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Abstract. Let K be a global field and S be a finite set of places of K which includes all those of
archimedean type. Let G be an algebraic group over K and GK be its K-rational points. The
authors provide a detailed proof of a lemma of Raghunathan which states that (under fairly
weak restrictions) the closure in the S-congruence topology of a subgroup of GK normalized
by an S-arithmetic subgroup is also open. This leads to a significant simplification in the proof
of one of the principal results in a recent joint paper of the authors.

By applying the lemma to S-arithmetic lattices in G of K-rank one, where charðKÞ0 0 and
jSj ¼ 1, we can provide a lower estimate for the number of subgroups of a given index in such
a lattice which are not S-congruence. This extends previous results of the first author and
Andreas Schweizer.

Introduction

Let K be a global field and let S be a finite non-empty set of places of K containing
all those of archimedean type. Let G be an algebraic group over K . The motivation
for this note is the following result [12, 4.3 Lemma].

Raghunathan’s lemma. Suppose that G is connected, simply-connected and K-simple

with strictly positive S-rank. Let G be an S-arithmetic subgroup of GK , the K-rational

points of G. If N is any non-central subgroup of GK which is normalized by G then the

closure of N in the S-congruence topology is also open.

What first attracted our attention to this result is that it provides a significant sim-
plification in the proof of one of the principal results in a recent paper [8]. A result
involving a subgroup which is clopen with respect to the S-congruence topology is
central to Weisfeiler’s celebrated work [13] on the strong approximation theorem.
(Pink [9] has extended these to include, for example, global fields of all positive
characteristic.) Weisfeiler’s starting point is a subgroup of GK which is both finitely
generated and Zariski dense. As we shall see the hypotheses on N ensure that it is
Zariski dense. However Raghunathan’s lemma does not follow from [13] since in
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general such an N is not finitely generated. Indeed we will apply the Lemma to such
subgroups. The proof [12, 4.3 Lemma] provided by Raghunathan is merely a sketch.
Given the importance of this result (and the fact that the likely readership of this note
will include group-theorists who are not experts in algebraic groups) it seems appro-
priate to provide a detailed version.

We apply this theorem to the classical case of an S-arithmetic lattice, L, in GKv
,

where charðKÞ0 0, G has K-rank one and S ¼ fvg. We prove a result on the
ubiquity of finite index subgroups of L which are not S-congruence. This extends
results [7] of the first author and Andreas Schweizer for the special case where L is
a so-called Drinfeld modular group.

We conclude by showing that for some important special cases, in particular
G ¼ SL2, the Lemma is essentially an elementary result.

1 Raghunathan’s lemma

We will make use of the notation used in [10]. Although that book is primarily con-
cerned with fields of characteristic zero, many of the results it contains, including
all those cited in this paper, hold for any characteristic. Throughout G denotes an
algebraic group over a field K. After Margulis [5, p. 60] we will assume that G is
a K-subgroup of GLn, for some n. This provides a standard way of representing G

and all definitions given below will refer to this embedding. We list the following
notation which will be used throughout.

K a global field;
S a finite non-empty set of places of K including all archimedean places;
OðSÞ the ring of all S-integers in K ;
Kv the completion of K with respect to a non-archimedean place v;
Ov the valuation ring of Kv;
pv the maximal ideal of Ov;
Fv the residue field of Ov;
GF the group of F -rational points of G, where F is a field containing K ;
GR the group of R-integral points of G, where R is a ring contained in Kv;
GRðqÞ the principal congruence subgroup of GR, where q is an R-ideal.

We recall that Kv is a local field and that Ov is a local ring whose residue field Fv is
finite. By definition

OðSÞ ¼ 7
v BS

ðK VOvÞ:

The subgroups GOðSÞðaÞ, where a0 f0g, form the basis of a topology on GK called
the S-congruence topology. The topology on Kv induces another topology on GKv

for which the GOv
ðp t

vÞ, where td 1, provide a base of the neighbourhoods of the
identity; see [10, p. 134]. Let X be the restricted topological product [10, p. 161] of
GKv

with respect to the distinguished (open, compact) subsets, GOv
, where v B S.

We recall that the topology induced on the embedding of GK in X (via the usual
‘‘diagonal map’’) coincides with the S-congruence topology on GK . Let H be any
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subgroup of GK . Then we can identify the closure of H in X with the (profinite) com-
pletion of H with respect to its S-congruence topology. We begin by providing a
detailed version of the proof of [12, 4.3. Lemma].

Notation. Let H be a subgroup of GK . We denote the S-closure of H in GK (or X )
by H and the Zariski closure of H in G by ĤH.

Theorem 1.1 (Raghunathan). Suppose that G is connected, simply-connected and

K-simple with strictly positive S-rank. Let G and N be subgroups of GK for which:

(i) G is S-arithmetic, i.e. commensurable with GOðSÞ;

(ii) N is non-central and normalized by G.

Then N is also open in the S-congruence topology on GK .

Proof. It su‰ces to prove that N is open in X . We begin by showing that N is Zariski
dense in G. Now ĜG normalizes N̂N. But ĜG ¼ G by [5, 3.2.10, p. 64] and N̂N is defined
over k by [5, 2.5.3, p. 56]. Hence N̂N ¼ G.

The closure of G in GK in the S-congruence topology is open and so G (in X )
contains a subgroup of the type

Y
v BS

Gv;

where

(i) each Gv is open in GKv
,

(ii) Gv ¼ GOv
, for all but finitely many v.

Then, since N is normalized by G , N contains

Y
v BS

½Nv;Gv�;

where Nv is the projection of N into Gv. It su‰ces therefore to prove that, for all
v B S,

(a) ½Nv;Gv� is open in GKv
,

(b) ½Nv;Gv�dGOv
, for all but finitely many v.

Proof of (a). Here the approach is similar to other applications of Lie theory. (See, for
example, [2, Section 9].) We provide an outline. Let L ¼ LðGÞ be the Lie algebra
of G and let

L0 ¼
X
n ANv

ðAdðnÞ � 1ÞL:
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Now L0 is invariant under AdðNvÞ. From the above Nv is Zariski dense in G (since it
contains N) and so

(i) L0 is invariant under AdðGÞ,

(ii) ðAdðgÞ � 1Þx A L0, for all g A G, x A L.

We now make use of use of the hypothesis that G is simply-connected to conclude
that L0 ¼ L. (See [2, 3.6].) Since L is a finite dimensional vector space of dimension
d ¼ dimG over the algebraic closure K c of K , there exist n1; . . . ; nd A Nv such that

Xd
i¼1

ðAdðniÞ � 1ÞL ¼ L:

Now consider the morphism of Kv-manifolds

f : G
ðdÞ
Kv

¼ GKv
� � � � � GKv

! GKv
;

defined by

fððg1; . . . ; gdÞÞ ¼
Yd
i¼1

½ni; gi�:

Then, as in the proof of [10, Theorem 3.3, p. 114], which is based on the Inverse Func-

tion Theorem [10, Theorem 3.2, p. 110] (and using [10, Lemma 3.1, p. 113]), it can be
shown that Im f contains an (open) neighbourhood of the identity in GKv

. Using the

fact that G
ðdÞ
v is open in G

ðdÞ
Kv

it follows that fðG ðdÞ
v Þ contains an neighbourhood of

the identity.

Proof of (b). We may assume without loss of generality that N is generated by the
G-conjugates of finitely many of its elements. It follows that there exists a finite

set S 0, containing S, such that, for all v B S 0,

(i) GcGOv
,

(ii) Gv ¼ GOv
,

(iii) NcGOv
.

Let ~NNv ¼ ½Nv; �GvGv�. Then from the above, for all v B S 0,

(i) ~NNv VGOv
tGOv

,

(ii) ½G;N�c ~NNv VGOv
.

Recall that Fv is the (finite) residue field of Ov (i.e. Ov=pv). For each sd 0, let

GOv
ðps

vÞ ¼ fY A GOv
: Y � In A Mnðps

vÞg:
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It is known [10, Proposition 3.20, p. 146] that

GOv
=GOv

ðpvÞGGFv
:

It is also known [10, Proposition 7.5, p. 406] that, if jFvjd 4, then GFv
has no non-

trivial, non-central normal subgroups. We wish to prove that, for all but finitely
many v B S 0, the normal subgroup ~NNv VGOv

does not map into the centre of GFv
. Sup-

pose to the contrary that ~NNv VGOv
is central ðmodGOv

ðpvÞÞ, for infinitely many v.
Then, for all these v, ½½N;G�;G� is contained in GOv

ðpvÞ. It follows that

½½N;G�;G� ¼ 1:

Now N and G are Zariski dense and so by [1, Proposition, p. 59]

½½G;G�;G� ¼ 1:

This contradicts the fact that ½G;G� ¼ G [1, Proposition, p. 181]. We deduce that
there exists a finite set S 00, containing S 0, for which

(i) ð ~NNv VGOv
Þ:GOv

ðpvÞ ¼ GOv
,

(ii) GOv
is perfect.

For (ii) see [11, Section 2.3].1 For each, v B S 00, it follows that

GOv
= ~NNv VGOv

GGOv
ðpvÞ= ~NNv VGOv

ðpvÞ:

Now ½GOv
ðp s

vÞ;GOv
ðp t

vÞ�cGOv
ðp sþt

v Þ and so, by part (a), GOv
= ~NNv VGOv

is solvable. By
(ii) then ~NNv VGOv

¼ GOv
. This completes the proof. r

The following consequence is immediate.

Corollary 1.2. With the notation of the Theorem 1.1, there exists q0 0 f0g such that

N ¼ 7
q0f0g

N:GOðSÞðqÞ ¼ N:GOðSÞðq0Þ:

The ideal q0 is, of course, not unique. It is clear that if Corollary 1.2 holds for q0 then
it also holds for any non-zero ideal q 0

0 contained in q0. In practise it is convenient to
choose q0 so that the index jGOðSÞ : GOðSÞðq0Þj is minimal. In the final section we will
show in detail for some special cases how N and q0 are related.

Theorem 1.1, of course, holds trivially for the case where N is commensurable
with G. For a non-trivial example of N to which it applies consider the case of the

1The authors are indebted to Professor Rapinchuk for providing this reference.
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classical modular group, i.e. G ¼ SL2, K ¼ Q, S ¼ fy0g and G ¼ SL2ðZÞ. Let M be
a normal subgroup of finite index in G. Then with finitely many exceptions M is a
free non-abelian group of finite rank. For such an M take N ¼ ½M;M�. Then N is
free of infinite rank and hence is not S-arithmetic.

2 Arithmetic lattices in rank one groups

Throughout this section we assume that charðKÞ0 0. We fix a (non-archimedean)
place v of K and let S ¼ fvg. (The simplest example of such an OðSÞ is the polyno-
mial ring Fq½t�, where Fq is the finite field of order q.) In addition to the hypotheses in
the statement of Theorem 1.1, we assume that G is absolutely almost simple and that
the Kv-rank of G is 1.

Let L be a non-uniform, S-arithmetic lattice in (the locally compact group) GKv
. By

definition

(i) L is a discrete subgroup of GKv
;

(ii) mðGKv
=LÞ is finite, where m is a Haar measure on GKv

;

(iii) GKv
=L is not compact;

(iv) L is commensurable with GOðSÞ.

For our purposes it su‰ces to assume that L is a (finite index) subgroup of GOðSÞ.

Notation. For each non-zero OðSÞ-ideal q let

ULðqÞ ¼ hu A LVGOðSÞðqÞ : u is unipotenti:

An immediate consequence of Theorem 1.1 is the following.

Lemma 2.1. The closure of ULðqÞ in GK in the S-congruence topology is also open.

N.B. It is well-known that in this case SL2ðOðSÞÞ and hence ULðqÞ are not finitely
generated. (This extends a classical result for SL2ðFq½t�Þ due to Nagao.)

One important consequence of Lemma 2.1 is that Lemma 5.7 in [8] is true for all q
so that, in the terminology of [8], the principal result always holds. This leads to a
significant simplification in the proofs of [8]. Specifically Zel’manov’s solution [14]
of the restricted Burnside problem for topological groups is no longer required.

Associated with GKv
is its Bruhat-Tits building which in this case is a tree T (since

the Kv-rank of G is 1). Bass-Serre theory shows how a presentation for L can be
inferred from its action on T, via the structure of the quotient graph LnT. In con-
firming a conjecture of Serre, Lubotzky has shown [4, Theorem 7.5] that L contains
infinitely many finite subgroups which are not S-congruence, i.e. so-called S-non-

congruence subgroups. Our results can be used to provide information on the ubiquity
of the S-non-congruence subgroups of L.

It is known [4, Theorem 6.1] that the first Betti number of LnT, b1ðLnTÞ, is finite.
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Theorem 2.2. Let Fr be the free group on r generators, where r ¼ b1ðLnTÞ and let

f ðr; nÞ denote the number of index n subgroups of Fr. Let ncðL; nÞ be the number of

S-non-congruence subgroups of index n in L. Then there exists a constant n0 ¼ n0ðLÞ
such that, if n > n0, then

ncðL; nÞd f ðr; nÞ:

Moreover, if rd 1, then for all n > n0, there exists at least one normal, S-non-

congruence subgroup of index n in L.

Proof. Let LðqÞ ¼ LVGOðSÞðqÞ. Then by Corollary 1.2 and Lemma 2.1

Lðq0Þc 7
q0f0g

ULðOðSÞÞ:LðqÞ;

for some non-zero q0. We choose q0 so that n0 ¼ jL : Lðq0Þj is minimal.
Now let LV be the subgroup of L generated by all the stabilizers in L of the

vertices of T. By standard Bass-Serre theory we have

L=LV GFr:

In addition, since ULðOðSÞÞ is generated by elements of finite order,

ULðOðSÞÞcLV :

Suppose Lc is a congruence subgroup of L containing LV . Then by the above

Lðq0ÞcLc;

which implies that jL : Lcjc n0. The first part follows.
For the second part note that when rd 1 there exists an epimorphism

y : L=LV !! Z: r

Notes.

(i) In many cases b1ðLnTÞ is non-zero. More precisely it is known [8, Lemma 3.7]
that in this situation every S-arithmetic lattice contains lattices of the same type
with arbitrarily large first Betti numbers.

(ii) The Drinfeld modular group. For the case where G ¼ SL2 (with as above S ¼ fvg)
the group SL2ðOðSÞÞ is a non-uniform S-arithmetic lattice in GKv

. It (or, more
generally, GL2ðOðSÞÞ) plays a fundamental role [3] in the theory of Drinfeld
modular curves, analogous to that of the modular group SL2ðZÞ in the clas-
sical theory of modular forms. It is known [7, Theorem 2.10] precisely when
b1ðSL2ðOðSÞÞnTÞ is zero. (This happens in only four cases.) In addition when
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L ¼ SL2ðOðSÞÞ it is known [7, Theorem 1.2] that Theorem 2.1 holds for all
nd 1, i.e. n0 ¼ 1, equivalently, q0 ¼ OðSÞ.

3 The case GFSL2

In the final section we show that in some important special cases it is possible to
prove an explicit version of Raghunathan’s lemma in an elementary way which does
not involve any Lie theory. We revert here to K of any characteristic and any S.

Definition. Let H be a subgroup of SL2ðOðSÞÞ. The order of H, oðHÞ, is the OðSÞ-
ideal generated by all h12; h21; h11 � h22, where ðhijÞ A H.

Definition. For each OðSÞ-ideal q, let

cðqÞ ¼ 12q; charðKÞ ¼ 0;

q4; charðKÞ0 0:

�

Notation. For each OðSÞ-ideal q let

SL2ðqÞ ¼ fX A SL2ðOðSÞÞ : X 1 I2 ðmod qÞg:

Lemma 3.1. Let N be a non-central normal subgroup of SL2ðOðSÞÞ, with

oðNÞ ¼ nð0 f0gÞ. Let q be any non-zero OðSÞ-ideal q. If n 0 ¼ nþ q, then

SL2ðcðn 0ÞÞcN:SL2ðqÞ:

Proof. The proof follows from [6, Theorems 3.6, 3.10, 3.14] since M ¼ N:SL2ðqÞ is
an S-congruence subgroup whose level

oðMÞ ¼ nþ q: r

Theorem 3.2. Let N be a non-central normal subgroup of SL2ðOðSÞÞ. Then

N ¼ 7
q0f0g

N:SL2ðqÞ ¼ N:SL2ðcðnÞÞ;

where n ¼ oðNÞ.

Under further restrictions Theorem 3.2 can be improved. For example, from the
results of [6] it follows that, if oðNÞ is prime to 6, then

N ¼ 7
q0f0g

N:SL2ðqÞ ¼ N:SL2ðnÞ:

In particular, if oðNÞ ¼ OðSÞ, then N ¼ SL2ðOðSÞÞ.
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