On a Conjecture of Chowla et al.

B. Sury

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabba Road, Bombay 400 005, India E-mail: sury@math.tifr.res.in

Communicated by M. Waldschmidt

Received September 29, 1997

We prove some congruences for the numbers $N(m, n) = \sum_k {n \choose k}^2 {n+k \choose k}^m$. In particular, we show that the numbers $a_p = \sum_k {p \choose k}^2 {p+k \choose k}^2$ are congruent to 5 modulo p^3 for any prime $p \ge 5$, thereby proving a conjecture of Chowla *et al.* (J. Number Theory **12** (1980), 188–190). © 1998 Academic Press

INTRODUCTION

In his proof of the irrationality of $\zeta(2)$ and $\zeta(3)$, Apéry made use of the sequences $a_n = \sum_k {\binom{n}{k}}^2 {\binom{n+k}{k}}^2$ and $b_n = \sum_k {\binom{n}{k}}^2 {\binom{n+k}{k}}$. Chowla *et al.* [CCC] proved that $a_p \equiv 5 \mod p^2$ and conjectured that $a_p \equiv 5 \mod p^3$ for any prime $p \ge 5$. Beukers has also proved [B1, B2] some nice congruence involving these numbers. The purpose of this note is to prove some new congruences and, in particular, give a simple proof of the above conjecture.

We prove:

THEOREM. Let $N(m, n) = \sum_{k} {n \choose k}^2 {n+k \choose k}^m$ for $m \ge 0$. Then, for any prime p > 3

- (i) $N(m, p) \equiv 1 + 2^m \mod p^3$,
- (ii) $N(2, p^r 1) \equiv 1 \mod p^3$,
- (iii) $N(1, p^r 1) \equiv 1 \mod p^2$,
- (iv) $N(2, 2p-1) \equiv 5 \mod p^3$, and
- (v) $N(2, 3p-1) \equiv 73 \mod p^3$.

In particular, the conjecture mentioned earlier is true.

We make some elementary observations which are used in the proof.

LEMMA. (i) Let $r \ge 1$, and p be a prime such that p - 1 does not divide 2r. Then, the sum

$$\sum_{k=0}^{p} {\binom{p}{k}}^{2r} \equiv 2 \mod p^{2r+1}.$$

In particular, for a prime p > 3, $\binom{2p}{p} \equiv 2 \mod p^3$. In fact, $\binom{ap}{bp} \equiv \binom{a}{b} \mod p^3$, and $\binom{rp-1}{(r-1)p} \equiv 1 \mod p^3$.

(ii) For 0 < k < p, let u_k denote the inverse mod p^2 . Then, $\sum u_k \equiv 0 \mod p^2$ if p > 3.

Proof. The proof is completely elementary; we indicate the proof for the first part which is the part relevant to the conjecture. The other parts are similarly proved.

For $1 \le k \le p-1$, write $\binom{p}{k} = pu_k$. Then, $u_k \equiv (-1)^{k-1} k^{-1} \mod p$. Therefore, $\sum u_k^{2r} = \sum_{u \in \mathbb{F}_p^*} u^{2r}$ in \mathbb{F}_p . If we choose a generator g of \mathbb{F}_p^* , the identity $g^{2r} \sum_{u \in \mathbb{F}_p^*} u^{2r} = \sum_{u \in \mathbb{F}_p^*} u^{2r}$ implies that, for a prime p so that p-1 does not divide 2r, we must have $\sum_{k=1}^{p-1} u_k^{2r} \equiv 0 \mod p$. This proves $\sum_k {\binom{p}{k}}^{2r} = 2 + p^{2r} \sum u_k^{2r} \equiv 2 \mod p^{2r+1}$.

Proof of the theorem. We prove part (i). Recall the two elementary facts:

- (a) For any positive integer *m*, we have the identity $\sum_{k} {\binom{m}{k}}^2 = {\binom{2m}{m}}$.
- (b) For any prime p, $\binom{p+k}{k} \equiv 1 \mod p$ for $0 \leq k \leq p-1$.

Let p be a prime > 3. Then, the number

$$N(m, p) = \sum_{k=0}^{p} {\binom{p}{k}}^{2} {\binom{p+k}{k}}^{m}$$

= $\sum_{k=0}^{p-1} {\binom{p}{k}}^{2} {\binom{p+k}{k}}^{m} + {\binom{2p}{p}}^{m}$
= $\sum_{k=0}^{p-1} {\binom{p}{k}}^{2} + {\binom{2p}{p}}^{m}$
= $\sum_{k=0}^{p-1} {\binom{p}{k}}^{2} + {\sum_{k=0}^{p} {\binom{p}{k}}^{2}}^{m} \mod p^{3}$
= $\sum_{k=0}^{p} {\binom{p}{k}}^{2} + {\sum_{k=0}^{p} {\binom{p}{k}}^{2}}^{m} - 1 \mod p^{3}.$

Using the lemma with r = 1, it follows immediately that

 $N(m, p) \equiv 1 + 2^m \mod p^3 \quad \text{if } p > 3.$

The proof of the remaining parts uses the lemma and the observations

$$\binom{p-1}{k} \equiv (-1)^k \mod p$$
$$\binom{p^r-1}{k} \equiv \pm \binom{p^{r-1}-1}{\lfloor k/p \rfloor}.$$

ACKNOWLEDGMENTS

I dedicate this paper to Professor S. Chowla for delighting generations of mathematicians through his beautiful work. I am thankful to an anonymous referee for his comments.

REFERENCES

- [CCC] S. Chowla, J. Cowles, and M. Cowles, Congruence properties of Apéry numbers, J. Number Theory 12 (1980), 188–190.
- [B1] F. Beukers, Some congruence for the Apéry numbers, J. Number Theory 21 (1985), 141–155.
- [B2] F. Beukers, Another congruence for the Apéry numbers, J. Number Theory 25 (1987), 201–210.