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COMMUNICATIONS IN ALGEBRA, .21(4), 1203-1213 (1993) 

CENTRAL EXTENSIONS O F  p-ADIC 
GROUPS; A THEOREM O F  TATE. 

School of Mathematics, TIFR, Bombay 400005, India 

1 INTRODUCTION : 

This note concerns itself with the study of abstract central extensions of 

padic groups by a finite group. We show, for some groups, that abstract 

central extensions by a finite group are automatically topological. More 

precisely, let A be a finite Abelian group and let G be a p-adic Lie group 

acting trivially on A. We denote by H ~ ~ ~ ( G ,  A) and H&,,,(G, A) respectively, 

the groups of abstract and .topological central extensions of G by A. The 

f i s t  result is: 

Theorem A 

If G is a solvable p-adic Lie group, then 

Copyright @ 1993 by Marcel Dekker, Inc. 
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1204 SURY 

The method of proof is completely elementary and might even work for other 

p-adic groups. However, we have not worked it out in complete generality. 

On the other hand, if k is a nonarchimedean local field of characteristic 0, 

we use Theorem A to prove that : 

Indeed, the same result holds with SL2 replaced by a connected, simply- 

connected, quasisplit algebraic group over k as can be seen from the works 

of Moore, Matsumoto and Deodhar (see remark after 3.3). This enables us 

to conclude the following fact first noted by Tate ([Ta]): 

Corollary C 

If we write K2(k),b, S Kz(k),t $ D, then D js a divisible abelian group. 

§ 2 Proof of Theorem A 

In this section , we start with an elementary method of studying abstract 

central extensions of a p-adic group by a finite group and apply it to prove 

Theorem A on solvable groups . 
Let m = I  A 1 ,  the cardinality of A. 

If we have a central extension 

We want to give a topology on E such that E becomes a topological group 

and 2.1 becomes a topological central extension. Since G is a p-adic Lie 

group, it has a filtration by open compact subgroups ([Se], LG 4.24) : 

G > GI 2 G2 2 . . . such that n Gi = {e) and, the map 
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p-ADIC GROUPS 

is an isomorphism of analytic manifolds from G; onto G;+, ([loc. cit. 4.25, 

4.261) for large enough i and some fixed n. 

A A 
Let G;:= 7 r 1 ( G i )  and E; = q 5 , ( ~ ~ ) .  

The sets Ei satisfy the following: 

(i) VEi, 3Ej such that E,:' Ej.  

(ii) V z E E and V E;, 3Ej such that Ei C X E ~ X - ' .  

Am A 
(iii) nEi = {I}, for, x E n Ei + x = x i  + a ( % )  = T ( x ~ ) ~  E n Gi = (1). 

But, for i >> 0, 4, is an isomorphism of Gi on G;+,. 
A 

Therefore ~ ( z i )  = 1 for i >> 0 
A Am 

i.e. X i €  A for i >> 0 i.e. xi = 1 for large enough i. i.e. x = 1. 

If we also show that 

(iv) VEj,3Eis.tEi.Ei E Ej, 

then { E ; )  form a system of neighbourhoods of ( 1 )  so that E becomes a 

topological group and 2.1, a topological central extension. 

Note that this is the only topology on E which is compatible with the pos- 
A 

sibility of 2.1 being topological (i.e. G; should be open and cpm should be 
A 

open on ~ i )  so that the map H&,(G, A) -+ H$,(G, A)  is injective. 

Until now G could have been any p-adic Lie group. Now,let us first assume 

that G is Abelian and prove (iv). 

Consider the map G x G 2 A 

A A 
where 2, Y are any lifts of x ,  y in E. 
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1206 SURY 

Then $(xm,p) = 1 Vz, g E G where rn =I A 1. But the m-power map 4, is 

an analytic isomorphism of Gi on Gi+, and SO 

A A A 
Thus [Gi,G;] = (1). i.e. 4, is a homomorphism on Gr for i >> 0 so 

that Ei = &(Gi) is a subgroup and hence Ei Ei = Ei. Thus, the central 

extension 2.1 is automatically topological when G is Abelian. Assume more 

generally now that G is solvable. Since we need only show that (2.1) splits 

over an open compact subgroup of G, we can assume (by replacing G if 

necessary) that G is compact. 

We shall apply induction on the derived length.We have already proved the 

theorem for abelian G. 

Let H = [G, GI. 

By the induction hypothesis, 

splits over some open normal subgroup N of H. As N is of index n in H, 

we can replace N by the closure of the group < {zn/xeH) >, which is a 

characteristic subgroup of H, and which is contained in N. This subgroup is 

normal in G and we shall call this N from now on. 

Let cp = N -t d ( H )  be a splitting of 2.2 over N. Since N is open and of 

finite index in H = [G, GI, 3 an open normal subgroup Go of G such that 

G,/N is Abelian. 

Thus, we have a central extension 

which has a splitting over a normal subgroup N of Go such that G, /N  is 

Abelian. 
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p-ADIC GROUPS 1207 

Claim 

p(N n Gi) is normalised by r l ( G i )  for some open normal subgroup G; of 

Go. To show this, consider (for any 5 E Eo) the new splitting 

( 3 ~ )  : N + E o  

n H 2 y ( ~ - l n x ) 5 - ~  where x = ~ ( 2 ) .  
Clearly (5v)cp-I : N -, A 

n (bv)(n)(~(n-~) 
is a homomorphism. 

Moreover, O : Eo -, Hom(N, A) 

is a 1-cocycle on E, which is trivial on A. Thus 0 gives an element of 

Halbs(GO, Hom(N, A)). 

But since Hom(N, A) is finite and Go is compact, 3 an open normal subgroup 

Gi of Go on which 0 is triviali.e. H:~,(G,, Hom(N, A)) S! H&,,.(Go, Hom(N, A)). 

This can be seen as follows. If T is the order of Aut (Hom(N,A)), then 

gT - 0  = 0 V 0 E Hom(N, A). But then by the cocycle condition for any 

0 E Hjbd(Go, Hom(N, A)), weget O(gmT) = 19(g+)~ = 1 Vg E Go. Since the i- 

nage of #,, is an open sbgroup of Go, any element of H ~ , , ( G ~ ,  Hom(N, A)) 

is actually in HE,,(Go, Hom(N, A)). Thus (o(N n Gi) is normalised by 

7r1(Gi). In fact, we have shown for all 5 E n-'(Gi), n E N n Gi that 

Now consider the central extension 

Since Gi/N fl G; is Abelian, therefore, H:~,.(G~/N~G~, A )  H&,,,(G~/N~G~, A). 

Thus 2.4 splits over some Gde,/N n Gi for some deep enough (i.e. small 

enough) open subgroup Gdeep of Gi. Let 3 be such a splitting. We construct 

a splitting of 2.1 over GdeW as follows: 
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1208 SURY 

Let p : r l ( G i )  -+ ?r"(Gi)/v(N n Gi) be the natural map. Let g E Gdeep 

and $ any lift of g to x-l(Gi). Then, p ( j )  = $(g) . X(j) where A($) E A. 

Set a(g) = (3). A@)-l. As X(3a) = X(j)a for a E A, a(g) is well-defined 

(independent of the choice of $) and one checks easily that a provides a 

splitting of 2.1 over Gdeep. Thus, 2.1 splits over an open normal subgroup 

of G when G is solvable and Theorem A is proved. 

REMARKS : 

1. We must have A to be a finite $oup in the Theorem. For, even for a 

compact, Abelian group like Z, , we have that 

(Here Q/Z  is considered with the discrete topology as in the theorem.) 

Consider any prime q # p and consider the homomorphism Z -, Q/Z ; 

1 H $ mod Z. This extends to a homomorphism Zp -, Q/Z  by injectivity of 

the group Q/Z. Since Q/Z is discrete, this homomorphism is not continuous, 

for otherwise, pn would go to zero from some n onwards. 

Therefore Ho%bs.(Zp, QIZ) # H o b t . ( z p ,  Q/Z). 

Moreover, for an Abelian group G and an injective group I, a 2 ( G ,  I) can be 

identified with the group of bilinear maps from G to I modulo the symmetric 

bilinear ones. 

Thus, we also have 

2. We also put down the general question we already mentioned in the 

introduction viz. 

Q : For a p-adic Lie group G and a finite group A on which G acts, is - 
q b # ( G  -4) H&,t(GlA) ? 
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p-ADIC GROUPS 

5 3 Proof of Theorem B. 

We start with any abstract central extension 

Let I A I= m. 

Denoting by U+ and U- the subgroups of upper and lower unipotents in 

SL(2, k), we have group-theoretic sections over open compact subgroups of 

U+ and U-.Indeed, if 

A m  A 
we can define s : U+ -+ E by s (x (a ) )  =z , where ~ ( x )  = x is the element 

of U+ satisfying xm = x(a).We use, for convenience, the notation s(x(a)) = 

X(a) and s(y(b)) = Y(b) where 

We extend this to a set-theoretic section s over the whole of SL(2, k) as 

follows : We have the standard notations 

and h(t) = w(t).w(-1). 

We define W(t) := s(w(t)) to be X(t)Y(-t-l)X(t) and H(t) := s(h(t)) to 

be W(t).W(-1). 

Lemma 3.1 

(i) W(t) := x ( ~ ) Y  (-t-l)X(t) = Y (-t-')x(~)Y(-t-') 

(ii)W(t)-' = W(-t) 

(iii)w(t)x(a)W(t)-' = Y (-at-2) 

( iv)~(t)Y(b)w(t)- '  = x(-bt2) 

( v ) ~ ( t ) ~ ( u ) W ( t ) - '  = ~ ( u - 9 2 ) .  
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1210 SURY 

Proof 

(ii) follows from the definition of W. 
Am A 

For (iii), we write X ( a )  = x  where ~ ( x ) ~  = x(a) .  Then, 

gives (iii) immediately . 

(iv) follows from (iii), and (v) from (iii) and (iv). 

(i) follows from (iv) since Y(-t-')X(~)Y(-t-l) = Y(-t-l)W(t)X(t)-I = 

W(t)W(t)-'Y(-t-')W(t)x(t)-l = W(t) on applying (iii) with a = t. 

As usual, elements of SL(2, k)  are divided into two kinds viz. gl(u,t) = 

x(u)h(t) and g2(u, t ,  v) = x(u)w(t)x(v).We define s(gl (u, t)) = X(u)H(t) 

and s(gz(u,t,v)) = X(u)W(t)X(v). 

Then, a cocycle representing (*) is given by 

It is easy to see using Lemma 3.1 that B is determined by its values on T x T 

where T = {h(t) : t E k*}.In fact, 

(aP(91(u,t),91(u1, tl)) = B(t,tl) 

(b)B(gl(%t), 92(~l , t l ,v l ) )  = B(t,tl) 

(cIB(ga(u1 t,v), gl(ul, tl)) = B(tl ti1) 

( d ) B ( g ~ ( ~ , t ~ v ) ,  92(-v,ti, VI)) = B(-t,-tll) 

(e)B(g2(u,t,v),g2(ul,tl,vl)) = B(t~-~,z-~)-~.B(tz-l,t~) if z = v+ul # O. 

The following result essentially says that B is a Steinberg cocycle (See 

[Mo],Ch.8 for definition) with values in A. 
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p-ADIC GROUPS 

Lemma 3.2 

( i )B(s t ,~)B(s , t )  = B(s , t r )B( t ,~ ) ;  

B(l ,  s) = B(s, 1) = 1 

(ii)B(s, t) = B(t-l, s) 

(iii)B(s, t) = B ( s ,  -st) 

(iv)B(s, t )  = B(s, (1 - s)t) 

Proof : Easily follows from Lemma 3.1. 

If we show , in addition , that B is continuous, then it would follow from 

Moore's work ([Mo],Ch.lO) that (*) is a topological central extension. 

Proposition 3.3 

For finite A, any B satisfying the properties of Lemma 3.2 (i.e. any Stein- 

berg cocycle) is automatically continuous. 

Proof 
A A 

In fact,we will show that ~ ( s ~ , t )  = [s, t]  which is bilinear. (Here [:,?I is 

the commutator of any two lifts of s and t.) 

To see this, note that ~ ( t ~ ,  s ) ~ ( t - l ,  t2s) = B(t, s)B(t-l, t2) by (i) 

= B(t,s), since ~ ( t - ' , t ~ )  = ~ ( t - I , - t )  = B(t-l,l) = 1 by (ii) and (i). Also 

B(t-l, t2s) = B(t-l, -ts) = ~ ( t - l ,  s) = B(s,t) by (iii) and (ii). 
A A 

T ~ U S  ~ ( t 2 , ~ )  = B(~,s)B(s ,~)- '  = [ t , ~ ] .  

Thus the function P(s,t) := ~ ( s ~ , t )  is bilinear and is, consequently , con- 

tinuous at 1. Therefore p(sm, t) = 1 if m =I A 1. 
But x H x2 is open map of k*. So B(U, k*) = 1 for a neighbourhood U 

of 1. Now, if u E U, then B(su,t).B(u,s) = B(u,st).B(s,t) ie. B(su,t) = 

B(s, t)Vs E k* whence B is continuous everywhere in k*.The proof of the 

Proposition and of Theorem B is complete. 
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SURY 

Remarks 

From the results of Moore, Matsumoto, Deodhar and Deligne (See for e.g. 

[De]), we know that if G is simply-connected,absolutely simple,quasi-split 

/k,then H:b,a(G(k), A )  -, H:~~,(H(~),  A) is injective, where H is a k-subgroup 

of G, which is k-isomorphic to SL2, generated by the root subgroups U,, U-, 

where a is a long root (in a root system of G relative to some maximal 

k-split torus) and also that (See [GP-MSR]; Th.5.11) H&,,,,.(G(~),A) + 

H&,.(H(k), A) is an isomorphism. Thus, from Theorem B ,it directly fol- 

lows that H&,(G(~),A) E ~&,(G(lc) ,  A)  for quasisplit G.Similarly, from 

the work of M.Stein ([St]), for an open compact subgroup U in a Chevalley 

group of rank 2 4 , we can conclude that abstract and topological central 

extensions by a finite group coincide. 

Proof of Corollary C 

We recall from [Mi] that the group K2(k) is the center of St(k) = lim,St(n, k), 

where the Steinberg group St(n, k) is the abstract universal central exten- 

sion of the group SL(n,k). In other words K2(k) = H2(SL(k)). Since 

Kz(k),t. " p(k) (Moore, Matsumoto), we have an exact sequence 

Theorem B and the remarks above applied to SL,(k) for n >> 0 gives that 

any homomorphism from Kz(k) to a finite group factors through p(k). Thus 

every subgroup of Kz(k) of finite index contains C. So C does not contain 

any proper subgroup of finite index as it is of finite index in K2(k) (Note 

that p(k) is finite). Therefore C is an infinite Abelian group which does not 

contain proper subgroups of fmite index. 

For any prime p, consider PC. If pC # C, then consider C/pC( which 

has to be infinite then). This is a ZlpZ- vector space and, as such, if 
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p-ADIC GROUPS 1213 

non-zero, admits a non-trivial projection to Z l p Z  and hence we have a 

surjective homomorphism of C in Z l p Z .  The kernel of this homomorphism 

is a proper subgroup of finite index in C, which contradicts the fact that C 

does not have any proper subgroup of finite index. Hence p C  = C for any 

prime p  and therefore C is divisible. Thus the above exact sequence splits 

and,consequently, K2(K) r p ( h )  $ D where D is a divisible group. 
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