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Abstract. We show that the (standard restricted) wreath product of groups
is boundedly generated if and only if the bottom group is boundedly gener-
ated and the top group is finite. We also establish a criterion for triviality of
the singular part of second bounded cohomology of wreath products.

1. Introduction

Wreath products of groups (for definitions and notation see §2) naturally arise
in the study of Sylow subgroups of appropriate symmetric groups. They also
often provide examples of certain groups with rather unexpected properties. The
goal of this paper is to investigate bounded generation and bounded cohomology
of (standard restricted) wreath products of groups.

An abstract group G is said to have bounded generation if there exist (not nec-
essarily distinct) elements g1, . . . , gk ∈ G such that G = 〈g1〉 · · · 〈gk〉, where 〈gi〉
is the cyclic subgroup generated by gi. Even though defined as a simple combi-
natorial notion, bounded generation turns out to imply a number of remarkable
structural properties:

• the pro-p completion of a boundedly generated group is a p-adic analytic
group for every prime p [4, 13];
• if a boundedly generated group G has property (FAb), then it has only

finitely many inequivalent completely reducible representations in every
dimension over any field (see [14, 20, 21] for representations in charac-
teristic zero, and [1] for arbitrary characteristic);
• if G is a boundedly generated S-arithmetic subgroup of an absolutely

simple simply connected algebraic group over a number field, then G
has the congruence subgroup property [15, 19];
• bounded generation can be used to find explicit Kazhdan constants [11,

22].

We establish the following criterion for bounded generation of wreath products.

Theorem 1.1 If A and B are groups then A oB has bounded generation if and
only if A has bounded generation and B is finite.

We remark that the question of bounded generation of complete wreath prod-
ucts is trivial: if B is finite, then the complete wreath product is the same as
the restricted wreath product, and if B is infinite, then the complete wreath
product AWr B is not finitely generated, hence cannot be boundedly generated.
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Bounded cohomology H∗

b (G) of a group G (we will be considering only coho-
mology with coefficients in the additive group of reals R with trivial action, so in
our notations for cohomology the coefficient module will be omitted) is defined
using the complex

· · · ←− Cn+1
b (G)

δn
b←− Cn

b (G)←− · · · ←− C2
b (G)

δ1
b←− C1

b (G)
δ0
b
=0
←− R

δ−1
b

=0
←− 0

of bounded cochains f : G × · · · × G → R, and δn
b = δn|Cn

b
(G) is the bounded

differential operator. Since H0
b (G) = R and H1

b (G) = 0 for any group G, investi-
gation of bounded cohomology starts in dimension 2. One observes that H 2

b (G)
contains a subspace H2

b,2(G) (called the singular part of the second bounded

cohomology group), which has a simple algebraic description in terms of qua-
sicharacters and pseudocharacters, and the quotient space H 2

b (G)/H2
b,2(G) is

canonically isomorphic to the bounded part of the ordinary cohomology group
H2(G). For background on bounded cohomology of groups see [6], for bounded
cohomology of topological spaces see [7]. Special interest in H 2

b,2 is motivated in
part by its connections with other structural properties of groups such as com-
mutator length [2] and bounded generation [6]. In particular, it is important to
know when H2

b,2 vanishes.

We recall that a function F : G→ R is called a quasicharacter (another name
used in the recent literature is quasimorphism) if there exists a constant CF > 0
such that

|F (xy)− F (x)− F (y)| 6 CF for all x, y ∈ G.

A function f : G→ R is called a pseudocharacter (or a homogeneous quasimor-
phism) if f is a quasicharacter and in addition f(gn) = nf(g) for all g ∈ G
and n ∈ Z. The notions of a quasicharacter and a pseudocharacter originally
arose from the questions of stability of solutions of functional equations [8, 9, 10]
and continuous representations of groups [12]. Recently, some surprising appli-
cations of quasicharacters and pseudocharacters in symplectic geometry were
found [3, 5, 18].

We will use the following notation:

• X(G) is the space of additive characters G→ R;
• QX(G) is the space of quasicharacters;
• PX(G) is the space of pseudocharacters;
• B(G) is the space of bounded functions.

Then

(1) H2
b,2(G) ∼= QX(G)/(X(G) ⊕B(G)) ∼= PX(G)/X(G)

as vector spaces [6, Proposition 3.2 and Theorem 3.5]. We establish the following
criterion for triviality of H2

b,2 of wreath products.

Theorem 1.2 H2
b,2(A o B) = 0 if and only if the following conditions hold:

(i) H2
b,2(B) = 0;

(ii) H2
b,2(A) = 0 or B is infinite.
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2. Preliminaries

Wreath products are defined in the context of permutation groups when a
group A acts on a set X and a group B acts on a set Y . We will consider
the so-called standard wreath products, in which case the groups A and B act
on themselves via right regular representations. Moreover, we will work with
restricted standard wreath products, which are defined as follows. We will use
some notations and terminology from [16].

Let A(B) be the direct sum of copies of A indexed by elements of B (for
the complete wreath product one takes the direct product). We will represent

elements of the group A(B) as tuples a = (ab)b∈B and will refer to ab ∈ A as the
coordinate of a at b ∈ B. The set

σ(a) = {b ∈ B | ab 6= 1} ⊆ B

is the support of a; notice that σ(a) is finite for every a ∈ A(B), and define the
length of a by `(a) = |σ(a)|.

The (standard restricted) wreath product of A and B, denoted by A o B, is

the semidirect product of A(B) and B with the action of B on A(B) given by

(2) b0a = (cb)b∈B , where cb = a
bb−1

0
.

The group A is called the bottom group, the group B is called the top group,
and the group A(B) is called the base group.

An element a ∈ A(B) with the property σ(a) = {b} will be denoted by ab, in
other words, the only nontrivial coordinate of ab is ab. When it is important to
emphasize that a particular element ai ∈ A is the coordinate of ab at b, we will
slightly abuse notation and write [ai]b for ab. In this notation, every element a

of A(B) can be written in the form

a = ab1ab2 · · · abs
= [ab1 ]b1 [ab2 ]b2 · · · [abs

]bs
,

where b1, b2, . . . , bs are distinct elements of B; observe that s = `(a). If we
identify elements of B with their copies in A o B, then (2) yields the following
relation in the wreath product:

b0ab = [ab]bb0b0, where b0, b ∈ B, ab ∈ A.

We will represent elements of the wreath product A o B as products ab, where
a ∈ A(B) is an element of the base group and b ∈ B is an element of the top
group.

We now list some well-known facts about pseudocharacters that will be used
in the proof of Theorem 1.2.

Lemma 2.1 Any pseudocharacter is constant on conjugacy classes; a bounded
pseudocharacter is trivial.

Proof. Let f be a pseudocharacter on a group G and suppose that f(yxy−1)−
f(x) = α 6= 0 for some x, y ∈ G. Then the difference f(yxny−1) − f(xn) = nα
is unbounded when n→∞. On the other hand,

|f(yxny−1)− f(xn)| = |f(yxny−1)− f(y)− f(xn)− f(y−1)| 6 2Cf ,

a contradiction. The second assertion is obvious. �
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Lemma 2.2 If f is a pseudocharacter on a group G and x1, . . . , xn are pairwise
commuting elements of G, then

f(x1 · · · xn) = f(x1) + · · ·+ f(xn).

Proof. Let α = f(x1x2)− f(x1)− f(x2). Then for any positive integer n,

|nα| = |nf(x1x2)− nf(x1)− nf(x2)| = |f(xn
1xn

2 )− f(xn
1 )− f(xn

2 )| 6 Cf

which implies α = 0. The general case follows by induction on n. �

Remark. Of course, the result follows from the general fact that bounded coho-
mology of amenable groups vanishes, but we chose to give a short elementary
proof.

Next, we will need the following standard facts about bounded generation for
the proof of Theorem 1.1.

Lemma 2.3 Let G be a group and H be its subgroup.

(i) If H has finite index in G then bounded generation of G is equivalent to
that of H.

(ii) If G has bounded generation then so does any homomorphic image of G.

(iii) If H is a normal subgroup of G and both H and G/H have bounded gen-
eration then so does G.

Proof. The only fact that is not immediate from the definition is that bounded
generation of G implies that of its subgroup H of finite index. Suppose that G =
〈g1〉 · · · 〈gn〉. Since every subgroup of finite index contains a normal subgroup of
finite index, it suffices to prove our claim assuming in addition that H is normal
in G.

An arbitrary element h ∈ H can be written in the form h = gr1
1 · · · g

rn
n for

some r1, . . . , rn ∈ Z. Say, [G : H] = m and for i = 1, . . . , n write ri = ei + mai

with 0 6 ei < m. Since H is normal, we have hi := gm
i ∈ H. In this notation,

h = gr1
1 · · · g

rn
n = ge1

1 ha1
1 ge2

2 ha2
2 · · · g

en
n han

n

= ge1
1 · · · g

en
n

(

n−1
∏

i=1

[(g
ei+1

i+1 · · · g
en
n )−1hi(g

ei+1

i+1 · · · g
en
n )]ai

)

han
n .(3)

We now introduce the following finite set

Λ = {ge1
1 · · · g

en
n | 0 6 ei < m}.

Then it follows from (3) that

H =





∏

y∈Λ∩H

〈y〉



 ·

n
∏

i=1

(

∏

x∈Λ

〈

x−1hix
〉

)

,

so H has bounded generation. �

Finally, we will need the following result from [17].

Theorem 2.4 Suppose that a group G is a union of n (left or right) cosets
of its subgroups H1, . . . ,Hk. Then one of the subgroups Hi must have index at
most n in G.



BOUNDED GENERATION AND BOUNDED COHOMOLOGY OF WREATH PRODUCTS 5

Corollary 2.5 Let G be a group and H1, . . . ,Hk be subgroups of infinite index
in G. Then for every integer n there exist n elements a1, . . . , an in G such that
the set {a1, . . . , an} cannot be covered by fewer than n (left or right) cosets of
H1, . . . ,Hk.

Proof. We will construct elements a1, . . . , an no two of which are in the same left
or right coset of any Hi by induction on n. This is trivial for n = 1. Suppose
that we have found a1, . . . , am with the above property. Since the subgroups
H1, . . . ,Hk have infinite index in G, Theorem 2.4 implies

G 6=
⋃

{ajHi, Hiaj | j = 1, . . . ,m, i = 1, . . . , k} .

Now take any element of G outside the right hand side and call it am+1. �

3. Proof of Theorem 1.1

If B is finite, then the base group A(B) has finite index in the wreath prod-
uct A o B and thus bounded generation of A o B is equivalent to that of A(B)

(Lemma 2.3). On the other hand, A(B) is a direct sum of finitely many copies
of A, hence it has bounded generation if and only if A does. We have reduced
the proof of Theorem 1.1 to the proof of the following statement.

Theorem 3.1 If A is a nontrivial group and B is an infinite group, then the
wreath product A o B is not boundedly generated.

Assume on the contrary that A oB is boundedly generated: A oB = C1 · · ·Ck

where Ci = 〈aibi〉 is a cyclic subgroup generated by aibi ∈ AoB. Let Bi = 〈bi〉 be
the cyclic subgroup of B generated by bi, 1 6 i 6 k; observe that B = B1 · · ·Bk.

Lemma 3.2 The group B is virtually cyclic.

Proof. Assume the contrary; then all subgroups B1, . . . , Bk have infinite index

in B. Let N = k
∑k

i=1 `(ai). By Corollary 2.5 there is a finite subset S of B
which is not covered by any collection of N cosets of the following finite set of
subgroups of B

B =







xBix
−1

∣

∣

∣

∣

∣

∣

x ∈

k
⋃

j=1

σ(aj), i = 1, . . . , k







.

Let d be an element of A(B) whose support contains the set S. We have

(4) d =

k
∏

i=1

(aibi)
ni

for some integers ni ∈ Z, 1 6 i 6 k. Write (aibi)
ni = eib

ni

i , where

ei =







(ai) · (
biai) · (

b2i ai) · · · (
b
ni−1
i ai) if ni > 0,

(b
−1
i a−1

i ) · (b
−2
i a−1

i ) · · · (b
ni
i a−1

i ) if ni < 0.
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It follows that the support σ(ei) of ei is contained in the union of the left cosets
{xBi | x ∈ σ(aj), i, j = 1, . . . , k} of B1, . . . , Bk. On the other hand, (4) gives

d = (e1) · (
p1e2) · (

p2e3) · · · (
pk−1ek), where pj = bn1

1 · · · b
nj

j ,

which shows that the support of d is contained in the union of at most N
right cosets xBipj = (xBix

−1)xpj of the subgroups xBix
−1 ∈ B. This is a

contradiction. Thus one of the subgroups Bi has finite index in B and so B is
a virtually cyclic group. �

Lemma 3.3 It suffices to prove that A o Z is not boundedly generated.

Proof. Since Z is a subgroup of finite index of B, the wreath product A o Z is
a quotient of a subgroup of finite index of A o B. Our claim now follows from
Lemma 2.3. �

From now on we assume that B is an infinite cyclic group and we will simply
index the coordinates of elements a ∈ A(B) by integers; the generator z of B
then acts on A(B) as the shift i 7→ i + 1 of the coordinates. In this new notation
we have the assumption that A o B = C1 · · ·Ck, where Ci = 〈aiz

ti〉, ti ∈ Z,
1 6 i 6 k.

Lemma 3.4 The group A is finite.

Proof. We let J be the subset of {1, 2, . . . , k} consisting of those i for which
ti 6= 0, also let I be the complement of J in {1, 2, . . . , k}; observe that J 6= ∅.
If i ∈ I, then the power (aiz

ti)αi , αi ∈ Z, is simply a
αi

i . If i ∈ J , then the power
(aiz

ti)αi is a product of the following element a of the base group

(5) a =







(ai) · (
ztiai) · (

z2ti ai) · · · (
z(αi−1)ti ai) if αi > 0,

(z
−ti a−1

i ) · (z
−2ti a−1

i ) · · · (zαitia−1
i ) if αi < 0

and the element zαiti of the top group. If |αi| is large enough then ai and
zαi

ai have disjoint support since σ(zαi
ai) = αi + σ(ai). It follows that each

coordinate of the elements in (5) is a product of boundedly many coordinates of
ai. Therefore there is a constant Mi which depends only on ai and ti, but not
on αi, such that the coordinates of the elements in (5) take at most Mi values
in A.

Since we assume that A oB = C1 · · ·Ck, every element of the base group A(B)

is a product of at most k of some B-conjugates of elements as in (5) and at
most k of some B-conjugates of elements of the form a

αi

i . Notice that any B-

conjugate zβi
a

αi

i has support of size `(ai), so the total support of B-conjugates of

such elements corresponding to i ∈ I has size at most
∑k

i=1 `(ai). If we take an

element a of A(B) of length `(a) >
∑k

i=1 `(ai), then at least one of its coordinates
has to be a product of coordinates of elements of the form (5) corresponding to
i ∈ J . But such product can take at most

∏

i∈J Mi values in A. It follows that
A cannot have more than

∏

i∈J Mi elements. �

Remark. One can also conclude that A must be finite in the original set-up,
without the assumption that B is infinite cyclic. If we similarly partition the set
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{1, 2, . . . , k} into two subsets I (consisting of those i for which bi has finite order)
and J (consisting of those i for which bi has infinite order), then the support of
all B-conjugates of elements corresponding to I is bounded, while coordinates of
B-conjugates of elements corresponding to J take a bounded number of values
in A.

We have now reduced Theorem 3.1 to the following case: A is finite and B
is infinite cyclic. Define the width of a ∈ A(B), denoted w(a), as the difference
between the largest and the smallest element of the support of a and let L =
max{w(a1), . . . , w(ak)}. For a large positive integer M let π : A(B) → AM be
the projection onto the coordinates 1, 2, . . . ,M :

π ((ai)i∈Z) = (a1, . . . , aM ).

Take an arbitrary element azt ∈ A oB with w(a) 6 L and t 6= 0. For an integer
β1, a positive integer β2, and ε ∈ {±1}, consider the element

gβ1,β2,ε = (z
β1

a) · (zβ1+εt

a) · (zβ1+2εt

a) · · · (zβ1+β2εt

a).

Let ui ∈ Z be the position of the first nontrivial coordinate of the element
zβ1+εit

a, 0 6 i 6 β2. More explicitly, assuming ε = 1, ui = u0 + it and

σ
(

zβ1+εit

a
)

⊆ {u0 + it, u0 + 1 + it, . . . , u0 + L + it}.

The number of possible projections of gβ1,β2,ε as β1, β2, ε vary depends only on
a, t, and the coordinates whose positions are between 1 and M . More precisely,

since ui determines the element zβ1+εit
a, once a and t 6= 0 are fixed, the projec-

tion π (gβ1,β2,ε) is completely determined by the smallest and the largest of the
positions u0, u1, . . . , uβ2 which lie in the interval [−(L − 1),M ]. We conclude
that there are at most (M +L)2 possibilities for the projection π (gβ1,β2,ε) as β1

ranges over Z, β2 ranges over N, and ε is fixed as either 1 or −1.
As observed earlier, every element of A(B) is a product of at most k of some

B-conjugates of elements of the following three types:

(6) (ai) · (
zti

ai) · · · (
z(αi−1)ti

ai), (z
−ti

a−1
i ) · (z

−2ti
a−1

i ) · · · (zαiti
a−1

i ), a
αi

i .

We have just established that there are at most (M + L)2 possibilities for the
projections onto AM for each of the elements of the first two types in (6). On
the other hand, the B-conjugates of the elements of the third type have only
`(ai) nontrivial coordinates, which are a shift of the nontrivial coordinates of ai.
To count the number of possible projections of such elements, we notice that by
varying the coordinates we obtain at most |A|`(ai) combinations, and by shifting
the position of the first nontrivial coordinate (which can take any value between
−(L− 1) and M) we obtain at most (M + L) possibilities for each combination
of coordinates. It follows that the projections of the elements of the third type
from (6) can take at most (M + L)|A|`(ai) values in AM .

Putting all of this together, we see that the product of k B-conjugates of
elements as in (6) can have at most

(

(M + L)2
)k
·
(

(M + L)|A|D
)k
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values in its projection under π, where D = max{`(a1), . . . , `(ak)}. This number
grows polynomially in M when L, D, k, and |A| are fixed. On the other hand,
|A|M grows exponentially with M since |A| > 1. So for large enough M we
will not be able to achieve all the choices for the coordinates 1, 2, . . . ,M with
a product of k cyclic subgroups Ci. This contradiction completes the proof of
Theorem 3.1.

Remark. The proof of Theorem 3.1 can be adapted to other types of permutation
actions including that of SLn(OS) on O

n
S for the ring OS of S-integers in a

number field.

4. Proof of Theorem 1.2

Suppose that H2
b,2(A oB) = 0. We begin by showing that (i) must hold.

Lemma 4.1 dimH2
b,2(A oB) > dimH2

b,2(B).

Proof. Let f1, . . . , fn be pseudocharacters of B linearly independent modulo
characters. For each i = 1, . . . , n define a function Fi on A oB by

Fi(ab) = fi(b),

where a ∈ A(B) and b ∈ B. Then

Fi((ab)n) = Fi

(

(a) · (ba) · · · (bn−1
a) · bn

)

= fi(b
n) = nfi(b) = nFi(ab)

and

|Fi ((a1b1)(a2b2))− Fi(a1b1)− Fi(a2b2)| = |fi(b1b2)− fi(b1)− fi(b2)| 6 Cfi
.

Therefore, F1, . . . , Fn are pseudocharacters on A oB which are linearly indepen-
dent modulo characters of A o B, whence our claim. �

Condition (ii) must hold in view of the following.

Lemma 4.2 If B is finite, then dimH2
b,2(A oB) > dimH2

b,2(A).

Proof. Given pseudocharacters f1, . . . , fn on A linearly independent modulo
characters, define functions Fi, 1 6 i 6 n, on A oB as follows:

Fi ([a1]b1 · · · [as]bs
b) = fi(a1) + · · ·+ fi(as).

Suppose that |B| = m and let a1, . . . , as, c1, . . . , ct be arbitrary elements of A,
b1, . . . , bs be distinct elements of B, d1, . . . , dt be distinct elements of B, and u,
v be arbitrary elements of B. Then

|Fi (([a1]b1 · · · [as]bs
u)([c1]d1 · · · [ct]dt

v)) − Fi ([a1]b1 · · · [as]bs
u)

− Fi ([c1]d1 · · · [ct]dt
v)|

= |Fi ([a1]b1 · · · [as]bs
[c1]d1u · · · [ct]dtuuv)− Fi ([a1]b1 · · · [as]bs

u)

− Fi ([c1]d1 · · · [ct]dt
v)|

=

∣

∣

∣

∣

∣

∣

∑

bk=dju

(fi(akcj)− fi(ak)− fi(cj))

∣

∣

∣

∣

∣

∣

6 mCfi
,
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which shows that Fi is an unbounded quasicharacter of A o B with constant
mCfi

. It follows from (1) that there is a bounded function Gi on A o B such
that Fi + Gi is a pseudocharacter of A o B. Note that the restriction of Fi + Gi

to the coordinate at position 1 of A(B) is a pseudocharacter of A which differs
from fi by a bounded function, hence coincides with fi by Lemma 2.1. Thus
the pseudocharacters F1 + G1, . . . , Fn + Gn are linearly independent modulo
characters of A oB. �

Now it remains to show that (i) and (ii) imply H2
b,2(A o B) = 0. We begin

with a couple of observations.

Lemma 4.3 If F ∈ PX(A oB), then F ([a]b1) = F ([a]b2) for all b1, b2 ∈ B and
all a ∈ A.

Proof. Every pseudocharacter is constant on conjugacy classes (Lemma 2.1) and
[a]b2 = (b−1

1 b2)[a]b1(b
−1
1 b2)

−1. �

Lemma 4.4 If H2
b,2(A) = 0, then H2

b,2(A
(B)) = 0.

Proof. Let F ∈ PX(A(B)) and take an arbitrary element a ∈ A(B). If σ(a) =
{b1, . . . , bs}, then a = ab1 · · · abs

and by Lemma 2.2,

F (ab1 · · · abs
) = F (ab1) + · · ·+ F (abs

).

Since H2
b,2(A) = 0, the restriction of F to every coordinate of A(B) is a character

of A, whence F is a character of A(B). �

We now continue with the proof of the theorem.

Lemma 4.5 If H2
b,2(A) = 0 and H2

b,2(B) = 0, then H2
b,2(A o B) = 0.

Proof. If F ∈ PX(AoB), then by Lemma 4.4, the restriction F |A(B) is a character

of A(B); also F |B is a character of B. To prove that F is a character of the wreath
product A oB, it thus remains to show that

F (ab) = F (a) + F (b) for all a ∈ A(B), b ∈ B.

Let α = F (ab)− F (a)− F (b). Then for any positive integer n, we have

|nα| = |nF (ab)− nF (a)− nF (b)|

=
∣

∣

∣
F
(

(a) · (ba) · · · (bn−1
a) · bn

)

− nF (a)− F (bn)
∣

∣

∣

6

∣

∣

∣
F
(

(a) · (ba) · · · (bn−1
a) · bn

)

− F
(

(a) · (ba) · · · (bn−1
a)
)

− F (bn)
∣

∣

∣

+
∣

∣

∣
F
(

(a) · (ba) · · · (bn−1
a)
)

− nF (a)
∣

∣

∣

6 CF +
∣

∣

∣
F (a) + F

(

ba
)

+ · · ·+ F
(

bn−1
a
)

− nF (a)
∣

∣

∣

= CF

which shows that α = 0. �
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Remark. One can also derive the result of Lemma 4.5 from the observation
that if N and K are subgroups of G with N normal such that G = NK and
H2

b,2(N) = H2
b,2(K) = 0, then H2

b,2(G) = 0. The proof is identical to that of the
lemma.

The next lemma completes the proof of Theorem 1.2.

Lemma 4.6 If H2
b,2(B) = 0 and B is infinite, then H2

b,2(A oB) = 0.

Proof. Let F ∈ PX(A oB). Proof of Lemma 4.5 shows that in order to establish

that F is a character of A o B, it suffices to show that F is a character of A(B).
Lemma 4.3 implies there exists a pseudocharacter f of A such that the restriction
of F to every coordinate in A(B) is f , i.e.,

F ([a]b) = f(a) for all a ∈ A, b ∈ B.

If b1, . . . , bs are distinct element of B, then Lemma 2.2 implies

F ([a1]b1 · · · [as]bs
) = f(a1) + · · ·+ f(as)

for arbitrary elements a1, . . . , as ∈ A. Therefore, to prove that F is a character
of A(B), it suffices to show that f is a character of A. Suppose that f is not a
character of A; then there exist a1, a2 ∈ A such that

α = f(a1a2)− f(a1)− f(a2) 6= 0.

Choose an infinite sequence {bi} of distinct elements of B. Then

|F (([a1]b1 · · · [a1]bn
)([a2]b1 · · · [a2]bn

))− F ([a1]b1 · · · [a1]bn
)− F ([a2]b1 · · · [a2]bn

)|

= |F ([a1a2]b1 · · · [a1a2]bn
)− F ([a1]b1 · · · [a1]bn

)− F ([a2]b1 · · · [a2]bn
)|

= |nf(a1a2)− nf(a1)− nf(a2)| = |nα| → ∞ as n→∞

On the other hand, it is bounded by CF , a contradiction. �
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