line joining two
points (x1, y1), (x2, y2) on y2 = x3+ax+b is given asm = (y2−y1)/(x2−x1) or
m = (3x2

1+a)/2y1 according as whether the points coincide or not. Then, the
point P3 which is their sum is given as x3 = m2−x1−x2, y3 = m(x1−x3)−y1.
To compute 2P in our case, we find m = 1/10 ≡ −56 mod 187; thus 2P =
(−43, 18).
Now, to compute 4P = 2P + 2P , we have m = −62/36 ≡ 71 mod 187 and
4P = (78,−7).
To compute 6P = 2P + 4P , we find m = 25/66. Note that 66 cannot be
inverted since (66, 187) = 11. We have thus found a factor.
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Elliptic curves for primality

The principal method is an analogue of Pocklington’s method which we dis-
cussed; this is due to Goldwasser & Kilian. We do not discuss it in detail
but point out the result that it is based :

Let E be an elliptic curve over Z/nZ where (n, 6) = 1. Suppose we can find
a point P ∈ E(Z/nZ) and an integer m such that mP = 0 but for some
prime divisor l > (n1/4 +1)2 of m, one has (m/l)P 6= 0. Then n is prime. If
neither of the two multiplications mP and (m/l)P can be made, then one has
found a proper factor of n as in ECM. Further, if n is indeed prime, such a
point P as aove does exist if E(Z/nZ) has order m which has a prime factor
l > (n1/4 + 1)2.

Counting the order

It is clear that generating elliptic curves over finite fields whose orders are
suitable for our applications is very important in any of the protocols involv-
ing elliptic curves. The method due to Rene Schoof was path-breaking and is
currently the basis of any efficient scheme for counting points; we will discuss
it very briefly here.
Now, Hasse’s theorem gives |E(Fq)| = q + 1 − t where |t| < 2

√
q.

The key point of Schoof’s algorithm is to count the trace t of the Frobenius
mod primes l ≤ lmax where lmax is the smallest prime for which

∏{l : l
prime, l ≤ lmax} > 4

√
q.

One can then apply the Chinese remainder theorem to obtain the order of
E(Fp).
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