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Ramanujanmay be a household name

in our country, but it is a shame

that not much is known about who

later came.

Here, we talk about Chowla and

Pillai

whose names in the

mathematical landscape will lie

right at the top –

Any doubts? “Illai Illai”!
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Ramanujan's story has been well-chronicled and

it is well-known that generations of mathemati-

cians in India have been inspired by it. How-

ever, not much has been written about the pe-

riod immediately following Ramanujan's. Two

of the most famous Indian mathematicians of

this period are Sarvadaman Chowla and S S Pil-

lai. We journey through some of the very inter-

esting and illuminating correspondences between

Chowla and Pillai. We also attempt to convey

some of the beauty and depth of their mathe-

matical work.

1. Introduction

Sarvadaman Chowla (1907{1995) and S S Pillai (1901{

1950) were two of the foremost mathematicians to emerge

from India in the generation immediately after Ramanu-

jan. The Mathematics Genealogy Project lists both Ra-

manujan and Chowla among the students of Littlewood!

This article specially features Chowla and Pillai. The

journal Resonance had already featured Pillai [1]; how-

ever, a discussion of Chowla is necessarily intertwined

with one of Pillai. It has been mentioned by G H Hardy

that after Ramanujan, the greatest Indian mathemati-

cian was Pillai. We journey through some of the very

interesting and illuminating correspondences between

Chowla and Pillai which reveals also other personal and

historical aspects. Apart from that, we discuss Chowla's

and Pillai's mathematical works. We select only those

topics which are more elementary or easy to describe
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while conveying some of the beauty and depth of the

ideas. Fortunately, in the works of Chowla and Pillai,

we can ¯nd a veritable treasury which is accessible at a

level that can be enjoyed by even the non-expert. Each

of their works has an element of surprise and an ele-

ment of elegance and simplicity. They worked on a wide

spectrum of areas of number theory. While discussing

their proofs, we attempt to retain as much of the original

ideas in the arguments as possible.

It is an enigma that even a layman may ask a question

in elementary number theory which turns out to be non-

trivial. The fact that several old problems in elementary

number theory remain unsolved to this day has been re-

ferred to in di®erent ways by people. To quote Profes-

sor K Ramachandra, \in ¯gurative terms, what has been

solved can be likened to an egg-shell, and what remains

to be solved to the in¯nite space surrounding it."

2. Chowla{Pillai Correspondence

Starting in the late 1920s, and up to one month before

Pillai's demise in 1950, Chowla and Pillai maintained

a regular correspondence. Interestingly, in the earliest

available letter dated 8th of January, 1929, Chowla men-

tions among other things that the number 175,95,9000

is the smallest integer that can be expressed as sum

of two positive cubes in three di®erent ways. He goes

on to express the hope that now they can \begin their

proper work". They published joint papers starting in

1930 with a famous piece of work on the Euler's totient

function. Some other themes that they collaborated on

were concerned with solutions to the Brahmagupta{Pell

equation and the Waring problem. The correspondence

between these two stalwarts is mathematically illumi-

nating to read (See Box 1).
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The correspondence
between these two
stalwarts is
mathematically
illuminating to read. It
also reveals the
intellectual honesty
they possessed and
the joy each drew
from the other’s
successes.

SketchofSSPillaibymath-
ematician Kanemitsu.

The correspondence also reveals the intellectual honesty

they possessed and the joy each drew from the other's

successes. One of the letters written by Chowla after

he joined St.Stephens College in Delhi expresses his re-

luctance to be a coauthor of some result where he felt

he had not contributed enough. Through the years, he

expresses almost in every letter his gladness for the cor-

respondence between them!

The number theorist K Ramachandra spoke of his ¯rst

meeting with Chowla at the Institute for Advanced Study

in Princeton during the former's ¯rst visit there. After

discussing mathematics, Chowla got them both bottles

of `pepsi' from a vending machine. After the meeting,

Ramachandra says that he ran around the premises mut-

tering that he drank pepsi with Chowla!

Chowla's fertile imagination earned him the sobriquet

of `poet of mathematics' from his associates. Chowla

passed away in the US in 1995 at the age of 88. On

the other hand, Pillai died tragically at the age of 49

in 1950. Pillai was invited to visit the Institute for

Advanced Study in Princeton for a year. The °ight

which he boarded to participate in the 1950 Interna-

tional Congress of Mathematicians tragically crashed

near Cairo on the 31st of August.

3. Waring's Problem

A discussion of Pillai's mathematical work must start

with Waring's problem and vice versa! However, since

this has been written about in detail in the June 2004

issue [2], we mention this problem in passing.

Waring's problem asks for the smallest number g(k) cor-

responding to any k ¸ 2 such that every positive inte-

ger is a sum of g(k) numbers each of which is the k-th
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An interesting
problem, useful in
cryptography, for
instance, is to find
for a given prime p,
the smallest prime q
which is a quadratic
residue (that is, a
square) modulo p.

power of a whole number. Hilbert had shown that such

a ¯nite number g(k) does exist. The ideal Waring con-

jecture predicts a particular value of g(k). Indeed, if

3k is divided by 2k, the quotient is [(3=2)k], and some

remainder r, where [t] denotes the greatest integer less

than or equal to t. Now, the number

2k[(3:=2)k]¡ 1 = ([(3=2)k]¡ 1)2k + (2k ¡ 1)1k

is a sum of 2k + [(3=2)k] ¡ 2 numbers which are k-th

powers and is not the sum of a smaller number of k-th

powers. Hence,

g(k) ¸ 2k + [(3=2)k]¡ 2:

This ideal Waring conjecture asserts that this lower

bound is actually an equality. Pillai proved, among

other things, that this ideal Waring conjecture holds

good under the condition on k that the remainder r on

dividing 3k by 2k satis¯es r 2k ¡ [(3=2)k]¡ 2 (Chapter

21 of [3]). This is known to hold for all k 471600000.

At present, the ideal Waring conjecture is known to hold

for all large enough k.

4. Least Prime Quadratic Residue

Chowla's lifelong pre-occupation with class number of

binary quadratic forms led him to discover some rare

gems on the way, so to speak! An interesting prob-

lem, useful in cryptography, for instance, is to ¯nd for a

given prime p, the smallest prime q which is a quadratic

residue (that is, a square) modulo p. For example, the

quadratic reciprocity law tells us that if p ´ §1 modulo

8, then 2 is the least quadratic residue mod p. Chowla

[4] proved the following beautiful result:

Theorem. Let p > 3 be a prime such that p ´ 3 mod

8. Let l(p) denote the least prime which is a quadratic
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Among Ramanujan’s
numerous astonishing
results, there are also
occasional lapses.
One such was his
‘proof’ (in his very first
paper of 1911) that the
numerators of
Bernoulli numbers are
primes. This is false.

residue mod p. If the number h(¡p) of classes of binary

quadratic forms of discriminant ¡p is at least 2, then

l(p) <
p
p=3. If h(¡p) = 1, then l(p) = (p+ 1)=4 (and,

therefore, (p+ 1)=4 is prime!).

Remarks.

² The theorem implies, in particular, that for primes

p > 3; p ´ 3 mod 8, we have l(p) = (p+1)=4 if and only

if h(¡p) = 1, because
p
p=3 < (p+ 1)=4 for p > 3.

² The proof of the theorem is easy and uses Minkowski's

reduction theory of quadratic forms which produces in

each equivalence class of positive-de¯nite forms, a unique

one ax2 + bxy + cy2 which is `reduced' in the sense that

jbj a c.

5. Chowla's Counter-Examples to a Claim of Ra-

manujan and a Disproof of Chowla's Conjecture

Among Ramanujan's numerous astonishing results, there

are also occasional lapses. One such was his `proof'

(in his very ¯rst paper of 1911) that the numerators of

Bernoulli numbers are primes. This is false; for instance,

denoting by Bn the Bernoulli number de¯ned by

z

ez ¡ 1
=
X
n¸0

Bn
zn

n!
;

and byNn, the numerator ofBn=n, the numbersN20; N37

are composite. In 1930, Chowla showed [5] that Ra-

manujan's claim has in¯nitely many counter-examples.

Surprisingly, Chowla returns to this problem 56 years

later (!) in a joint paper with his daughter [6] and poses

as an unsolved problem that Nn is always square-free.

In a recent article, Dinesh Thakur [7] pointed out that

Chowla's question has in¯nitely many negative answers

by showing: For any ¯xed irregular prime p less than
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Pillai proved in
1940 that any set
of n consecutive
positive integers,
where n 16,

contains an integer
which is relatively
prime to all the

others.

163 million, and any arbitrarily large k, there exists a

positive integer n such that Nn is divisible by pk.

If we observe (from the existing tables) that 372 divides

N284, Chowla's question has a negative answer. The

proof of the more general assertion uses the so-called

Kummer congruences which essentially assert that the

value of
(pn¡1 ¡ 1)Bn

n
mod pk

depends (for even n) only on n modulo pk¡1(p ¡ 1), if

p ¡ 1 does not divide n. Using this as well as certain

functions called p-adic L-functions, the general assertion

of arbitrarily large powers can also be obtained.

6. Problem on Consecutive Numbers

Pillai proved in 1940 that any set of n consecutive pos-

itive integers, where n 16, contains an integer which

is relatively prime to all the others. However, there are

in¯nitely many sets of 17 consecutive integers where the

above fact fails. For instance,

N + 2184; N + 2185; ¢ ¢ ¢ ; N + 2200

is such a set whenever N is a multiple of 2 ¢ 3 ¢ 5 ¢ 7 ¢
11 ¢ 13 = 30030. Moreover, Pillai also proved [8] that

for any m ¸ 17, there are in¯nitely many blocks of m

consecutive integers for which the above property fails.

Now, generalizations to arithmetic progressions instead

of consecutive numbers are known.

7. How Spread-Out are Perfect Powers?

Look at the sequence of all perfect powers of positive

integers:

1; 4; 8; 9; 16; 25; 27; 32; 36; 49; 64; 81; 100; 121; 125; 128; ¢ ¢ ¢ :
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This conjecture has
not been proved as
yet even for one
value of k >1
although it is known
now that if one of
these 4 parameters is
fixed, the finiteness
holds.

We observe that di®erences between consecutive terms

can be: 1 = 9¡ 8, 2 = 27¡ 25, 3 = 4¡ 1, 4 = 36¡ 32,

5 = 32¡ 27, etc.

Pillai conjectured that consecutive terms can be arbi-

trarily far apart [9]. In other words, given any number,

one can ¯nd consecutive terms whose di®erence is larger

than that given number. Equivalently:

Conjecture. Given a positive integer k, the equation

xp ¡ yq = k has only ¯nitely many solutions in positive

integers x; y; p; q ¸ 2.

This has not been proved as yet even for one value of

k > 1 although it is known now that if one of these 4

parameters is ¯xed, the ¯niteness holds.

8. Independent Values of Cotangent Function

A typical aspect of Chowla's works has been to come

back to an old result after several years and apply it in

an unexpected manner. On 9.2.1949, Chowla had writ-

ten to Carl Ludwig Siegel about a certain non-vanishing

of a particular type of series. Three days later, he re-

ceived a reply from Siegel, improving the result. In

1970, Chowla, while wondering about relations between

the roots of a certain polynomial, realized that not only

could he re-prove Siegel's improved version in a simpler

fashion [10], he could use this old result to prove what

he wanted about the roots! Let us discuss this brie°y.

If p is a prime number, consider the values xr = cot(r¼=p)

of the cotangent function, for 0 < r < p. Evidently,

xr + xp¡r = 0. Also,
Pp¡1

r=1 xr = 0 but this is easily de-

duced from the earlier relations. So, a natural question

is:

Are all the linear relations of the form
Pp¡1

i=1 arxr = 0



864 RESONANCE September 2012

GENERAL ARTICLE

with ai 2 Q, consequences of the relations xr+xp¡r = 0

for 1 r < p?

Indeed, xr's are the roots of an irreducible polynomial

over Q, of degree p ¡ 1 and, one may ask for possible

linear relations among the roots of any irreducible poly-

nomial over Q. Chowla's theorem asserts:

Theorem. Let p be a prime number and xr = cot(¼r=p)

for r = 1; ¢ ¢ ¢ ; (p ¡ 1)=2. If ai 2 Q are such thatP(p¡1)=2
i=1 aixi = 0, then ai = 0 for all i (p¡ 1)=2.

Chowla uses some very basic Galois theory to deduce

that, under the assumption

(p¡1)=2X
i=1

aixi = 0;

there are (p ¡ 1)=2 such linear relations which may be

captured by the matrix relation,0BBB@
x1 x2 ¢ ¢ ¢ x(p¡1)=2

x2 x3 ¢ ¢ ¢ x1

. . . . . .

x(p¡1)=2 x1 ¢ ¢ ¢ x(p¡3)=2

1CCCA
0BBB@

a1

a2

...

a(p¡3)=2

1CCCA =

0BBB@
0

0
...

0

1CCCA :
If the ai's are not all 0, this leads to the vanishing of the

`circulant' determinant0BBB@
x1 x2 ¢ ¢ ¢ x(p¡1)=2

x2 x3 ¢ ¢ ¢ x1

. . . . . .

x(p¡1)=2 x1 ¢ ¢ ¢ x(p¡3)=2

1CCCA :

At this point, Chowla quotes the well-known value of

this determinant and proceeds.
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Chowla realizes with
surprise that the
factors (up to certain
non-zero factors) are
none other than the
special values at
s = 1 of certain
functions
L(s; Â) =

P1
n=1 Â(n)=n

calledDirichlet
L-functions
corresponding to
Dirichlet characters
modulo p which
satisfy (–1) = –1.

What is the value of this determinant? In the 3£3 case0@x1 x2 x3

x2 x3 x1

x3 x1 x2

1A has determinant 3x1x2x3¡x3
1¡ x3

2¡ x3
3.

Let 1; !; !2 be the cube roots of unity. If x1; x2; x3 are

replaced by !x1; !2x2; x3 or by !2x1; !x2; x3, the ex-

pression remains the same. As x3 = ¡x1 ¡ x2 leads

to 3x1x2x3 ¡ x3
1 ¡ x3

2 ¡ x3
3 = 0, the three expressions

x1 +x2 +x3; !x1 +!2x2 +x3; !2x1 +!x2 +x3 are factors.

That is, the determinant in the 3£ 3 case is given as:¯̄̄̄
¯̄x1 x2 x3

x2 x3 x1

x3 x1 x2

¯̄̄̄
¯̄ =

¡(x1 + x2 + x3)(!x1 + !2x2 + x3)(!
2x1 + !x2 + x3):

Similarly, in general, the determinant of0BBB@
x1 x2 ¢ ¢ ¢ x(p¡1)=2

x2 x3 ¢ ¢ ¢ x1

. . . . . .

x(p¡1)=2 x1 ¢ ¢ ¢ x(p¡3)=2

1CCCA
equals the product (up to sign) of

!rx1 + !2rx2 + ¢ ¢ ¢+ !r(p¡1)=2x(p¡1)=2

as r varies from 1 to (p ¡ 1)=2, where ! = e4¼i=(p¡1), a

(p¡ 1)=2-th root of unity.

Here, Chowla realizes with surprise that the above fac-

tors (up to certain non-zero factors) are none other than

the special values at s = 1 of certain functions L(s; Â) =P1
n=1 Â(n)=n called Dirichlet L-functions correspond-

ing to Dirichlet characters Â modulo p which satisfy

Â(¡1) = ¡1. The non-vanishing of these are the older
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The Fermat equation
xp+ yp= zp has no

non-zero solutions in
integers if p is a

regular prime. It is
unknown yet whether

there are infinitely
many regular primes
(although Fermat’s
last theorem has

been proved
completely) –

surprisingly, it has
been known for a

long time that there
are infinitelymany
irregular primes!

result mentioned above and show, thus, that the deter-

minant is non-zero. Hence, the linear independence of

the cot(r¼=p) for 1 r (p¡ 1)=2 is established.

Remarks.

² Kai Wang closely followed Chowla's proof to general-

ize his theorem to non-primes and to derivatives of the

cotangent function [11] by showing: For any s ¸ 0 and

an arbitrary natural number k, the Á(k)=2 real numbers

ds

dxs
cot

µ
x+

r¼

k

¶
x=0

; r
Á(k)

2
; (r; k) = 1;

are linearly independent over Q.

² The non-vanishing at s = 1 of L(s; Â) for non-trivial

Dirichlet characters is the key fact used in the proof

of Dirichlet's famous theorem on existence of in¯nitely

many primes in any arithmetic progression an+ b with

(a; b) = 1.

² Kenkichi Iwasawa [12] showed in 1975 that the above

result has connections with the so-called `regular' primes.

The de¯nition of `regular' primes is not needed here and,

we merely recall Kummer's result: the Fermat equation

xp + yp = zp has no non-zero solutions in integers if p

is a regular prime. It is unknown yet whether there are

in¯nitely many regular primes (although Fermat's last

theorem has been proved completely) { surprisingly, it

has been known for a long time that there are in¯nitely

many irregular primes! The connection of the above re-

sult of Chowla with regular primes is the following.

The linear independence of the p¡1
2

cotangent values en-

sures there exist rational numbers t1; ¢ ¢ ¢ ; t p¡1
2

so that
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2 sin
2¼

p
=

p¡1
2X
r=1

tr cot(2r¼=p) :

Iwasawa showed that the prime p is regular if and only

if none of the tr's have denominators which is a multiple

of p and, at least one tr has numerator also not divisible

by p.

9. Number of Permutations of a Given Order

Chowla wrote a series of papers on generating functions

for the number of permutations of a given order. In

the permutation group Sn, let An(d) denote the number

of permutations ¾ satisfying ¾d = I, the identity per-

mutation. In collaboration with Herstein and Scott, he

showed [13]:

1X
n=0

An(d)xn

n!
= exp(

X
kjd

xk

k
):

For convenience of notation one takes A0(n) = 1. Let

us prove this beautiful, useful fact.

We look for a recursive relation for An(d) in terms of

Ak(d) for k < n. Look at what happens to the symbol

n under any permutation contributing to An(d). If the

symbol is ¯xed, then the rest of the n ¡ 1 symbols can

be permuted in An¡1(d) ways. Now, suppose the sym-

bol n is a part of a k-cycle for some 1 < k n. Note

that any permutation contributing to An(d) has some

order dividing d; thus, if it has a k-cycle in its decompo-

sition, then kjd. Now, each k-cycle contributes An¡k(d)
elements. As there are (n¡1)(n¡2) ¢ ¢ ¢ (n¡k+1) ways

to choose such k-cycles, we get

An(d) = An¡1(d)+
X

kjd;1<k n

(n¡1) ¢ ¢ ¢ (n¡k+1)An¡k(d) :
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This can be rewritten as

An(d)

n!
=

X
kjd;1 k n

An¡k(d)
(n¡ k)! :

Therefore, the generating function f(x) =
P

n¸0
An(d)
n!

satis¯es

xf 0(x) =
X
i¸1

Ai(d)x
i

i!
=
X
i¸1

µ X
kjd;1 k i

Ai¡k(d)
(i¡ k)!

¶
xi

on using the recursion above.

Combining the terms corresponding to a particularAj(d),

we have

xf 0(x) =
X
j¸0

Aj(d)

j!

X
kjd
xj+k = f(x)

X
kjd
xk :

This is a di®erential equation

f 0(x)
f(x)

=
X
kjd
xk¡1

whose general solution is obtained by integration as

f(x) = c: exp

µX
kjd

xk

k

¶
for some constant c. Since f(0) = A0(d) = 1 = c, we

get the assertionX
n¸0

An(d)

n!
= exp

µX
kjd

xk

k

¶
(¤)

This formula is useful in a number of ways. For instance,

one can get an asymptotic estimate of how fast An(d)

grows with n (for any ¯xed d). Moreover, for d = p,

a prime, this gives a simple-looking closed formula for

An(p) for any n.

(¤)
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A classical theorem in
the theory of groups,
due to Frobenius,
asserts that in any
finite group G, the
number of elements
satisfying xd = Identity
(for any divisor d of
the order of G) is a
multiple of d.

9.1 Closed Form for the Prime Case

In the above identity (¤), take d = p, a prime and note

that X
n¸0

An(p)

n!
= exex

p=p =
X
i¸0

xi

i!

X
j¸0

xpj

pjj!
:

Comparing the coe±cients of xn, we obtain

An(p) =
X

i+pj=n

n!

pjj!i!
:

In particular, this number is a positive integer for each

n ¸ p(!) This is an exclamation mark, not a factorial!

Also, a classical theorem in the theory of groups, due to

Frobenius, asserts that in any ¯nite groupG, the number

of elements satisfying xd = Identity (for any divisor d of

the order of G) is a multiple of d. Thus, we have An(d)

is a multiple of d for each n ¸ d.
This statement for An(p) gives that

P
i+pj=n

n!
pjj!i!

is a

multiple of p for every n ¸ p and, the special case n = p

is known as Wilson's theorem.

9.2 Applications to Finite Groups

Apart from being useful in its own right, the study of

the numbers An(d) has connections to some counting

problems in groups. Notice that the number An(d) of

permutations in Sn which satisfy xd = Identity, is noth-

ing else than the number of group homomorphisms from

a cyclic group of order d to Sn; each homomorphism as-

sociates a permutation ¾ satisfying ¾d = Identity, to a

¯xed `generator' of the cyclic group. For any group G

(not necessarily cyclic), knowledge of the numbers hn of

group homomorphisms from G to Sn for various n, al-

lows us to ¯nd a recursive expression for the number of
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A beautiful result
of Chowla shows

at least that the list
of idonean

numbers is finite!

subgroups of G which have a given index in it. In fact,

if sn is the number of subgroups of index n in G, then

sn +
h1

1!
sn¡1 +

h2

2!
sn¡2 + ¢ ¢ ¢+ hn¡1

(n ¡ 1)!
s1 =

hn
(n¡ 1)!

:

10. Convenient Numbers and Class Number

Euler observed that 18518809 = 1972 + 1848 ¢ 1002 is a

prime. In fact, Euler was interested in producing large

primes of the form x2 + ny2 for various values of n. It

happens (and is easy to prove) that a number which

has a unique expression of the form x2 + y2 is a prime.

Thus, one may hope this is true for expressions of the

form x2 + ny2 also for any n. However, as Euler noted

[14], this holds only for a certain set of values of n. He

constructed explicitly a set of 65 positive integers for

which this is true (the largest of which is 1848); he called

such numbers `idonean' or `convenient'. To this day, it is

not proven that Euler's list is complete [15]. However, a

beautiful result of Chowla shows at least that the list of

idonean numbers is ¯nite! To explain how it is done, we

very brie°y de¯ne and discuss binary quadratic forms {

another name for expressions of the form ax2+bxy+cy2.

A binary, integral quadratic form is a polynomial f(x; y)

= ax2+bxy+cy2 where a; b; c are integers. It is primitive

if (a; b; c) = 1. The integer b2 ¡ 4ac is its discriminant.

Since

4af(x; y) = (2ax+by)2+(4ac¡b2)y2 = (2ax+by)2¡dy2;

when d < 0 and a > 0, f (x; y) takes only positive values

(excepting the value 0 at x = y = 0). Thus, when a > 0,

and the discriminant is negative, the form is positive-

de¯nite. For example, x2 + ny2 is a positive-de¯nite

form with discriminant ¡4n.
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For d < 0, the number
h(d) of classes of
primitive,positive-
definitebinary
quadratic forms of
discriminant d is finite.

Two forms f(x; y) and g(x; y) are said to be equivalent

or in the same class if f (®x + ¯y; °x + ±y) = g(x; y)

where A =

µ
® ¯

° ±

¶
2 SL(2;Z), an integer matrix of

determinant 1.

The motivation behind this de¯nition is the following:

Equivalent forms take the same sets of values as x; y

vary over integers. This is clear because one may also

write

g(x; y) = f(®x+ ¯y; °x+ ±y)

in the form

f (x; y) = g(±x¡ ¯y;¡°x+ ®y):

Notice that the matrix

µ
± ¡¯
¡° ®

¶
is simply the inverse

of the matrix

µ
® ¯

° ±

¶
.

Moreover, equivalent forms have the same discriminant.

Gauss showed: For d < 0, the number h(d) of classes

of primitive, positive-de¯nite binary quadratic forms of

discriminant d is ¯nite. Gauss conjectured that h(d) !
1 as ¡d ! 1. This was proved by Heilbronn. By

a modi¯cation of Heilbronn's argument, Chowla proved

the following fact which was another conjecture of Gauss

[16]: h(d)=2t ! 1 as ¡d ! 1 where t is the number

of primes dividing d. This interesting fact is useful in a

totally di®erent context which we indicate brie°y now.

Euler obtained the following list of 65 numbers called

`Numerus idoneus' (`convenient' numbers):

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15,

16, 18, 21, 22, 24, 25, 28, 30, 33, 37,

40, 42, 45, 48, 57, 58, 60, 70, 72, 78,
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Euler observed that
18518809 = 1972 +

1848 .1002 is a prime
by showing 1848 is

idonean.

1 Euler’s list of idonean numbers
has been proved to be complete
under the assumption of a deep
conjecture known as the gener-
alized Riemann hypothesis.

85, 88, 93, 102, 105, 112, 120, 130, 133,

165, 168, 177, 190, 210, 232, 240, 253,

273, 280, 312, 330, 345, 357, 385, 408,

462, 520, 760, 840, 1320, 1365, 1848.

Consider any odd number m coprime to n and express-

ible as m = x2 + ny2 with (x; ny) = 1. If each such

m which has a unique expression of the form x2 + ny2

in positive integers x; y is necessarily prime, the number

n is said to be idonean. As mentioned in the begin-

ning of this section, Euler observed that 18518809 =

1972 +1848 ¢1002 is a prime by showing 1848 is idonean.

It is not clear whether the list of idonean numbers is

¯nite or not. This can be analyzed (and was done by

Gauss) using the theory of quadratic forms.

Firstly, we recall one more notion { the genus. Two

primitive, positive-de¯nite forms of discriminant d are

said to be in the same genus if they take the same set

of values modulo d. As forms in the same class take the

same set of values, they are in the same genus. Each

genus, therefore, consists of ¯nitely many classes.

Gauss proved (modulo some gaps ¯lled later by GrÄube):

A positive integer n is idonean if and only if, for forms of

discriminant ¡4n, every genus consists of a single class.

Chowla's theorem h(d)=2t ! 1 as ¡d ! 1 where t

is the number of primes dividing d, which was quoted

above, implies that for large enough ¡d, each genus has

more than one class of forms. Therefore, by Chowla's

theorem, the set of idonean numbers is ¯nite! As a mat-

ter of fact, Euler's list is expected to be complete1.

11. Matrices and Quadratic Polynomials

As we saw earlier, the equivalence classes of integral,

binary quadratic forms are related to the group SL2(Z)



873RESONANCE September 2012

GENERAL ARTICLE

of integral matrices of determinant 1. Recall also that

equivalent forms take the same sets of integer values as

x; y vary over integers. The following result of Chowla

with J Cowles and M Cowles [17] shows that the relation

is an intimate one. Recall that two matrices A;B are

said to be conjugate if there is an invertible matrix P

such that B = PAP¡1. The trace of a matrix is the

sum of its diagonal entries, and the discriminant of a

quadratic form ax2 + bxy + cy2 is the number b2 ¡ 4ac.

Then:

Theorem. For all integers t 6= §2, the number of con-

jugacy classes of matrices in SL2(Z) with trace t, equals

the number of equivalence classes of integral, binary quad-

ratic forms with discriminant t2 ¡ 4.

Here is an easy proof. Associate to each matrix M :=µ
a b

c d

¶
2 SL2(Z), the quadratic form

m(x; y) := bx2 + (d¡ a)xy ¡ cy2:

Note that if the trace of M is t, then a + b = t and,

therefore, the discriminant of m(x; y) is

(d¡ a)2 + 4bc = (d + a)2 ¡ 4(ad¡ bc) = t2 ¡ 4:

For a conjugate matrixN := AMA¡1, where A =

µ
® ¯

° ±

¶
2 SL2(Z), writeN as

µ
a0 b0

c0 d0

¶
. Then, the form n(x; y) =

b0x2+(d0¡a0)xy¡c0y2 is easily seen to bem(x0; y0) whereµ
x0

y0

¶
= At

µ
x

y

¶
=

µ
®x+ °y

¯x+ ±y

¶
:

In other words, under the above association, conjugate

matrices of trace t correspond to equivalent forms of

discriminant t2 ¡ 4.
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Conversely, associate to a quadratic form f (x; y) = px2+

qxy+ry2 with discriminant t2¡4 (so, q2¡4pr = t2¡4),

the matrix

F :=

µ
(t¡ q)=2 p

¡r (t+ q)=2

¶
2 SL2(Z):

Note that indeed, detF = (t2¡q2)=4+pr = 1 and trace

F = t.

Further, consider any equivalent form f 0(x; y)

= f(ax + by; cx + dy) with M :=

µ
a b

c d

¶
2 SL2(Z).

Write f 0(x; y) = p0x2 + q0xy + r0y2. Then, we compute

and see that

M tF (M t)¡1 =

µ
a c

b d

¶µ t¡q
2

p

¡r t+q
2

¶µ
d ¡c
¡b a

¶

=

Ã
t0¡q0

2
p0

¡r0 t0+q0
2

!
which shows that the corresponding matrices are conju-

gate in SL2(Z).

The above associations are inverse to each other and

proves the proposition.

Remarks. The above association is also useful in decid-

ing if two matrices are conjugate in SL2(Z) or not. For

instance, the matrices

µ
1 3

3 10

¶
,

µ
1 1

9 10

¶
which have

trace 11 are associated to the quadratic forms

3x2 + 9xy ¡ 3y2; x2 + 9xy ¡ 9y2

respectively. However, they are evidently inequivalent

because the ¯rst one takes only multiples of 3 as values

whereas the second one takes values such as 1 at (x; y) =

(1; 0).
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12. Average of Euler's Á-function

Euler's Á-function, denoted by Á(n) is an arithmetic

function de¯ned on natural numbers that counts the

number of natural numbers 1 m n with (m;n) = 1.

Euler gave a formula which can be proved using the

inclusion-exclusion principle as follows:

Á(n) = n
Y
pjn

µ
1¡ 1

p

¶
;

where the product varies over all the distinct prime di-

visors. This formula shows that the functional value

°uctuates a lot.

In analytic number theory, to study such °uctuating

arithmetical functions, one often looks at their aver-

age behaviour. One can prove that the average value

from 1 to x is 3
¼2x but the interesting part is to have an

idea of the error which would be introduced if we take

this value. In analytic number theory, this methodology

of determining the main term and estimating the error

term is fundamental because we cannot deduce anything

concrete if the error term is of the same order as the main

term! One has X
1 n x

Á(n) =
3

¼2
x2 + E(x) ;

where E(x) is the remainder or error term in the average.

Dirichlet showed that for any given ² > 0, there is a

constant C > 0 so that jE(x)j Cx1+² for all x > 0.

Later, this was improved to jE(x)j C 0x log x for all x >

0 by Mertens.

Sylvester prepared a table of values for
P

n x Á(n) and

3x2=¼2 for all x = 1; 2; ¢ ¢ ¢ ; 1000. However, he failed

to notice that E(820) < 0 and made a conjecture that

In analytic number
theory, to study
such fluctuating
arithmetical
functions, one
often looks at their
average behaviour.
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E(x) ¸ 0 for all x. In 1929, Chowla wrote a letter

to Pillai where he predicted that E(x) > 0 for in¯nitely

many values of x andE(x) < 0 for in¯nitely many values

of x.

In order to prove that an error estimate, say jE(x)j
cg(x), is tight for some non-negative function g(x), one

needs to produce a positive constant c0 and in¯nitely

many x's such that jE(x)j > c0g(x). Such a result is

called an omega-result in analytic number theory; we

write E(x) = (g(x)). Chowla and Pillai showed that

E(x) = (x log log log x):

This result took many years to generalize. A conjecture

by Montgomery which is still open, asserts:

E(x) = O(x log log x) and E(x) = §(x log log x):

13. A Variant of Tic-Tac-Toe!

In 1933, Pillai studied a variant of Tic-Tac-Toe game as

follows. Let n ¸ 3 be an integer and t n be another

integer. Suppose an n£ n grid with n2 squares is given

in the plane. Let P and Q be two players competing.

By turns each marks a square. Whoever marks t squares

in a straight line ¯rst, wins the game.

Pillai proves that when t = n and the game is carefully

played, then it will end always in a draw. However, if t <

n, then for a given t, there is a function f(n) depending

on n such that if t ¸ f(n), then the game ends in a

draw. When t < f (n), he proved that the player who

starts will win. Also, he proved that f(n) n+1¡pn=6
and f(n) = n for all n = 3; 4; 5, and 6. For large values

of n, the correct order of f(n) is still unknown!
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2 H C Longuet-Higgins, Letter to
a musical friend, Music Review,
pp.244–248, August 1962.

14. Smooth Numbers

Smooth numbers are numbers which have only `small'

prime factors. For example, 1620 has prime factorization

22£34£5; therefore 1620 is 5-smooth because none of its

prime factors is greater than 5. Smooth numbers have

a number of applications in cryptography. For example,

the very smooth hash functions are used constructively

to get a provably secure design. They also play a role

in music theory apparently2. For other applications, the

interested reader may consult [18] and [19].

For any real numbers x; y > 1 with y x, we de¯ne

Ã(x; y) to be the number of positive integers t x such

that if a prime pjt, then p y. In other words, Ã(x; y)

counts all the y-smooth numbers up to x. Ramanujan

(in a letter to Hardy) was the ¯rst to study these smooth

numbers when y = 3(!) He obtained a nice asymptotic

formula for Ã(x; 3).

In the 7th conference of Indian Mathematical Society

during 3{5, April, 1931 at Trivandrum, Pillai extended

the above result of Ramanujan which implies an asymp-

totic formula for Ã(x; y) if y > 1 is a ¯xed real number.

This is technical to state but we mention it here in pass-

ing, for the interested reader:

Theorem 1. If p1; p2; ¢ ¢ ¢ ; pr y are all the prime num-

bers less than y, then when x!1,

Ã(x; y)¡ (log x)r

r!
Qr

i=1 log pi
+ (log x)r¡1 log(p1¢¢¢pr)

2(r¡1)!
Qr

i=1 log pi
)

logr¡1 x
¡! 0:

Around that time, Dickman obtained an asymptotic re-

sult for Ã(yu; y) for any ¯xed u > 0. The word `asymp-

totic' here refers to an assertion of the form `what is the

limit of Ã(yu; y)=yu as u!1'?
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4 This section is mostly taken
from the lecture of Professor
Ram Murty at Kerala School of
Mathematics, Calicut where the
second author was present. He
is thankful to Professor Ram
Murty for allowing him to include
the contents in this write-up.

3 See p.337 of S Ramanujan,
The Lost Notebook and Other
Unpublished Papers, Narosa
Publishing House, 1988.

A more rigorous proof of Dickman's result, by modern

standards, was supplied by Chowla and T. Vijayaragha-

van in 1947 where they used an unpublished result of

Pillai which is more general than the above result of

Pillai!

It should be mentioned that Ramanujan3 has the fol-

lowing entry in his notes. We write in the standard

notations as above:

Ã(x; xc) » x
µ

1¡
Z 1

c

du

u

¶
if 1=2 c 1;

» x
Ã

1¡
Z 1

c

du

u
+

Z 1=2

c

dv

v

Z 1¡v

v

du

u

!
if 1=3 c 1=2;

» x
Ã

1¡
Z 1

c

du

u
+

Z 1=2

c

dv

v

Z 1¡v

v

du

u
¡

Z 1=3

c

dz

z

Z (1¡z)=2

z

dv

v

Z 1¡v

v

du

u

¶
if 1=4 c 1=3;

and so on.

This is nothing else than Dickman's asymptotic formula

for Ã(x; y)!

15. Chowla and the Langlands Conjecture

In this last section4, we mention how an argument due

to Chowla plays a role in the famous Langlands con-

jectures. The cognoscenti would know that the latter

conjectures drive much of the contemporary research in

number theory [20].

For each integer n ¸ 1, de¯ne d(n) as the number of

positive divisors of n. In his famous paper on `highly

composite numbers', Ramanujan gave an upper bound

for the function d(n) as follows:

d(N ) 2
logN

log logN for all N ¸ 2
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and he produced in¯nitely many integers N for which

this bound is attained.

For any given ² > 0, we can deduce from the above

upper bound that there is a constant N0 depending on

² so that

d(N) N ² for all N ¸ N0:

Chowla proved this deduction using another argument

involving Dirichlet series. Let r ¸ 1 be any integer and

let

Lr(s) =
1X
n=1

d(n)r

ns
where s 2 C with Re(s) > 1:

Chowla observed that the series

Lr(s) =
Y
p

µ
1 +

2r

ps
+

3r

p2s
+ ¢ ¢ ¢

¶
(where the product runs over all the prime numbers)

converges absolutely for Re(s) > 1 for all r ¸ 1. Here,

Re(s) denotes the real part of s. In particular, when

s = 2, this series converges. So,

1X
n=1

d(n)r

n2
<1 for all integers r ¸ 1:

Therefore, the n-th term which is
d(n)r

n2
tends to zero. In

particular, it is bounded for all large enough n's. Thus,

we get

d(n)r cn2 for all n ¸M
for some constants M > 0 and c > 0 and this is true for

all r ¸ 1.

Thus, for all n ¸ M , we get d(n) c1=rn2=r. Also, note

that c1=r ! 1 as r ! 1. Given ² > 0, we can ¯nd r0
such that 2=r < ² for all r ¸ r0 and we get d(n) n²:
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To show how this sort of argument plays a role in the fa-

mous Langlands conjectures, we describe such a conjec-

ture. This can be done through the famous Ramanujan

delta function. Ramanujan studied the following q-series

¢(z) = q
1Y
n=1

(1¡ qn)24; where z 2 C with Im(z) > 0;

where Im(z) denotes the imaginary part of z and q =

e2¼iz. This is often called Ramanujan's delta function

because of his fundamental contribution to it, though it

was already studied by Jacobi and others.

The delta function satis¯es the following property: for

all

µ
a b

c d

¶
2 SL2(Z) (that is, for integers a; b; c; d with

ad¡ bc = 1),

¢

µ
az + b

cz + d

¶
= (cz + d)12 ¢(z):

Since

µ
1 1

0 1

¶
2 SL2(Z) and by the above relation, we

see that ¢(z + 1) = ¢(z) and hence ¢ function is a

periodic function.

Therefore, it has a Fourier expansion. It can be proved

that the Fourier expansion of ¢(z) is

¢(z) =
1X
n=1

¿ (n)e2i¼nz;

where ¿ (n) are the Fourier coe±cients which are inte-

gers. Traditionally, one writes q = e2i¼z so that ¢(z) =P1
n=1 ¿ (n)q

n.

Ramanujan computed the initial ¿ values and conjec-

tured the following relations.
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The first two
conjectures were
proved byMordell in
1917 and the third
one was proved by
P Deligne in 1975
using deep algebraic
geometry.

1. ¿ (mn) = ¿ (m)¿ (n) whenever (m;n) = 1.

2. ¿ (pa+1) = ¿(p)¿ (pa) ¡ p11¿ (pa¡1) for all primes p

and a ¸ 1.

3. j¿(p)j < 2p11=2 for every prime p.

The ¯rst two conjectures were proved by Mordell in 1917

and the third one was proved by P Deligne in 1975 using

deep algebraic geometry.

Note that the third conjecture of Ramanujan is equiva-

lent to the assertion:

¿ (n) = O(n
11
2

+²)

for any given ² > 0. Our interest is in this version of

Ramanujan's conjecture. Let us de¯ne for each integer

n ¸ 1,

¿n = ¿ (n)=n11=2:

Then Ramanujan's conjecture is equivalent to ¿n = O(n²)

for any given ² > 0. De¯ne the L-series attached to ¢

function as

L(s;¢) =

1X
n=1

¿n
ns
;

where s 2 C with Im(s) > 0.

Since ¿ (n) is a multiplicative function (the ¯rst con-

jecture of Ramanujan mentioned earlier and proved by

Mordell), we see that ¿ rn is also a multiplicative function

and hence we get

L(s;¢) =
Y
p

µ
1 +

¿p
ps

+
¿p2

p2s
+ ¢ ¢ ¢

¶
:

Using the second conjecture of Ramanujan, we have, for

all primes p,
1X
a=0

¿paX
a =

1

1¡ ¿pX +X2
=

1

(1¡ ®pX)(1¡ ¯pX)
;
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Collected Works of
Chowla and of Pillai

The collected works of
Chowla and of Pillai con-
tain unpublished papers
also. The interested read-
ers can look at:

• Collected works of
S. Chowla,
Edited by James G Huard
and Kenneth S Williams,
CRM Univ. de Montreal,
Vols 1,2,3, 1999.
• Collected works of
S. S. Pillai,
Edited by R Balasubra-
manian andRThangadurai,
Ramanujan Mathematical
Society Collected Works
Series, 2010.

Suggested Reading

[1] B Sury, ‘S S Pillai’, Resonance, Vol.9, No.6, pp.2–3, 2004.
[2] C S Yogananda, Waring’s problem and the circle method, Resonance,

Vol.9, No.6, pp.51–55, 2004.
[3] G H Hardy and E MWright, An introduction to the theory of numbers,

Oxford Univ. Press, 3rd Ed., 1954.

where ®p and ¯p are the complex roots of X2¡ ¿pX+1.

Note that ®p + ¯p = ¿p and ®p¯p = 1.

L(s;¢) =
Y
p

µ
1¡ ®p

ps

¶¡1µ
1¡ ¯p

ps

¶¡1

=
Y
p

1Y
m=0

µ
1¡ ®

1¡m
p ¯mp
ps

¶¡1

:

For any r ¸ 1, Langlands de¯ned the function:

Lr(s;¢) =
Y
p

rY
m=0

µ
1¡ ®

r¡m
p ¯mp
ps

¶¡1

:

He conjectured that for every r ¸ 1, Lr(s;¢) de¯nes a

series which is absolutely convergent for Re(s) > 1.
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