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                                             Preface 

This report documents the work done during the summer internship in 

Indian Statistical Institute,Bangalore, India under the guidance and 

supervision of Prof. Dr. B.Sury.The report shall give overview of the tasks 

completed during the period of internship with technical details. 

I have tried my best to keep eport simple yet technically correct.I hope I 

succeed in my Attempt. 

Banashree Sarma 
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                                          Abstract 

The report presents the topics studied during summer internship at 

ISI,Bangalore  which are listed below: 

 Linear Programming: 

 The Graphical analysis of linearprogramming 

 The Simplex Method 

 The Big M method 

 Concept of Duality 

 The Game Theory 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Linear Programming: 

Introduction: 

 Mathematical programming is used to find the best or optimal 

solution to a problem that requires a decision or set of decisions about 

how best to use a set of limited resources to achieve a state goal of 

objectives. 

 Steps involved in mathematical programming 

 Conversion of stated problem into a mathematical model that 

abstracts all the essential elements of the problem. 

 Exploration of different solutions of the problem. 

 Finding out the most suitable or optimum solution 

 A Linear Programming model seeks to maximize or minimize a linear 

function, subject to a set of linear constraints. Linear programming 

requires that all the mathematical functions in the model be linear 

functions 

 The linear model consists of the following 

components: 

 A set of decision variables. 

 An objective function. 

 A set of constraints. 

 The Importance of Linear Programming : 

 Many real world problems lend themselves to linear   

  programming modeling.  

 Many real world problems can be approximated by linear 

models. 

 There are well-known successful applications in: 

 Manufacturing 

 Marketing 

 Finance (investment) 

 Advertising 

 Agriculture 

 There are efficient solution techniques that solve linear programming 

models. 

 The output generated from linear programming packages provides 

useful “what if” analysis. 

 Assumptions of the linear programming model: 

 The parameter values are known with certainty. 

 The objective function and constraints exhibit constant returns 

to scale. 



 There are no interactions between the decision variables (the 

additivity assumption). 

 The Continuity assumption: Variables can take on any value 

within a given feasible range.            

The Linear Programming Model: 

      Let:                = decision variables 

Z = Objective function or linear function 

Requirement: Maximization of the linear function Z. 

                            …..Eq (1) 

subject to the following constraints: 

                                              

                                               

                                       

                                       

                                             

                                                                                    

The linear programming model can be written in more efficient notation 

as: 

                                             
 
    

                                                                               
     

                                                               

                                  

 

The decision variables,             , represent levels of n competing activities 

Now, every linear program can be converted into “standard" form. 

Standard form: 

                      Max                                 

                    subject to the following constraints: 



                                               

                                               

                                       

                                       

                                         +      

                                                                                    

where the objective is maximized, the constraints are equalities and the 

variables are all nonnegative. 

This is done as follows: 

 If the problem is min z, convert it to max - z. 

 If a constraint is                           convert it into an 

equality constraint by adding a nonnegative slack variable    . The 

resulting constraint is                               where 

      

 If a constraint is                           convert it into an 

equality constraint by subtracting a nonnegative surplus variable    . 

The resulting constraint is                               where 

      

 If some variable    is unrestricted in sign,replace it everywhere in the 

formulation by   
    

  where   
    

   . 

Examples of LP Problems: 

1. A Product Mix Problem 

 

– A manufacturer has fixed amounts of different resources such 

as raw material, labor, and equipment. 

– These resources can be combined to produce any one of 

several different products. 

– The quantity of the ith resource required to produce one unit of 

the jth product is known. 

The decision maker wishes to produce the combination of products 

that will maximize total income. 

2. A Blending Problem 

– Blending problems refer to situations in which a number of 

components (or commodities) are mixed together to yield 

one or more products. 



– Typically, different commodities are to be purchased. Each 

commodity has known characteristics and costs. 

The problem is to determine how much of each commodity should be 

purchased and blended with the rest so that the characteristics of the 

mixture lie within specified bounds and the total cost is minimized 

3. A Production Scheduling Problem 

– A manufacturer knows that he must supply a given number 

of items of a certain product each month for the next n 

months. 

– They can be produced either in regular time, subject to a 

maximum each month, or in overtime. The cost of 

producing an item during overtime is greater than during 

regular time. A storage cost is associated with each item not 

sold at the end of the month. 

The problem is to determine the production schedule that minimizes 

the sum of production and storage costs. 

Developing an LP model: 

              The variety of situations to which linear programming has been 

applied ranges from agriculture to zinc smelting. 

             Steps Involved: 

– Determine the objective of the problem and describe it by 

a criterion function in terms of the decision variables. 

– Find out the constraints. 

– Do the analysis which should lead to the selection of 

values for the decision variables that optimize the 

criterion function while satisfying all the constraints 

imposed on the problem. 

Example: 

             The Galaxy Industries Production Problem – 

 Galaxy manufactures two toy doll models: 

– Space Ray.  

– Zapper.  

 Resources are limited to: 

– 1000 pounds of special plastic. 

– 40 hours of production time per week 

 Marketing requirement 

– Total production cannot exceed 700 dozens. 



– Number of dozens of Space Rays cannot exceed  number 

of dozens of Zappers by more than 350. 

 Technological input 

– Space Rays requires 2 pounds of plastic and   3 

minutes of labor per dozen. 

– Zappers requires 1 pound of plastic and 4 minutes of 

labor per dozen 

 The current production plan calls for:  

– Producing as much as possible of the more profitable 

product, Space Ray ($8 profit per dozen). 

– Use resources left over to produce Zappers ($5 profit per 

dozen), while remaining within the marketing guidelines. 

 The current production plan consists of: 

– Space Rays  = 450 dozen 

– Zapper         = 100 dozen 

– Profit            = $4100 per week            

        

             Aim-Management is seeking a production schedule that will 

increase the company’s profit. 

                     (A linear programming model can provide an insight and an 

intelligent solution to this problem. )                                                                            

 

                    The Galaxy Linear Programming Model: 

 Decisions variables:  

–    = Weekly production level of Space Rays (in 

dozens)  

–    = Weekly production level of Zappers (in dozens). 

 Objective Function: 

– Weekly profit, to be maximized 

                  The LP model: 

                        Max          (Weekly profit) 

              subject to: 

                                              (Plastic) 

                                              (Production Time) 

                                                   (Total production) 



                                                   (Mix) 

                                    

Solution methods of Linear Programming Model: 

             Linear programming problems can be solved using graphical 

techniques, SIMPLEX algorithms using matrices, or using software, such as 

ForeProfit software. 

 The Graphical Analysis of Linear Programming: 

               

 The set of all points that satisfy all the constraints of the 

model is called  a feasible region. 

 If there are no values of the decision variables which 

satisfies all the constraints then that LP model is said to 

have infeasible solution. 

 Multiple optimal solutions or infinite optimal solutions is 

found when one of the lines making the boundary of the 

feasible solution region runs parallel to the objective 

function line .So,all the points on the line making the 

boundary of the feasible solution region become the 

optimal solution. 

 Reduntant constraint: Every constraint in  a LP model form 

a unique boundary of the feasible region but the constraint 

which do not contribute to the boundary of the feasible 

solution region is known as redundant constraint. 

 When a LP solutions is permitted to be infinitely large it is 

known  as to be unbounded. 

 

                 A Graphical Solution Procedure  (LPs with 2 decision 

variables can be solved/viewed this way) – 

1. Identify the decision variables .eg       

2. Set up the equation of the objective function.Now the 

objective function could be either minimization or 

maximization. 

3. Set up the equation of the constraints 

4. Graph the constraints by reducing them into equality 

5. Find the feasible region. 



6. Find the optimal solution.For this ,we have two 

methods: 

Corner point method 

This method is based on the fact that the optimal 

solution lies on one of the corner points of the 

feasible solution region. 

 Following are the steps to be followed: 

1. Identify the coordinates of the 

corner points. 

2. Solve the objective with each of 

the corner point value. 

3. Coordinates giving the highest 

value of the objective function 

in case of maximization  and 

lowest value of the objective 

function in case of the 

minimization gives the optimal 

solution. 

                                      Iso profit/iso cost method: 

1. Find the slope of the objective 

function line and draw a family 

of parallel lines. 

2. In this method there are two 

cases: 

For minimization objective 

,the parallel lines are called iso 

cost lines.Now every point on 

each of these iso cost lines will 

yield the same cost.Each  line 

will yield different cost but 

every point on the same line 

will yield  the cost.So,the 

nearest point from the origin 

on the feasible solution region 

which the iso cost line touches 

is the point of optimal 

solution. 

For maximization objective 

,the parallel lines are called iso 

profit lines.Now every point on 

each of these iso profit lines 



will yield the same cost.Each  

line will yield different profit 

but every point on the same 

line will yield  the profit.So,the 

furthest point from the origin 

on the feasible solution region 

which the iso profit line 

touches is the point of optimal 

solution. 

 

. 

         A Minimization Problem: 

 LP Formulation: 

                                 

                                                 +5      

             

          

                                                             

 Graph the Constraints 

– Constraint 1:  When x
1
 = 0, then x

2
 = 2; when x

2
 = 0, 

 then x
1
 = 5.  Connect (5,0) and (0,2).  The ">" side is 

 above this line. 

– Constraint 2:  When x
2
 = 0, then x

1
 = 3.  But setting x

1
 

to  0 will yield x
2
 = -12, which is not on the graph.  

Thus, to get a second point on this line, set x
1
 to any 

number larger than 3 and solve for x
2
:  when x

1
 = 5, 

 then x
2
 = 8.  Connect (3,0) and (5,8).  The ">" side is 

to the right. 

– Constraint 3:  When x
1
 = 0, then x

2
 = 4; when x

2
 = 0, 

 then x
1
 = 4.  Connect (4,0) and (0,4).  The ">" side is 

 above this line. 

 Constraints Graphed 



  

 Solve for the Extreme Point at the Intersection of the second 

and third Constraints  

                                  

                                    

     Adding these two equations gives:   

                           

Substituting this into x
1
 + x

2
 = 4 gives  x

2
 =4/5 

 Solve for the extreme point at the intersection of the first and 

third constraints 

                                                    2x
1
 + 5x

2
 =10 

                                                    x
1
 +   x

2
=  4 

Multiply the second equation by -2  and add to the first 

equation, gives 

                                                    3x
2
 = 2 or x

2
 = 2/3 

Substituting this in the second equation gives         

 

 

 

   

                                             

 

 

                 

 

 

point Z 

(16/5,  4/5 88/5 

(10/3,  2/3) 18 

(5, 0) 25 



 Maximization problem: 

                                           

                                                  ………..(1) 

                                                                    …….(2) 

                                                                ………(3) 

                                                             

 Combined constraint graph: 

                                        

 Feasible Solution Region: 

                                          

 The five extreme points: 



                                     

 

 Having identified the feasible region for the problem, we now 

search for the optimal solution, which will be the point  in the 

feasible region with the largest  (in case of  maximization or the 

smallest (in case of minimization) of the objective function. 

 To find this optimal solution, we need to evaluate the objective 

function  at each one of the corner points  of the feasible region 

 Optimal Solution: 

          

 

Extreme Points and the Optimal Solution: 

 The corners or vertices of the feasible region are referred to as the 

extreme points. 

 An optimal solution to an LP problem can be found at an extreme 

point of the feasible region. 

 When looking for the optimal solution, you do not have to evaluate 

all feasible solution points. 

 We have to consider only the extreme points of the feasible region. 



Feasible Region: 

 The feasible region for a two-variable linear programming problem 

can be nonexistent, a single point, a line, a polygon, or an 

unbounded area. 

 Any linear program falls in one of three categories: 

• is infeasible  

• has a unique optimal solution or alternate optimal solutions 

• has an objective function that can be increased without bound 

 A feasible region may be unbounded and yet there may be optimal 

solutions.  This is common in minimization problems and is 

possible in maximization problems. 

Special Cases: 

 Alternative Optimal solutions: 

       In the graphical method, if the objective function line is parallel 

to            a boundary constraint in the direction of optimization, 

there are  

alternate   optimal solutions, with all points on this line segment 

being optimal. 

 Infeasibility:  

         A linear program which is overconstrained so that no point 

satisfies   all the constraints is said to be infeasible.  

 Unbounded: 

           For a max (min) problem, an unbounded LP occurs if it is 

possible to find points in the feasible region with arbitrarily  large 

(small) Z. 

Example with Multiple Optimal Solutions: 

           

 



Example of infeasible solution: 

                     Max                                              

                                   
 s.t               

                                                   

                                                  

            There are no points that satisfy both constraints, hence this 

problem has no feasible region, and no optimal solution.  

 

Example of  Unbounded Solution: 

                              Max                                              

                                   
 s.t            

                                                   

                                          

The feasible region is unbounded and the objective function line 

can be moved parallel to itself without bound so that z can be 

increased infinitely.   



 
 

     Note: The graphical method of solution may be extended to a case in 

which there are three variables. In this case, each constraint is represented 

by a plane in three dimensions, and the feasible region bounded by these 

planes is a polyhedron 

However,if decision variables are more than 2, it is always advisable to use 

Simplex Method to avoid lengthy graphical procedure.The simplex method 

is not used to examine all the feasible solutions. It deals only with a small 

and unique set of feasible solutions, the set of vertex points (i.e., extreme 

points) of the convex feasible space that contains the optimal solution. 

The Simplex Method: 

Theory: 

      A linear-programming algorithm that can solve problems having more 

than two decision variables. 

  The simplex technique involves generating a series of solutions in tabular 

form, called tableaus. By inspecting the bottom row of each tableau, one can 

immediately tell if it represents the optimal solution. Each tableau 

corresponds to a corner point of the feasible solution space. The first 

tableau corresponds to the origin. Subsequent tableaus are developed by 

shifting to an adjacent corner point in the direction that yields the highest 

(smallest) rate of profit (cost). This process continues as long as a positive 

(negative) rate of profit (cost) exists.  

 

 

 



Teminology: 

    Constraint Boundary Equation: 

                                  an equation obtained by replacing its sign ( ≥,≤ or = ) by 

an equality sign (=). 

     Boundary: the boundary of the feasible region contains (1) the feasible 

solutions that satisfy one                    or more of the constraint boundary 

equations. 

      CPF:is a feasible solution that exists at the constraints of more than one 

constraint boundary equations (i.e., it does not lie on any line segment 

connecting two other feasible solutions) 

For any linear programming problem with n decision variables, each CPF 

solution lies at the intersection of n constraint boundaries. 

      Adjacent CPF solutions: A CPF solution lies at the intersection of n 

constraint boundaries. An edge of the feasible region is feasible line segment 

that lies at the intersection of n-1 constraint boundaries. Two CPF solutions 

are adjacent if the line segment connecting them is an edge of the feasible 

region. Each CPF solution has n edges each one leading to one of the n 

adjacent CPF solutions. 

   The key solution concepts  

 the simplex method focuses on CPF solutions. 

 the simplex method is an iterative algorithm (a systematic solution 

procedure that keeps repeating a fixed series of steps, called, an 

iteration, until a desired result has been obtained) . 

 whenever possible, the initialization of the simplex method chooses 

the origin point (all decision variables equal  zero) to be the initial 

CPF solution.  

 given a CPF solution, it is much quicker computationally to gather 

information about its adjacent CPF solutions than about other CPF 

solutions. Therefore, each time the simplex method performs an 

iteration to move from the current CPF solution  to a better one, it 

always chooses a CPF solution that is adjacent to the current one. 

 After the current CPF solution is identified, the simplex method 

examines each of the edges of the feasible region that emanate 

from this CPF solution. Each of these edges leads to an adjacent CPF 

solution at the other end, but the simplex method doesn’t even take 

the time to solve for the adjacent CPF solution. Instead it simply 

identifies the rate of improvement in Z that would be obtained by 



moving along the edge. And then chooses to move along the one 

with largest positive rate of improvement. 

 A positive rate of improvement in Z implies that the adjacent CPF 

solution is better than the current one, whereas a negative rate of 

improvement in Z implies that the adjacent CPF solution is worse. 

Therefore, the optimality test consists simply of checking whether 

any of the edges give a positive rate of improvement in Z. if none 

do, then the current CPF solution is optimal.    

The following are steps for simplex method: 

    1. Initialization:  

 transform all the constraints to equality by introducing 

slack, surplus, and artificial variables as follows: 

  

 

 

                       

 

 

 Construct the initial simplex tableau: 

         

 

 

 

 

 

 

 

 

 

 

 

Constraint type Variable to be added 

         ≤ + slack (s) 
 

         ≥ - Surplus (s) + 
artificial (A) 
 

         = + Artificial (A) 
 

     Objective function coefficients 

B 

Basic 

variable

s 

   

Coefficien

ts of the 

basic 

variables 

in the 

objective 

function 

   

 

RHS of 

the 

constrain

ts 

                                 

  

  
 

Min 

ratio

n 

   Coeffiecients of the constraints 

Z      

         



 Optimality:  

– Case 1: Maximization problem 

                  the current BF solution is optimal if every             

coefficient in the objective function row is nonnegative 

– Case 2: Minimization problem 

                the current BF solution is optimal if every 

coefficient           in the objective function row is 

nonpositivity 

 Iteration 

1. Step 1: determine the entering basic variable by 

selecting the variable (automatically a nonbasic 

variable) with the most negative value (in case of 

maximization) or with the most positive (in case of 

minimization) in the last row (Z-row). Put a box 

around the column below this variable, and call it 

the “pivot column 

2. Step 2:   Determine the leaving basic variable by 

applying  the minimum ratio test as following: 

 Pick out each coefficient in the pivot 

column that is strictly positive (>0) 

 Divide each of these coefficients into the 

right hand side entry for the same row 

 Identify the row that has the smallest of 

these ratios 

 The basic variable for that row is the 

leaving variable, so replace that variable by 

the entering variable in the basic variable 

column of the next simplex tableau. Put a 

box around this row and call it the “pivot 

row”  

3. Step 3: Solve for the new BF solution by using 

elementary row operations (multiply or divide a row 

by a nonzero constant; add or subtract a multiple of 

one row to another row) to construct a new simplex 

tableau, and then return to the optimality test. The 

specific elementary row operations are: 

 Divide the pivot row by the “pivot number” 

(the number in the intersection of the pivot 

row and pivot column) 

 For each other row that has a negative 

coefficient in the pivot column, add to this 

row the product of the absolute value of 

this coefficient and the new pivot row. 



 For each other row that has a positive 

coefficient in the pivot column, subtract 

from this row the product of the absolute 

value of this coefficient and the new pivot 

row 

Example:  Product Mix Problem 

   The N. Dustrious Company produces two products: I and II. The raw 

material requirements, space needed for storage, production rates, and 

selling prices for these products are given below:  

 

 

 

 

 

 

 

 

The total amount of raw material available per day for both products is 

15751b. The total storage space for all products is 1500 ft2, and a maximum 

of 7 hours per day can be used for production. The company wants to 

determine how many units of each product to produce per day to maximize 

its total income. 

Solution 

 Step 1: Convert all the inequality constraints into equalities by the 

slack variables. Let:  

                                                                 

                                                            

                          

As already developed, the LP model is: 

                     

           Subject to:                                ≤1500 

 product 

 I II 

Storage space(          4 5 

Raw material(lb/unit) 5 3 

Production rate(units/hr) 60 30 

Selling price($/unit) 13 11 



                                                           ≤1575 

                                                             ≤420 

                                                                   

Introducing these slack variables into the inequality constraints and 

rewriting the objective function such that all variables are on the left-hand 

side of the equation. Equation 4 can be expressed as:  

 :                                      ........................(A1) 

                                                                      

                                                           ...................(C1) 

                                                           ...................(D1) 

               

From the equations above ,it is obvious that one feasible solution that 

satisfies all the constraints is :                             

            

 

 Since the coefficients of x
1
 and x

2
 in Eq. (A1) are both negative, the 

value of Z can be increased by giving either x
1
 or x

2
 some positive value 

in the solution. 

 In Eq. (B1), if x
2
 = S

1
 = 0, then x

1
 = 1500/4 = 375. That is, there is only 

sufficient storage space to produce 375 units at product I. 

 From Eq. (C1), there is only sufficient raw materials to produce 1575/5 

= 315 units of product I. 

 From Eq. (D1), there is only sufficient time to produce 420/1 = 420 

units of product I. 

 Therefore, considering all three constraints, there is sufficient 

resource to produce only 315 units of x
1
. Thus the maximum value of 

x
1
 is limited by Eq. (C1). 

 Step 2: From Equation CI, which limits the maximum value of x
1
.  

     
 

 
   

 

 
       

 Substituting this equation into Eq. (5) yields the following new 

formulation of the model. 



   
  

 
   

  

 
       ......................(A2) 

                              +
  

 
  +   

 

 
     0...........................(B2) 

                        

                                  
 

 
   

 

 
      ............................(C2) 

                                           
 

 
   

 

 
         ..............(D2) 

 It is now obvious from these equations that the new feasible solution 

is:  

   = 315,   = 0, S
1
 = 240, S

2
 = 0, S

3
 = 105, and Z = 4095 

 It is also obvious from Eq.(A2) that it is also not the optimum solution. 

The coefficient of x
1
 in the objective function represented by A2 is 

negative ( -16/5), which means that the value of Z can be further 

increased by giving x
2
 some positive value.   

 Following the same analysis procedure used in step 1, it is clear that:  

 In Eq. (B2), if S
1
 = S

1
 = 0, then x

2
 = (5/13)(240) = 92.3.  

 From Eq. (C2), x
2
 can take on the value (5/3 )(315) = 525 if       x

1
 = S

2
 = 

0 

  From Eq. (D2), x
2
 can take on the value (5/7)(105) = 75 if         S

2
 = S

3
 = 

0 

 Therefore, constraint D
2
 limits the maximum value of x

2
 to 75. Thus a 

new feasible solution includes x
2
 = 75,  S

2
 = S

3
 = 0.  

 Step 3: From Equation D2:  

    
 

 
   

 

 
      

 

 Substituting this equation into Eq. (7) yield: 

   
  

 
   

  

 
       ..............(A3) 

                              
 

 
   

  

 
     ..............(B3) 

                            
 

 
   

 

 
      ..............(C3) 



                            
 

 
   

 

 
     ..............(D3) 

  From these equations, the new feasible solution is readily found to be: x
1  

= 

270, x
2
 = 75, S

1
 = 45, S

2
 = 0, S

3
 = 0, Z = 4335.  

 Because the coefficients in the objective function represented by Eq. 

(A3) are all positive, this new solution is also the optimum solution. 

Now using simplex  tableau: 

 Step I: Set up the initial tableau using Eq. (5).  

                    :                                       

                                                           

                                                            

                                                            

                                                                  

     

     13 11 0 0 0  

B                      Min 
ratio 

   0 1500 4 5 1 0 0 375 
   0 1575 (5) 3 0 1 0 315 
   0 420 1 2 0 0 1 420 

Z=0     0 0     

        13 11 0 0 0  

Entering=  ,departing =  ,key element=5 

 

     13 11 0 0 0  

B                      Min 
ratio 

   0 240 0 13/5 1 -4/5 0 1200/13 
   0 315 1 3/5 0 1/5 0 525 
   0 105 0 (7/5) 0 -1/5 1 95 

Z=4095     13 39/5 0 -13/5 0  

        0 16/5 0 -13/5 0  

Entering=  ,departing =  ,key element=7/5 

 

 



     13 11 0 0 0  

B                      Min 
ratio 

   0 45 0  1 -3/7 -13/7  
   0 270 1 0 0 2/7 -3/7  
   0 75 0 1 0 -1/7 5/7  

Z=4335     13 11 0 15/7 16/7  

        0 0 0 -15/7 -16/7  

 

Since all         

Optimum solution is arrived  with value of variables as: 

       

      

Maximize Z=4335 

Special Cases  

        Degeneracy in Linear programming: 

 occurs whenever there is a tie for departing variable 

 at next iteration, entering variable will be constrained to 
enter at value zero 

 simplex algorithm will move to a new basic feasible 
solution, but it’s geometrically the same point, and the 
objective doesn’t change. 

                    Example: max            
                                     Subject to constraints: 
                                                  
          
                                                      
  

      13 11  0 0  

B                      Min 
ratio 

   0 1 1 1 0 1 0 1/1=1 
   0 0 0 -1 1 0 1  

Z=0     0 0 0 0 0  

        1 1 1 0 0  

 
 
For the first iteration of simplex method, there are 3 choices of entering 
variables:         . We choose    . (In practice, the choice of entering variable 
is determined by the pivot rule used.) The leaving variable should be    . 



 
 
 
 

      1 1 1 0 0  

B                      Min 
ratio 

   1 1 1 1 0 1 0  
   0 0 0 -1 1 0 1 0/1=0 

Z=1     1 1  0 0  

        0 0 1 -
1 

0  

Entering=  ,departing =  ,Key element=1 
 

      1 1 1 0 0  

B                      Min 
ratio 

   1 1 1 1 0 1 0 1/1=1 
   1 0 0 -1 1 0 1  

Z=1     1 0 1 1 1  

        0 1 0 -
1 

0  

Entering=  ,departing =  ,Key element=1 
 

      1 1 1 0 0  

B                      Min 
ratio 

   1 1 1 1 0 1 0  
   1 1 1 0 1 1 1  

Z=2     2 1 1 2 1  

        -1 0 0 -
2 

-1  

Since all         

Optimum solution is arrived with value of variables as: 
     
     
     

Maximize Z=2 
 

The Finiteness of the Simplex Algorithm when there is no 
degeneracy: 
the simplex algorithm tries to increase a non-basic variable    . If there is no 

degeneracy, then    will be positive after the pivot, and the objective value 

will improve. Each solution produced by the simplex algorithm is a basic 
feasible solution with m basic variables, where m is the number of 
constraints. There are a finite number of ways of choosing the basic 
variables. So, the simplex algorithm moves from bfs to bfs. And it never 



repeats a bfs because the objective is constantly improving. This shows that 
the simplex method is finite, so long as there is no degeneracy. 
Cycling: 
If a sequence of pivots starting from some basic feasible solution ends up at 
the exact same basic feasible solution, then we refer to this as “cycling.” If 
the simplex method cycles, it can cycle forever. Klee and Minty [1972] gave 
an example in which the simplex algorithm really does cycle. 
Example: 
        max                 
                                     Subject to constraints: 
                                               
             
                                                                
                                                      
 
     100 10 1 0 0 0  

B                         Min 
ratio 

   0 1 1 0 0 1 0 0 1 
   0 100 20 1 0 0 1 0 5 
   0 10000 200 20 1 0 0 1 50 

Z=0     0 0 0 0 0 0  

        100 10 1 0 0 0  

 
At first iteration the basic columns are          
At 2nd iteration the basic columns are         
At 3rd iteration the basic columns are          
At 4th iteration the basic columns are          
At 5th iteration the basic columns are          
At 6th iteration the basic columns  are          
At 7th iteration the basic columns are          
                                                    
is the optimal and that the objective function value is 10,000  
Along the way there are 7 pivot steps.The objective function made a strict 
increase with each change of basis. 
 

Is the simplex method finite? 
        There is a technique that prevents bases from repeating in the simplex 
method, even if they are degenerate bases. This will guarantee the finiteness 
of the simplex algorithm, provided that the technique is used. There are 
several approaches to guaranteeing that the simplex method will be finite, 
including one developed by Professors Magnanti and Orlin. And there is the 
perturbation technique that entirely avoids degeneracy.  Bland’s rule, 
developed by Bob Bland. It’s the simplest rule to guarantee finiteness of the 
simplex method. Bland’s rule ensures there is no cycling. 
 
 
 



Bland’s Rule. 
 1.The entering variable should be the lowest index variable with positive 
reduced cost. 
 2.The leaving variable (in case of a tie in the min ratio test) should be the 
lowest index row. (It is the row closest to the top, regardless of the leaving 
variable. 
 
Degeneracy is important because we want the simplex method to be finite, 
and the generic simplex method is not finite if bases are permitted to be 
degenerate. In principle, cycling can occur if there is degeneracy. In practice, 
cycling does not arise, but no one really knows why not. Perhaps it does 
occur, but people assume that the simplex algorithm is just taking too long 
for some other reason, and they never discover the cycling.  Researchers 
have developed several different approaches to ensure the finiteness of the 
simplex method, even if the bases can be degenerate. Bob Bland developed a 
very simple rule that prevents cycling. 

  Alternative optimum solutions: 
 when optimality is reached, one (or more) of the non-basic 

variables has coefficient zero in objective 
 each one can enter into the set of basic variables, without 

changing the objective value. 

  Unbounded Solution: 
 when ratio test is being used to determine constraints on 

entering variable,all ratios are either negative or infinity. 
 the current entering variable is the one that can be made 

as large as desired. 
 

Artificial Variable Technique  
(The Big-M Method) 
Introduction to the Big M Method: 
           In this section, we will present a generalized version of the simplex 
method that will solve both maximization and minimization problems with 
any combination of ≤, ≥, = constraints. 
The Big-M method of handling instances with artificial variables is 

the“commonsense approach”. Essentially, the notion is to make the artificial 

variables, through their coefficients in the objective function, so costly or 

unprofitable that any feasible solution to the real problem would be 

preferred....unless the original instance possessed no feasible solutions at 

all. But this means that we need to assign, in theobjective function, 

coefficients to the artificial variables that are either very small (maximization 

problem) or very large(minimization problem); whatever this value,let us call 

it Big M. In fact, this notion is an old trick in optimization in general; we 

simply associate a penalty value with variables that we do not want to be 

part of an ultimate solution(unless such an outcome is unavoidable). Indeed, 

the penalty is so costly that unless any of the respective variables' inclusion 

is warranted algorithmically,such variables will never be part of any feasible 



solution. 

This method removes artificial variables from the basis. Here, we assign a 

large undesirable (unacceptable penalty) coefficients to artificial variables 

from the objective function point of view. If the objective function (Z) is to 

be minimized, then a very large positive price (penalty, M) is assigned to 

each artificial variable and if Z is to be minimized, then a very large negative 

price is to be assigned. The penalty will be designated by +M for 

minimization problem and by –M for a maximization problem and also M>0. 

Example: Minimize               

subject to constraints, 

          

  

          

        

Step1: Convert the LP problem into a system of linear equations. 

We do this by rewriting the constraint inequalities as equations by 

subtracting new “surplus & artificial variables" and assigning them zero & 

+M coefficientsrespectively in the objective function as shown below. 

So the Objective Function would be:  

                                  

subject to constraints,  

                

  

                

                    

Step 2: Obtain a Basic Solution to the problem. 

We do this by putting the decision variables 

              

 

 

 so that.  

            

 

These are the initial values of artificial variables. 

Step 3: Form the Initial Tableau as shown 



Key element is coloured yellow 

 

     600 500 0 0 M M  

B                         Min 
ratio 

   M 80 2 1 -1 0 1 0 80 
   M 60 1 2 0 -1 0 1 60 

Z=0     3M 3M -M -M M M  

        600-
3M 

500-
3M 

M M 0 0  

 

     600 500 0 0 M  

B                      Min 
ratio 

   M 50 3/2 0 -1 1/2 1 100/3 
   500 30 1/2 1 0 -1/2 0 60 

     3M/2+250 500 -M M/2-
250 

M  

        350-3M/2 0 M M 0  

 

 

     600 500 0 0  

B                   Min 
ratio 

   600 100/3 1 0 -2/3 1/3  
   500 40/3 0 1 1/3 -2/3  

Z=0     600 500 -700/3 -400/3  

        0 0 700/3 400/3  

Since all the values of (Cj-Zj) are either zero or positive and also both the 

artificial variables have been removed, an optimum solution has been arrived 

at with   =100/3 ,   =40/3 and Z=80,000/3. 

 

Concept of Duality: 

It is the elegant and important concept within the field of operations  

research.  This theory was first developed in relation to linear programming, 

but it has many applications, and perhaps even a more natural and intuitive 

interpretation, in several related areas such  as nonlinear programming, 

networks and game theory. 



One part of a Linear Programming Problem (LPP) is called the Primal 

and the other part is called the Dual. In other words, each maximization 

problem in LP has its corresponding problem, called the dual, which is a 

minimization problem. Similarly, each minimization problem has its 

corresponding dual, a maximization problem. For example, if the primal is 

concerned with maximizing the contribution from the three products A, B, 

and C and from the three departments X, Y, and Z, then the dual will be 

concerned with minimizing the costs associated with the time used in the 

three departments to produce those three products. An optimal solution 

from the primal and the dual problem would be same as they both originate 

from the same set of data. 

Given a primal problem: 

                     P:   min cTx subject to Ax ≥ b, x ≥ 0 

The dual is: 

                  D:  max bTy subject to ATy ≤ c, y ≥ 0 

Example: 

                     

 

 

 

 

 

Rules for Constructing the Dual from Primal: 

1. A dual variable is defined for each constraint in the primal 

problem,i.e, the no. of variables in the dual problem is equal to no. of 

constraints in the primal problem and vice-versa. If there are m constraints 

and n variables in the primal problem then there would be m variables and n 

constraints in the dual problem. 

2. The RHS of primal,i.e,              become the coefficients of dual 

variables(          ) in the dual objective function(ZY). Also the coefficients 

of primal variables(            ),i.e,             , become RHS of the dual 

constraints. 
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3. For a maximization primal problem(with all < or = constraints), 

there exists a minimization dual problem(with all  > or = constraints) and 

vice-versa. 

4.The matrix of coefficients of variables in dual problem  the 

transpose of matrix of coefficients in the primal problem and vice-versa. 

           5. If any of the primal constraint (say ith) is an equality then  the 

corresponding dual variable is unrestricted in sign and vice-versa. 

The Primal-Dual Relationship 

 

 

 

The Primal-Dual Relationship 

 

 

 

 

 

 

 

Example: 

                

                                       s.t                    

                                                               

                                                                 

              

         

 

 

 

X1 X2 ……. Xn

Y1 a11 a12 ……. a1n < or = b1

Y2 a21 a22 ……. a2n < or = b2
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c1 c2 ……. cn Max ZX
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 Primal Dual Relationship 

 Primal 

variables 

relation constraints 

          

Dual 

Variable 

   4 1 ≤ 12 

   9 1            ≤ 20 

   7 3 ≤ 18 

   10 40            ≤ 40 

 Relation ≥ ≥  Min   

 constraint 6000 4000 Max    

Hence the Dual Problem looks like, 

Hence the Dual Problem looks like, 

 Minmize                               

                                       s.t                            

                       

         

Duality theorems: 

• It is easy to show that we can move from one pair of primal-dual 

problems to the other.  

• It is also easy to show that the dual of the dual problem is the primal 

problem. 

• Thus we are showing the duality theorems using the pair where the 

primal  primal is in the standard form: 

Weak duality theorem : 

               Let x and y be the feasible solutions for P and D respectively, then 

T T
b y c x



                                     

       Proof: Follows immediately from the constraints 

                                                          

 This theorem is very useful 

 Suppose there is a feasible solution y to D. Then any feasible solution 

of P has value lower bounded by bTy. This means that if P has a 

feasible solution, then it has an optimal solution 

 Reversing argument is also true 

 Therefore, if  both P and D have feasible solutions, then both must 

have an optimal solution. 

Furthermore,suppose we happen to have feasible solutions    and    

to the primal and dual problems respectively ,such that      

    ,then both these solutions are optimal for their respective 

problems,since for any x that is feasible for P               

Strong duality theorem  If one of the two primal or dual problem 

has a finite value optimal solution, then the other problem has the 

same property, and the optimal values of the two problems are equal. 

If one of the two problems is unbounded, then the feasible domain of 

the other problem is empty.  

     Proof  The second part of the theorem follows directly from the 

weak duality theorem. Indeed, suppose that the primal problem is 

unbounded below, and thus cTx→ – ∞. For contradiction, suppose that 

the dual problem is feasible. Then there would exist a solution                           

, 

  and from the weak  duality  theoren, it would follow that                           

; i.e., bTy   would be a lower bound for the value of the primal objective 

function cTx, a contradiction.  

Complementary Slackness : 

       Theorem: Let x and y be primal and dual feasible solutions 

respectively. Then x and y are both optimal iff two  of the following 

conditions are satisfied: 

           (ATy – c)
j
 x

j
 = 0 for all j = 1…n 

           (Ax – b)
i
 y

i
 = 0 for all i = 1…m 

ybbyAxyxyAxc
TTTTTT

 )(

T T
b y c x

 T
:y y A y c 



Proof: 

As in the proof of the weak duality theorem, we have:  

         cTx ≥(ATy)Tx = yTAx ≥ yTb    (1) 

From the strong duality theorem, we have: 

   x and y are optimal          

                                                 …………….(2) 

                                                                     

Note that  (4) 

And   (5) 

We have: 

x and y optimal                       (2) and (3) hold 

        both sums (4) and (5) are zero 

        all terms in both sums are zero  

        Complementary slackness holds  

    

 It’s an easy way to check whether a pair of primal/dual feasible 

solutions are optimal 

 Given one optimal solution, complementary slackness makes it easy to 

find the optimal solution of the dual problem 

 May provide a simpler way to solve the primal 

Comparing 

(primal) simplexe alg.  and dual simplexe alg. 

Simplex alg 

 . Search in the feasible domain  

 Search for an entering variable to reduce the value of the 

objective function  

 Search for a leaving variable preserving the feasibility of the new 

solution 

 Stop when an optimal solution is found or when the problem is 

not bounded  below . 
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           Dual simplex alg. 

 Search out of the feasible domain  

 Search for a leaving variable to eliminate a negative basic 

variable 

 Search for an entering variable preserving the non negativity 

of the relative costs  

 Stop when the solution becomes feasible or when the 

problem is not feasible . 

The Game Theory: 

     Game theory is the study of how people interact and make decisions.This 

broad definition applies to most of the social sciences, but game theory 

applies mathematical models to this interaction under the assumption that 

each person's behavior impacts the well-being of all other participants in the 

game. These models are often quite simplified abstractions of real-world 

interactions.  

Game theoretic notions go back thousands of years 

– Talmud and Sun Tzu's writings.  

Modern theory credited to John von Neumann and Oskar Morgenstern 

1944. 

– Theory of Games and Economic Behavior. In the early 1950s,  

John Nash (“A Beautiful Mind” fame) generalized these results and provided 

the basis of the modern field.  

Game Theory in the Real World: 

 Economists  

                  innovated antitrust policy 

                  auctions of radio spectrum licenses for cell phone 

                  program that matches medical residents to hospitals.  

 Computer scientists 

     new software algorithms and routing protocols 

     Game AI 

 Military strategists 

      nuclear policy and notions of strategic deterrence.  

 Sports coaching staff 

       run versus pass or pitch fast balls versus sliders.  

 Biologists  

       what species have the greatest likelihood of extinction 



 

For Game Theory, our focus is on games where:  

 There are 2 or more players. 

 There is some choice of action where strategy matters.  

 The game has one or more outcomes, e.g. someone wins, 

someone loses.  

 The outcome depends on the strategies chosen by all players;  

there is strategic interaction.  

What does this rule out?  

 Games of pure chance, e.g. lotteries, slot machines. 

(Strategies don't matter).  

 Games without strategic interaction between players, e.g. 

Solitaire.  

Five Elements of a Game: 

 The players  

                  how many players are there?  

                  does nature/chance play a role?  

 A complete description of what the players can do – the set of 

all possible actions.  

 The information that players have available when choosing 

their actions  

 A description of the payoff consequences for each player for 

every possible combination of actions chosen by all players 

playing the game.  

 A description of all players’ preferences over payoffs. 

Two-Player Games: 

 A game with just two players is a two-player game. 

 We will study only games in which there are two players, each of 

whom can choose between only two strategies. 

An Example of a Two-Player Game: 

 The players are called A and B. 

 Player A has two strategies, called “Up” and “Down”. 

 Player B has two strategies, called “Left” and “Right”. 

 the table showing the payoffs to both players for each of the 

four possible strategy combinations is the game’s payoff matrix. 



 

                       Player B 

  L R 

 

 

playerA 

 

 

 

 

U 

 

 

(3,9) 

 

 

(1,8) 

 

 

D 

 

(0,0) 

 

(2,1) 

this is the game’s payoff matrix 

Player A’s payoff is shown first. 

Player B’s payoff is shown second. 

E.g. if A plays Up and B plays Right then A’s payoff is 1 and B’s payoff 

is 8. 

And if A plays Down and B plays Right then A’s payoff is 2 and B’s 

payoff is 1. 

A play of the game is a pair such as (U,R) where the 1st element is the 

strategy chosen by Player A and the 2nd is the strategy chosen by 

Player B 

What plays are we likely to see for this game? 

Is (U,R) a likely play? 

    If B plays Right then A’s best reply is Down since this improves A’s 

payoff from 1 to 2.So (U,R) is not a likely play. 

Is (D,R) a likely play? 

          If B plays Right then A’s best reply is Down. 

          If B plays Right then A’s best reply is Down.If A plays Down 

then B’s best reply is Right.So (D,R) is a likely play. 

Is (D,L) a likely play? 



      If A plays Down then B’s best reply is Right,so (D,L) is not a likely 

play. 

Is (U,L) a likely play? 

       If A plays Up then B’s best reply is Left. If A plays Up then B’s best 

reply is Left. If B plays Left then A’s best reply is Up. So (U,L) is a likely 

play. 

Nash Equilibrium: 

 A play of the game where each strategy is a best reply to the 

other is a Nash equilibrium. 

 Our example has two Nash equilibria; (U,L) and (D,R). (U,L) and 

(D,R) are both Nash equilibria for the game.  But which will we see?  

Notice that (U,L) is preferred to (D,R) by both players.  Must we then 

see (U,L) onl 

           The Prisoners' Dilemma Game: 

 Two players, Clyde and Bonnie 

 Each prisoner has two possible actions.  

      Clyde: Silence, Confess  

      Bonnie: Silence, Confess  

 Players choose actions simultaneously without knowing the 

action chosen by the other. 

 S=Silence ,C=Confess 

  Payoff consequences quantified in prison years. 

         If both silence, each gets 1 year  

         If both confess, each gets 5 years 

         If 1 confesses, he goes free and other gets 15 years 

 Fewer years=greater satisfaction=>higher payoff.  

     Prisoner 1 payoff first, followed by prisoner 2 payoff 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Prisoner’s Dilemma in Extensive Form : 

                                 

 

Payoffs are :Priosner 1 payoff,Prisoner 2 payoff 

What plays are we likely to see for this game? 

If Bonnie plays Silence then Clyde’s best reply is Confess. 

If Bonnie plays Confess then Clyde’s best reply is Confess. 

So no matter what Bonnie plays, Clyde’s best reply is always Confess. 
Similarly, no matter what Clyde plays, Bonnie’s best reply is always Confess. 

                       

Clyde(prisoner1) 

  S C 

 

 

Bonnie(prison

er2) 

 

 

 

 

S 

 

 

(1,1) 

 

 

(15,0) 

 

 

C 

 

(0,15) 

 

(5,5) 



Confess is a dominant strategy for Bonnie also Confess is a dominant 

strategy for Clyde. 

So the only Nash equilibrium for this game is (C,C), even though (S,S) gives 

both Bonnie and Clyde better payoffs.The only Nash equilibrium is 

inefficient. 

Prisoners' Dilemma :  

Example of Non-Zero Sum Game 

 A zero-sum game is one in which the players' interests are in 

direct conflict, e.g. in football, one team wins and the other 

loses; payoffs sum to zero.  

 A game is non-zero-sum, if players interests are not always in 

direct conflict, so that there are opportunities for both to gain.  

 For example, when both players choose Don't Confess in the 

Prisoners' Dilemma 

Prisoners' Dilemma :  

Application to other areas 

 Nuclear arms races.  

 Dispute Resolution and the decision to hire a lawyer.  

 Corruption/political contributions between contractors and 

politicians.  

Simultaneous versus Sequential Move Games 

 Games where players choose actions simultaneously are 

simultaneous move games.  

– Examples: Prisoners' Dilemma,.  

– Must anticipate what your opponent will do right 

now, recognizing    that your opponent is doing 

the same. In both examples the players chose 

their strategies simultaneously. 

Such games are simultaneous play games 

 Games where players choose actions in a particular sequence are 

sequential move games. The player who plays first is the 

leader.  The player who plays second is the follower 

– Examples: Chess, Bargaining/Negotiations.  

 Must look ahead in order to know what action to choose now.  

 Many strategic situations involve both sequential and 

simultaneous moves.  

 



A Sequential Game Example: 

Sometimes a game has more than one Nash equilibrium and it is hard to say 

which is more likely to occur.When such a game is sequential it is sometimes 

possible to argue that one of the Nash equilibria is more likely to occur than 

the other. 

 

 

 

 

 

 

 

 

 

 

(U,L) and (D,R) are both Nash equilibria when this game is played 

simultaneously and we have no way of deciding which equilibrium is more 

likely to occur. 

Suppose instead that the game is played sequentially, with A leading and B 

following. We can rewrite the game in its extensive form. 

A plays first,B plays second 

(U,L) is a Nash equilibrium. 
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(D,R) is a Nash equilibrium. 

Which is more likely to occur? 

If A plays U then B plays L; A gets 3. If A plays D then B plays R; A gets 2. 

So (U,L) is the likely Nash equilibrium. 

One-Shot versus Repeated Games: 

 One-shot: play of the game occurs once. Players likely to not 

know much about one another. Example - tipping on your 

vacation  

 Repeated: play of the game is repeated with the same players. 

Indefinitely versus finitely repeated games  

Reputational concerns matter; opportunities for cooperative 

behavior may arise.  

 Advise: If you plan to pursue an aggressive strategy, ask 

yourself whether you are in a one-shot or in a repeated game. If 

a repeated game, think again 

Strategies: 

 A strategy must be a “comprehensive plan of action”, a decision 

rule or set of instructions about which actions a player should 

take following all possible histories of play.  

 It is the equivalent of a memo, left behind on vacation, that 

specifies the actions you want taken in every situation which 

could arise during your absence.  

 Strategies will depend on whether the game is one-shot or 

repeated. Examples of one-shot strategies Prisoners' Dilemma: 

Don't Confess, Confess  

 How do strategies change when the game is repeated? 

 

 

 

 

 

 

 



 

Pure Stratagies: 
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This is our original example once more.Suppose again that play is 

simultaneous. 

We discovered that the game has two Nash equilibria; (U,L) and (D,R). 

Player A’s has been thought of as choosing to play either U or D, but no 

combination of both; that is, as playing purely U or D. U and D are Player 

A’s pure strategies. Similarly, L and R are Player B’s pure strategies. 

Consequently, (U,L) and (D,R) are pure strategy Nash equilibria.  Must every 

game have at least one pure strategy Nash equilibrium? 

                       Player B 

  L R 

 

 

playerA 

 

 

 

 

U 

 

 

(1,2) 

 

 

(0,4) 

 

 

D 

 

(0,5) 

 

(3,2) 

 



Here is a new game.  Are there any pure strategy Nash equilibria? 

Is (U,L) a Nash equilibrium?  No. 

Is (U,R) a Nash equilibrium?  No. 

Is (D,L) a Nash equilibrium?  No. 

Is (D,R) a Nash equilibrium?  No. 

So the game has no Nash equilibria in pure strategies.  Even so, the game 

does have a Nash equilibrium, but in mixed strategies. 

Mixed Strategies: 

 Instead of playing purely Up or Down, Player A selects a 

probability distribution (       ), meaning that with 

probability   Player A will play Up and with probability   

  will play Down. 

 Player A is mixing over the pure strategies Up and Down. 

 The probability distribution (       ) is a mixed strategy for 

Player A. 

 Similarly, Player B selects a probability distribution (       ), 

meaning that with probability   Player B will play Left and with 

probability     will play Right. 

 Player B is mixing over the pure strategies Left and Right. 

 The probability distribution (       ) is a mixed strategy for 

Player B 
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This game has no pure strategy Nash equilibria but it does have a Nash 

equilibrium in mixed strategies.  How is it 

computed? 

 

 

 

 

 

 

 

 

 

 

If B plays Left her expected payoff is  

If B plays Right her expected payoff is   

If                                               then B would play only Left.  But there are 

noNash equilibria in which B plays only Left.  

If                                               then  B would play only Right.  But there are 

no Nash equilibria in which B plays only Right.  

So for there to exist a Nash equilibrium, B must be indifferent between 

playing Left or 

Right; i.e. 

 

If A plays Up his expected payoff is  

If A plays Down his expected payoff is 

If                       then A would play only Up. But there are no Nash equilibria 

in which A plays only Up.  

If                     then A would play only Down.  But there are no Nash 

equilibria in  which A plays only Down.  
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So for there to exist a Nash equilibrium, A must be indifferent between 

playing Up or Down; i.e. 

So the game’s only Nash equilibrium has A playing the mixed strategy (3/5, 

2/5) and has 

B playing the mixed strategy (3/4, 1/4). 
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(0,5) 

 

(3,2) 

 

The payoffs will be (1,2) with probability   

 

The payoffs will be (0,4) with probability   

 

The payoffs will be (0,5) with probability  

 

The payoffs will be (3,2) with probability   

 

A’s expected Nash equilibrium payoff is  

 

 

B’s expected Nash equilibrium payoff is 
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How Many Nash Equilibria? 

 A game with a finite number of players, each with a finite number of 

pure strategies, has at least one Nash equilibrium. 

 So if the game has no pure strategy Nash equilibrium then it must 

have at least one mixed strategy Nash equilibrium. 

Repeated Game Strategies 

 In repeated games, the sequential nature of the 

relationship allows for the adoption of strategies that are 

contingent on the actions chosen in previous plays of the 

game.  

 Most contingent strategies are of the type known as 

"trigger" strategies.  

      Example trigger strategies :In prisoners' dilemma: 

Initially play Don't confess. If your opponent plays 

Confess, then play Confess in the next round. If your 

opponent plays Don't confess, then play Don't confess in 

the next round. This is known as the "tit for tat" strategy 

Information: 

 Players have perfect information if they know exactly what has 

happened every time a decision needs to be made, e.g. in Chess.  

 Otherwise, the game is one of imperfect information  

 Example: In the repeated investment game, the sender and 

receiver might be differentially informed about the investment 

outcome. For example, the receiver may know that the amount 

invested is always tripled, but the sender may not be aware of 

this fact.  

 Payoffs are known and fixed. People treat expected payoffs the 

same as certain payoffs (they are risk neutral).  

 Example: a risk neutral person is indifferent 

between $25 for certain or a 25% chance of earning 

$100 and a 75% chance of earning 0.  

 We can relax this assumption to capture risk averse 

behavior.  
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 All players behave rationally.  

 They understand and seek to maximize their own 

payoffs.  

 They are flawless in calculating which actions will 

maximize their payoffs.  

 The rules of the game are common knowledge:  

 Each player knows the set of players, strategies and 

payoffs from all possible combinations of 

strategies: call this information “X.”  

 Each player knows that all players know X, that all 

players know that all players know X, that all 

players know.., ad infinitum.  

Equilibrium: 

 The interaction of all (rational) players' strategies results in an 

outcome that we call "equilibrium."  

 In equilibrium, each player is playing the strategy that is a "best 

response" to the strategies of the other players. No one has an 

incentive to change his strategy given the strategy choices of the 

others.  

 Equilibrium is not:  

– The best possible outcome. Equilibrium in the one-shot 

prisoners' dilemma is for both players to confess.  

– A situation where players always choose the same action. 

Sometimes equilibrium will involve changing action 

choices (known as a mixed strategy equilibrium).  
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