
write a program to search for solutions, but that won’t solve the problem in general,
and so it seems that solving this problem for m > 3 will require some other approach.

Summary. When is the average of sums of powers of integers itself a sum of the first n integers
raised to a power? We provide all solutions when averaging two sums, and provide some
conditions regarding when larger averages may have solutions.
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Uncountably Generated Ideals of Functions
B. Sury (sury@isibang.ac.in), Stat-Math Unit, Indian Statistical Institute, 8th Mile
Mysore Road, Bangalore, India

Undergraduates usually think that the study of continuous functions and the study of
abstract algebra are divorced from each other. More often than not, they find it very
surprising that concepts like rings and ideals could be applied to function spaces as
well! Some applications in algebra texts concern the ring C[0, 1] of real-valued con-
tinuous functions on [0, 1]; however, these texts restrict themselves to a few standard
exercises although more could be accomplished with almost the same amount of labor.
For instance, the exercises in [1, p. 388], [2, p. 259], and [3, p. 140] ask for a proof
that maximal ideals in C[0, 1] are not finitely generated. The fact that these maximal
ideals are not countably generated does not seem to be as well-known as it should be
although the proof is not harder! We will prove this, and then use it to produce some
non-prime ideals in C(0, 1) which cannot be countably generated as well. Without
further ado, let us begin.

Maximal ideals in C[0,1] Let Ic = { f ∈ C[0, 1] : f (c) = 0} where c ∈ [0, 1].
Contrary to what we want to prove, assume that Ic is generated by a countable set
{ f1, f2, . . .}. By re-scaling, we may assume that | fn(x)| ≤ 1 for all x and for all n.
Consider the function

f (x) :=
∞∑

n=1

√
| fn(x)|

2n
.

By uniform convergence, f is continuous. Clearly, f ∈ Ic. By assumption f =∑r
i=1 gi fi for suitable gi in C[0, 1] and natural number r .
Let M be an upper bound for |gi | for all i ≤ r and all x in [0, 1]. Then,

| f (x)| ≤ M
r∑

i=1

| fi (x)|.
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Now, by continuity, there is a neighborhood U of c such that

√
| fi (x)| <

1

2i M

for x ∈ U and i ≤ r . In addition, since f vanishes only at c, for each x ∈ U , x 6= c,
fi (x) 6= 0 for some i ≤ r . Thus, for each x ∈ U , x 6= c, we get some i such that

| fi (x)| <

√
| fi (x)|

2i M
.

Hence,

| f (x)| ≤ M
r∑

i=1

| fi (x)| <
r∑

i=1

√
| fi (x)|

2i
≤ | f (x)|

which is a contradiction. This proves that Ic is not countably generated.

Prime ideals in C[0,1] Recall that a proper ideal P in a commutative ring R is
prime, if st ∈ P implies either s ∈ P or t ∈ P . Equivalently, the quotient ring R/P
is an integral domain (a ring in which xy = 0 implies either x = 0 or y = 0). Prime
ideals are more general than maximal ideals in that every maximal ideal is prime; for,
an ideal M is maximal if and only if, R/M is a field. The basic method (essentially, the
only method) for constructing prime ideals begins with a multiplicatively closed subset
S of R containing 1. Then, any ideal P which is maximal with respect to the property
that P does not intersect S, must be prime. This is so because if ab ∈ P, a 6∈ P, b 6∈ P ,
then the ideals P + (a) and P + (b) must intersect S, by the maximality property.
Thus, if

s = p1 + ar1 ∈ S ∩ (P + (a)) and t = p2 + br2 ∈ S ∩ (P + (b)),

then st = p1(p2 + br2)+ p2ar1 + abr1r2 ∈ S ∩ P , contradicting the construction of
P . Note that, according to Zorn’s lemma, such ideals always exist.

In C[0, 1], one can take S to be the set of all polynomial functions on [0, 1] whose
leading coefficient is 1. Then, all resulting ideals are prime, but not maximal; for, if Ic

is a maximal ideal containing P , then the polynomial x − c is in S ∩ Ic and cannot,
therefore, belong to P . It is not clear if such P are countably generated. In general, the
following question is natural: Are there any finitely generated prime ideals in C[0, 1]?

A non-prime ideal in C(0,1) There is a nice way to use the previous result to
produce an ideal in the ring of continuous functions on the noncompact interval (0, 1),
which is neither prime nor countably generated. Let

I = { f ∈ C(0, 1) : f (1/n) = 0 for all but finitely many n}.

Note that I is indeed an ideal but not a prime ideal. For instance, if we consider
some f ∈ C(0, 1) which vanishes at all 1/2n and does not vanish at any 1/(2n + 1)
and a function g ∈ C(0, 1) which vanishes at all 1/(2n + 1) and does not vanish at
any 1/2n, then neither f nor g are in I whereas f g ∈ I .
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We will show that I cannot be countably generated. To begin with, fix disjoint
closed intervals

Kn :=

[
1

n + 1
+ εn,

1

n

]
,

for all n.
Suppose, contrary to what we want to prove, that I is generated by a countable set

{ f1, f2, . . .} in C(0, 1). For each n, we look at the ring C(Kn) and its maximal ideal
I1/n consisting of those functions which vanish at 1/n. For each n, I1/n , as we have
shown, is not countably generated. Now, the restrictions fi |Kn which happen to vanish
at 1/n, form a countable subset in I1/n . For each n, pick an element φn ∈ I1/n which
is not in the ideal generated by the restrictions { fi |Kn : i ≥ 1, fi (1/n) = 0}. As φn

are defined on disjoint intervals, they have a continuous extension φ to the whole of
(0, 1). So, now we have φ ∈ C(0, 1)with φ|Kn = φn . Note that this is possible because
the limit point 0 is not in the set (0, 1). Since φn(1/n) = 0 for every n, φ(1/n) = 0
for each n; that is, φ ∈ I = ({ f1, f2, . . . , }). Therefore, by assumption, we may write
φ =

∑r
i=1 gi fi , for suitable gi ∈ C(0, 1) and some r . As f1, . . . , fr vanish at all but

finitely many 1/n, there is a common N (indeed, infinitely many) so that fi (1/N ) = 0
for i = 1, . . . , r . Therefore φ(1/N ) = 0. However, the fact that

φN = φ|KN =

r∑
i=1

gi |KN fi |KN

contradicts our choice of φN in I1/N . Therefore, I cannot be countably generated.

Summary. Maximal ideals in the ring of continuous functions on the closed interval [0, 1] are
not finitely generated. This is well-known. What is not as well-known, but perhaps should be,
is the fact that these ideals are not countably generated although the proof is not harder! We
prove this here and use the result to produce some non-prime ideals in the ring of continuous
functions on the open interval (0, 1) which also cannot be countably generated.
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