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Preface

The theory of Non Commutative Ring theory has gone forward with the most
transitional phase in the latter part of the 20th century , initially starting
with a very natural Wedderburn-Artin Theory, which also has natural occur-
rences in the study of Lie Groups and Algebras,leading into Jacobson Radical
Theory and then moving onto group rings and representations of groups and
algebras.The end results of these theories provide a very innovative outlook to
even problems related to different aspects of mathematics like Representation
theory ,Central Simple Algebras , Group-cohomology .

In this report , I would like to bring in new insight into the theory of
non commutative rings , by going through the pre established theories , and
ultimately looking at the results , such that we have a better view of the
applicative aspects of the theory in the field of representation theory .
The latter part of this report deals with the introduction to local fields , which
involves the study of fields which are equipped with a innate topology induced
by the valuation inherited from the base ring , which in order gives them very
nice structure , namely completeness . In the last part I have tried to talk
about the basics regarding local fields and some introductory results in this
field which would help to develop a better insight into the detailed version of
the theory.
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0.1 Wedderburn-Artin Theorem and Semisim-

plicity

0.1.1 Semi Simplicity

Definition. Let R be a ring and M be a (left) R-module.

� M is called a simple (or irreducible) R-module if M 6= 0 and M has no
other R-sub-modules than (0) and R.

� M is called semi-simple(or completely reducible) R-module if every R-sub-
module of M is an R-module direct summand of M.

Lemma. Any non-zero semisimple R-module M contains a simple sub-module.

Proof. Let m a fixed non-zero element of M . It suffices to treat the case when
M = m. By Zorn’s Lemma , there exists a sub-module N of M maximal with
respect to the property that m /∈ N . Take a (necessarily nonzero) submodule
N’ such that M = N⊕N ′ . We finish by showing that N’ is simple . Indeed if
N” is a nonzero submodule of N’, then N ⊕N” contains m (by the maximality
of N ), and so N ⊕N” = M , which clearly implies that N” = N’, as desired .

Theorem 1. For an R-module M = RM , the following three properties are
equivalent :-

1. M is semisimple.

2. M is the direct sum of a family of simple submodules .

3. M is the sum of a family of simple submodules

Proof. 1 −→ 3
LetM1 be the sum of all simple submodules in M and writeM = M1⊕M2 where
M2 is a suitable R-submodule. If M2 6= 0 , the Lemma implies that M2 contains
a simple R-submodule .But the latter must lie in M1, a contradiction.Thus,
M2 = (0); i.e., M1 = M2 .
3 −→ 1
Write M =

∑
i∈IMi, where Mi’s are simple submodules of M . Let N ⊆ M

be a given submodule . To show that N is a direct summand of RM , consider
subsets J ⊆ I with the following properties :

�

∑
j∈JMj is a direct sum.

� N ∩
∑

j∈JMj = (0)
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The Zorn’s Lemma applies to the family of all such J’s with respect to ordinary
inclusion.(This is a non empty family as it contains the empty set.)Thus,we can
pick a J to be maximal.For this J,let

M ′ := N +
∑
j∈j

Mj = N ⊕⊕j∈JMj (1)

We finish by showing that M ′ = M (for then N is a direct summand of RM .)For
this, it suffices to show that M ′ ⊃ Mi ∀ i ∈ I .But if some Mi ⊆ M ′,the
simplicity of Mi implies that M ′ ∩Mi = (0).From this we have

M ′ +Mi = N ⊕⊕j∈JMj ⊕Mi, (2)

in contradiction to the maximality of J.
3 −→ 2
follows from the argument above applied to N = (0).
2 −→ 3
is a tautology. QED
* The semi-simplicity defined here is essentially the notion which is given by
Wedderburn’s theory , we would be later stating the semi-simplicity defined
by the Jacobson’s radical theory and will be showing the equivalence of both
in the latter part of this text.

Theorem 2. Let D be a division ring, and let R = Mn(D).Then

1. R is simple,left semi-simple,left artinian and left noetherian.

2. R has (up to isomorphisms) a unique left simple module V.R acts faith-
fully on V, and RR ∼= n.V as R-modules.

3. The endomorphism ring End(RV ),viewed as a ring of right operators on
V, is isomorphic to D.

Proof. Since D is a simple ring, the simplicity of R follows because we know
that the ideals of Mn(D) look like Mn(I), where I is an ideal of R . We may view
R = Mn(D) as a left D-vector space ,and, as such R has finite D-dimension
n2.Since the left ideals of R are subspaces of R it is clear that they must satisfy
the DCC as well as ACC .
Let V be the n-tuple column space Dn,viewed as a right D-vector space . The
ring R = Mn(D) acts on the left of V by matrix multiplication,so we can view
V as a left R-module. In fact R may be identified with End(VD) bu using the
usual matrix representation of linear transformations . This shows that RV is
a faithful R-module and this implies it is a simple R-module .
Now consider the direct sum decomposition
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R = U1 ⊕ U2..........⊕ Un

where each Ui is in the left ideal of R consisting of matrices all of whose
columns other than the ith are equal to zero .As a left R-module,Ui is clearly
isomorphic to RV , so RR ∼= n.V is semi-simple. This shows that the ring R is
left semi-simple . To show the uniqueness of V , let V’ be another simple left
R-module.Since V ′ ∼= R/m for some maximal left ideal , m ⊂ R. So V’ is a

composition factor of RR.Therefore, by the Jordan Holder’s Theorem, it
follows that V ′ ∼= V . Let us compute E:=End(RV ).We have a natural ring

homomorphism

δ : D → E

v.δ(d) = v.d ( v ∈ V, d ∈ D)
The proof will be complete if we can show that δ is an isomorphism .The

injectivity of δ is clear since D acts faithfully on VD.To prove the surjectivity
of δ ,consider f ∈ E. Writing



1
0
...
...
...
0


.f =



d
∗
...
...
...
∗


(d ∈ D) (3)



a1
...
...
...
...
an


f =





a1 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
an 0 0 0





1
0
...
...
...
0




f =



a1 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
an 0 0 0





d
∗
...
...
...
∗



=



a1d
...
...
...
...
and


=



a1
...
...
...
...
an


δ(d)
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(4)

Hence f = δ(d) QED.

Proposition. Let R1, . . . , Rn be left semisimple rings.Then their direct product
R = R1 × . . .×Rr is also a left semisimple ring.

Proof. Let R = Ui1 ⊕ . . . ⊕ Uimi
, where each Uij is a minimal left ideal of

Ri.Viewing R as an ideal in R, Uij is also a minimal left ideal of R.From

RR = R1 ⊕ . . .⊕Rr =⊕j∈JUij

We conclude that R is semisimple . QED
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0.1.2 Wedderburn-Artin-Theorem

Theorem (Wedderburn-Artin Theorem). Let R be any left semisimple ring .
Then R ∼= Mn1(D1) × . . . ×Mnr(DR) for suitable rings D1, D2, ........Dr

and positive integers n1, n2, ......., nr .The number r is uniquely determined , as
are the pairs (n1, D1), ......, (nr, Dr) (up to permutations). There are exactly r
mutually non-isomorphic left simple modules over R.

Before proving the theorem we would prove the very useful Lemma by Schur.

Lemma (Schur’s Lemma). Let R be any ring and RV be any simple left R-
module.Then End(RV ) is a division ring.

Proof. Let 0 6= f ∈ End(RV ).Then im(f) 6= 0 and ker(f) 6= V .Since im(f) and
ker(f) are both submodules of V, it follows that im(f) = V and ker(f) = 0,i.e.,f
is invertible in End(RV ). Therefore End(RV ) is a division ring . QED

Proof of Theorem Let R be any left semisimple ring .First we decompose

RR into a finite direct sum of minimal left ideals.Grouping these according to
their isomorphism types as left R-modules , we can write

RR ∼= n1V1 ⊕ . . .⊕ nrVr, (5)

where V1, . . . , Vr are mutually non-isomorphic simple left R-modules.If V is any
simple left R-module , we know that V ∼= R/m , where m is a maximal ideal
, so in any case if V is a simple R-module it is isomorphic to a quotient of RR
and hence by Jordan-Holder’s Theorem, V is isomorphic to some Vi.Therefore
{V1, . . . , Vr is a full set of mutually isomorphic left simple R-modules . Let
us now compute the R-endomorphism rings of the modules in (5),For RR, the
R-endomorphisms are given by right multiplication by elements of R, so

Claim (Claim -1). End(RR) ∼= R

Proof. Define a mapping φ : R→ EndR(R)

φ(r)(a) = ar for any a ∈ R , (r ∈ R )and since
φ(r)(ab) = (ab)r = a(br) = a(φ(r)(b))

=⇒ φ ∈ EndR(R).Similarly
φ(r)(a+b) = (a+b)r = ar + br = φ(r)(a) +φ(r)(b)

φ(r)(ab) = φ(r)(a)φ(r)(b)
=⇒ φ is a ring homomorphism. and if φ(r) = 0, then 0 = φ(r)(1) = r, so φ

is one-one. and if if δ ∈ EndR(R), then for r : = δ(1),we have

φ(r)(a) = ar = aδ(1) = δ(a) and since this is true ∀ a ∈ R , ∴ φ(r) = δ.
∴ φ is also onto .

Hence , the claim. QED
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Now returning back to the proof of the theorem , to compute
End(n1V1 ⊕ . . .⊕ nrVr), let Di = End(Vi). By Schur’s Lemma each Di is a a

division ring , and

Claim (Claim -2). End(niVi) ∼= Mni
(Di)

Proof. Let εj : Vi → niVi be the jth inclusion, and πi : niVi → Vi be the ith
projection. For any endomorphism F : niVi → niVi , let fijbe the composition
of πiFεj ∈ Di.Define a map

α : EndR(niVi)→Mn(Di)
by α(F ) = fij.Its trivial to check that α is an isomorphism of rings .

Hence the claim. QED
Since there is no non zero homomorphism from Vi to Vj for i 6= j, we have

End(n1V1 ⊕ . . .⊕ nrVr) ∼= End(n1V1)× . . .× End(nrVr)

∼= Mni
(Di)× . . .×Mnr(Dr)(6)

thus we get a ring isomorphism
R ∼= Mni

(Di)× . . .×Mnr(Dr).
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0.2 Jacobson-radical-theory

The Wedderburn’s theory of semi-simplicity can be extended to rings
satisfying the descending chain condition , i.e , Artininan rings . For a Artin

ring , the sum of two nilpotent ideals is nilpotent , so R has a largest
nilpotent ideal rad R , called the Wedderburn radical of R.

On the other hand , the Jacobson radical of a ring R , denoted by rad R, is
defined to be the intersection of all maximal left ideals.

Lemma. For y ∈ R , the following statements are equivalent :

1. y ∈ R

2. 1 - xy is left invertible for any x ∈ R.

3. yM = 0 for any simple left R-module M.

Proof. 1 =⇒ 2
Assume y ∈ radR. If, for some x, 1−xy is not left invertible, then R.(1−xy) ⊂
R is contained in a maximal left ideal m of R.But 1−xy ∈ m andy ∈ m implies
that 1 ∈ m, a contradiction.
2 =⇒ 3
Assume ym 6= 0 for somem ∈M .Then we must haveR.ym = M .In particular,m =
x.ym for some x ∈ R ,so (1−xy)m = 0.Using 2, we get m = 0, a contradiction.
3 =⇒ 1
For any maximal ideal m of R ,R/m is a simple left R-module ,so by 3 y.R/m =
0 which implies that ym .By definition, we have y ∈ radR. QED
For any left R-module M , the annihilator of M is defined to be
annM := {r ∈ R : rM = 0} This is by definition an ideal of R . If we consider
a cyclic module M, then M ∼= R/U , where U is an ideal of R.Then,
ann M = {r ∈ R : r.R/U = 0} = {r ∈ R : rR ⊂ U}
i.e.,ann M is the largest ideal contained in U .This gives another classification
of the Jacobson radical

Corollary 0.1. rad R = ∩ ann M,where M ranges over all the simple left
R-Modules.In particular,rad R is an ideal of R.

Definition. A ring R is called J-semisimple if rad R = 0.

Lemma. A one-sided ideal U ⊂ R is said to be nil if U consists of nilpotent
elements : U is said to be nilpotent if Un = 0 for some natural number n .

* nilpotent =⇒ nil , but the converse is not true

Theorem 3. Let be a one sided nil ideal in a right Noetherian ring R. Then
A is nilpotent.
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Proof. Since R is right Noetherian it has a maximal nilpotent ideal N.Our aim
is to show that A ∈ N .If not by passing to R̄ = R/N we reach the following
situation ; R̄ is a right Noetherian ring which has no non-zero nilpotent ideals
and Ā 6= 0 is a nil one sided ideal of R̄.We wish to that is impossible.In other
words,we may assume without loss of generality,that R has no nilpotent ideals
but has a nil one sided ideal A 6= 0.
If a 6= 0 ∈ A ,then U = Ra is a nil left ideal of R, for if A is a left ideal of R
, then since U ⊂ A it,too,would be nil.If,on the other hand, A is a right ideal
and u = za ∈ U, then un = x(ax)n−1a is 0 for large value of n , since ax ∈ A.
If u ∈ U, let r(u) = {x ∈ R|ux = 0} ; r(u)is a non-zero right ideal of R.R being
Noetherian, there is an uo 6= 0 in U with r(uo) maximal.For any x ∈ R clearly
r(xuo) ⊃ r(uo) hence,if xuo 6= 0 since it is in U , we get r(xuo) = r(uo) from
the maximality of r(uo).Let y ∈ R ; then (yuo)

k = 0 and yuk−10 6= 0 for some
k.Because (yuk−1o ) is of form xuo we have a r(yuo)

k−1 = r(uo).But yuo is in
r((yuo)

k−1) so is in r(uo);that is uo(yuo) = 0 for all y ∈ R.This says that uoR is
nilpotent right ideal of R, hence is (0).But then {t ∈ R|tR = 0} is a non-zero
nilpotent right ideal (containing uo).With this contradiction, the theorem is
proved. QED

Proposition. Let x ∈ radR ,where R is a k-algebra.Then x is algebraic over
k iff x is nilpotent .

Proof. Firstly if x is nilpotent =⇒ xn = 0, therefore x is a root of the
polynomial f(x) = xn, hence is algebraic.Conversely ,let x ∈ rad R be algebraic
over k.Write down a polynomial equation for x in ascending degrees say

xr + a1x
r−1 + . . .+ anx

r+n = 0 where ai ∈ k.Since

1 + a1x+ . . .+ anx
n ∈ 1 + radR ⊆ U(R),

it follows that xr = 0 so we must have r ≥ 1 and x is nilpotent. QED
A k-algebra is said to be an algebraic algebra if every element x ∈ R is
algebraic over k.The proposition then implies the following corollary:-

Corollary 0.2. Let R be an algebraic algebra over k. Then rad R is the largest
nil ideal of R .

Theorem 4 (Amitsur). Suppose that dimkR < |k| (as cardinal numbers),
where R is a k-algebra .Then rad R is the largest nil ideal of R .

Proof. It suffices to show that rad R is nil.First suppose k is a finite field.The
hypothesis implies that R is a finite ring .In particular R is left artinian and
noetherian,so rad R is,in fact,nilpotent.In the following,we may therefore as-
sume that k is infinite.To show that rad R is nil,it suffices to show that every r
∈ Ris algebraic over k .For any a ∈ k =k {0}, a−r = a(1−a−1r) ∈ U(R).Since
dimkR < k = |k| = |k∗|,the elements {(a− r)−1 : a ∈ k∗} cannot be k-linearly
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independent.Therefore,there exist distinct elements a1 . . . , an ∈ k∗such that
there is a dependence relation∑n

i=1 bi(ai − r)−1 = 0
where bi ∈ k are not all zero.Clearing denominators, we have∑n

i=1 bi(a1 − r) . . .
︷ ︸︸ ︷
(ai − r) . . . (an − r) = 0

where,as usual,the overhead braces means omission of a factor.Therefore ,r is
root of the k-th polynomial

f(x) =
∑
bi(ai − x) . . .

︷ ︸︸ ︷
(ai − x) . . . (an − x)

Since f(ai) = bi
∏

j 6=i(aj − ai) is non-zero at least for some i ,f is not the zero
polynomial.Therefore,r is algebraic over k, as claimed.

Lemma (Nakayama’s Lemma). For any left ideal J ⊆ R, the following state-
ments are equivalent:

1. J ⊆ R

2. For any finitely generated left R-module M, J.M = M implies that M =
0.

3. For any left R-modules N ⊆ M such that M/N is finitely generated, N +
J.M = M ,implies that N = M .

Proof. 1 =⇒ 2
Assume M 6= 0.Then,among all submodules ⊂ M,there is a maximal one,say
M’.(This M’ exists by Zorn’s Lemma,in view of the finite generation of M.)Then
M/M’ is simple, so J.(M/M’) = 0; i.e.,J.M ⊆ M’.In particular, J.M 6= M.
2 =⇒ 3
when we consider the quotient module M/N , applying (2) to this finitely
generated module gives J.(M/N) = M/N, so let N’ ⊂ M/N , then

N ′ + J.(M/N) = M/N =⇒ N ′ +M/N = M/N =⇒ N ′ = M/N
3 =⇒ 1

Suppose some element y ∈ J is not in rad R.Then y /∈ m for some maximal
ideal m of R.We have m + J = R so, a fortiori, m + J.R = R.From (3) it

follows that m = R , a contradiction. QED

Definition. A ring is said to be von Neumann regular if it satisfies any of the
following equivalent conditions

1. For any a ∈ R, there exists x ∈ R such that a = axa.

2. Every principal left ideal is generated by an idempotent .

3. Every principal left ideal is a direct summand of RR.
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4. Every finitely generated left ideal is generated by an idempotent.

5. Every finitely generated left ideal is a direct summand of RR.

* Wedderburn semisimple =⇒ Von Neumann Regular =⇒ J-semisimple
* Von Neumann + Noetherian = Artinian

0.2.1 Quasi-regularity and Circle Decomposition

Definition. An element z is said to be be right(left) quasi regular , if (1 -
z)R(R(1-z)) contains z or equivalently -z .Therefore the condition reduces to
the fact that there exists a z’ such that

z + z′ + z.z′ = 0
So we define an operation ’•’ in R instead of ’.’,defined as

a • b = a+ b− a.b ∀ a, b ∈ R
and an element is said to be right(left) quasi regular if it has a right(left)

inverse with respect to this new operation.
A element z ∈ R is said to be quasi regular if there exists z’ ∈ R , such that z’

is both the left and right inverse of z w.r.t ’•’.

Proposition 1. A quasi-regular right ideal I in a ring R is a subgroup of all
quasi regular elements of R.

Proof. Let z ∈ I and let z’ be a right quasi regular inverse of z , then z + z’
- z.z’ = 0, so that z’ = zz’ - z ∈ I , hence z’ has a right quasi regular inverse
z”.We have

z = z • 0 = z • (z′ • z”) = (z • z′) • z”
Hence z • z’ = 0 = z’ • z and implies z is quasi regular. QED

Proposition 2. Every nil ideal is quasi regular.

Proof. If z is nilpotent , then this implies zn = 0 for some n . Let z′ =
−z− z2− . . .− zn−1 .Then z • z’ = 0 = z’ • z . Hence z is quasi regular. Hence
the proposition. QED

0.2.2 Characterisations of the Jacobson Radical

Definition (I.E. Segal). A right ideal I ⊆ R is called modular if and only if
there exists e ∈ R such that for all r ∈ R , r-er ∈ I .The element E is called a
left identity modulo.

Proposition 3. If I is a proper modular right ideal in r , then I can be embedded
inside a maximal(necessarily modular) right ideal .
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Proof. Let e be a left identity modulo I .Consider the class S of right ideals I’
such that (i) I’⊇ I (ii) e /∈ I’ ,partially ordered by inclusion.S is not empty , since
I ∈ S.Let T be an ordered subclass of S.It is easy to verify that ∪{I ′|I ′ ∈ T}
is an upper bound for T .Hence by Zorn’s Lemma S has a maximal element
I∗.It follows that I∗ is a maximal ideal containing I.Since every right ideal
containing a modular right ideal is modular, I∗ is modular. QED

Claim. If I is a right modular ideal of R , then I ⊇ R/I.

Proof. We know that I = < u > , where u is a generator of a cyclic module M
. I = < u > ⊇ M = R - I = R/I Hence The claim.

Theorem 5. 1. The radical rad R of a ring R is equal to the intersection
of all modular maximal right ideals of the ring .

2. rad R is a quasi regular right ideal and it contains all other quasi regular
right ideals .

Proof. (1) If I is a right modular ideal then R/I is simple module and I ⊇
R/I.Hence ∩{I|I; modular maximal right ideal} ⊃ ∩{ R/I | I;modular maxi-
mal right ideal } ⊃ rad R.On the other hand if, M is a simple module R-module
then M = ∩{< u > |u ∈ M} and for u 6= 0, < u > is a modular maximal
right ideal.Hence we have rad R = ∩{ M — M is simple } ⊇ ∩{I|I;modular
maximal right ideal}. Thus rad R = ∩{I|I;modular maximal right ideal}.

(2) Suppose that r ∈ rad R and r is not right quasi regular ,then (1-r)R 6=
R, and (1-r)R can be embedded inside a right maximal modular ideal I, r ∈ I
.Hence I = U ,which is a contradiction, therefore R rad R is quasi regular.Next
let B be any right quasi regular ideal and let z∈ B , then zr is right quasi regular
for all r ∈ R.Let M be a simple R-module.Suppose z /∈ M, then there exists a
u ∈ M such that ur 6= 0.Thus ur is a strict generator of M and hence there is
an a ∈ R such that ura = u.If R has an identity , then this reads as u(1-ra) =
0.Since (1-ra) has an inverse 1 - r’ this leads to u = 0.If R does not have an
identity then we can replace this argument by one using quasi inverses.Thus
let r’ be a right quasi inverse for ra.Then 0 = u - ura - (u - ura)r’ = u - u(ra+
r’ -rar’) = u.This contradicts that ur 6= 0.Hence z ∈ M,consequently z ∈ rad R
.Hence B ⊆ R .
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0.3 Jacobson Radical Under Change of Rings

Theorem 6 (E.Snapper). Let R be a commutative ring and let R[T] be a
polynomial ring over E.Then rad R[T] = Nil (R[T]) = (Nil R)[T].

Proof. Recall that a ring is called reduced if it has no non-zero nilpotent ele-
ments .Since R /Nil R is reduced, it is easy to see that (R/Nil R)[T] is reduced
.But

(R/Nil R)[T] ∼= R[T]/(Nil R)[T]
so it follows that (Nil R)[T] = Nil(R[T]).Also,Nil(R[T]) ⊆ rad(R[T]),so it

only remains to show the reverse condition.For this,we may assume that T is
a singleton, say t.Let

f(t) = r0 + . . .+ rnt
n ∈ rad(R[t])

Then

1 + tf(t) = 1 + r0 + . . .+ rnt
n+1 ∈ U(R[t])

Let p be any prime ideal of R .Then the invertibility of the polynomial above
in (R/p)[t] implies that each ri ∈ p.Since this holds for all prime ideals p ⊂ R

we have ri ∈ Nil R , thus f(t) ∈ (Nil R)[t]. QED

Theorem 7. Let R ⊆ A be commutative domains such that A is finitely gen-
erated as an R-algebra,and R is J-semisimple.Then A is also J-semisimple.

Proof. It suffices to treat the case where A= R[a].We may assume that a is
algebraic over the quotient field K of R ,for otherwise we are done by Snapper’s
Theorem.Assume that there exists a nonzero element b ∈ rad A.Then a and b
are both algebraic over K.Let∑n

i=0 rit
i,

∑m
i=0 sit

i ∈ R[t]
be polynomials of the smallest degrees n,m ≥ 1,satisfied,respectively,by a and

b .Since A is a domain,

s0 = −
∑m

i=1 sib
i ∈ radA

is not zero ,and so rns0 6= 0.From rad R = 0,we can find a maximal ideal m of
R such that rns0 /∈ m.Upon localising at S = R/m, rn becomes a unit,so a

satisfies a monic equation over S−1R;in particular,S−1A = (S−1R)[a] is
finitely generated as a module over S−1R.By Nakayama’s Lemma,

(rad S−1R).S−1A ⊂ S−1A
In particular m.A ⊂ A .Let m’ be a maximal ideal of A containing m.A.Then

clearly m’ ∩ R = m, and sp s0 /∈ m implies that s0 /∈ m′, contradicting the
fact that s0 ∈ radA. QED
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Theorem 8. Let R ⊆ A be commutative domains such that rad R = 0 and
A is finitely generated R-algebra.If A is a field,then so is R ,and A/R is a
finite(algebraic) extension.

Proof. First let us treat the ”monogenic” case : A = R[a].Clearly a must be
algebraic over the quotient field of R .Let∑n

i=0 rit
i ∈ R[t]

be a polynomial (with rn 6= 0)satisfied by a ,let m be a maximal ideal in R
with rn /∈ m.(Such a ideal exists because rad R =0).As we see m.A ⊂ A .Since
A is a field, the ideal m.A must be 0.Therefore,m itself is zero ,which implies
that R is a field.To treat the general case,let A=R[a1, . . . , am] and write R’ =
R[a1].Then rad R’ = 0.Invoking an inductive hypothesis(on m),we see that R’

is a field and each ai(2 ≤ i ≤ m) is algebraic over R’.By the monogenic
case,we conclude that R is a field and a1 is algebraic over R.It follows that ai

is algebraic over R ,and that A/R is a finite field extension. QED

Theorem 9 (Amitsur’s Theorem). Let R be any ring, and S = R[T].Let J =
rad S and N = R ∩ J.Then N is a nil ideal in R, and J = N[T].In particular,if
R has no non-zero nil ideal , then S is Jacobson semisimple .

The proof will be presented in several steps . So lets first prove some results
needed prior to the proof of the theorem

Proposition. N is a nil ideal in R .

Proof. Let a ∈ N and t0 = ti0 be one of the variables .Then 1-at is invertible
in R[T],say (1-at)g(T) = 1.Setting all variables ti(i 6= i0) equal to zero we have

(1− at)(a0 + a1t . . .+ ant
n) = 1

for some aj ∈ R .Comparing coefficients ,we have

a0 = 1, a1 = aa0 = a, . . . , an = aan−1 = an,
and 0 = aan = an+1, as desired . QED

Proposition. Let S = R[t], J = rad S, and so a0, . . . , an ∈ R.If f(t) = a0 +
a1t+ . . .+ ant

n ∈ J , then ait
i ∈J for all i.

Proof. The concluion is clearly true for n = 0.By induction we may assume
the truth of the conclusion (for all rings R) for smaller n.Let p be any prime
number > n, and let R1 be the ring ,

R[θ]/(1 + θ + . . .+ θp−1)
To simplify notations, we shall write θ for the image of θ in R1;then θp = 1 in

R1.Note that,for any positive integer j < p ,we have

p ∈ (θj − 1)R1 (7)
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In fact, in the quotient ring R1/(θ
j − 1)R1,we have θ̄j = 1 and hence θ̄ =

1.Therefore ,1 + θ̄ + . . .+ ¯θp−1 = 0 implies that p̄ = 0.Let S1 = R1[t] and
J1 = radS1.Since

S1 = S ⊕ θS ⊕ . . .⊕ θp−2S (8)

and θ is central in S1,we have J1 ∩ S = J .Now by applying the automorphism
t → θt onS1, f(t) ∈ J ⊆ J1 leads to f(θt) ∈ J1 and hence

θnf(t)− f(θt) = a0(θ
n− 1) +a1(θ

n− θ)t+ . . .+ an−1(θ
n− θn−1)tn−1 ∈ J1. (9)

Invoking the inductive hypothesis(overR1),we have ai(θ
n − θi)ti ∈ J1 and

hence ai(θ
n−i − 1)ti ∈ J1 for any i ≤ n-1.We also see that

pait
i ∈ J1 ∩ S = J .Applying this argument to another prime q > n , we have

also qait
i ∈ J ;therefore ait

i ∈ J for all i ≤ n-1.Since f(t) ∈ J ,it follows that
ant

n ∈ J as well. QED

Proposition. In the above proposition, if f(t) ∈ J, then ai ∈ J for all i .

Proof. Applying the automorphism t → t+1 on R[t], the earlier conclusion
ait

i ∈ J leads to

ai(1 + t)n = ai + nait+ . . .+ ait
n ∈ J (10)

Applying the previous proposition, we see that ai ∈ J . QED
Proof of the Theorem The desired conclusion J = N[T](N = J ∩ R)means
that if a polynomial f(T) ∈ J, then all of its coefficients must belong to J.To
see this,we induct on the number m of variables appearing in f.If m = 0,this is
clear.If m > 0 , fix a variable t appearing in f.Write T = T0 ∪ t(disjoint union)
and f(T) =

∑
i ai(T0)t

i.Applying the previous proposition to R[T] = R[T0][t].we
see that ai(T0) ∈ J for all i.Since the number of variables actually appearing
in each ai(T0) is m-1, the induction proceeds. QED

0.4 Group Rings and the J-Semisimplicity Prob-

lem

0.4.1 Maschke’s Theorem

Theorem 10. Let k be any ring and G be a finite group .Then R = kG is
semisimple iff K is semisimple and |G| . 1 is a unit in k .

Proof. For the ”if” part,let W be an R-submodule of a left R-module V.We
want to show that W is an R-module direct summand of V .Fix a k-homomorphism
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f: V → W such that f|W is the identity.(Such a map exists since W is a k-
module direct summand of V.)We shall modify f into a map g with the same
properties as f ,but such that g is a homomorphism of R-modules.If such a g
can be found,then V = W ⊕ ker(g) gives what we want .We define g : V → V
by the following ”averaging” device :

g(v) := |G|−1
∑
σ∈G

σ−1f(σv), v ∈ V (11)

Since g(v) ∈ |G|−1
∑

σ∈G σ
−1.W ⊆ W ,we may view the k-homomorphism g as

from V to W .If v ∈ W,then

g(v) = |G|−1
∑
σ∈G

σ−1(σv) = v, (12)

so g is the identity on W.Finally,the following computation shows that g is an
R-homomorphism: for any τ ∈ G,

g(τv) = |G|−1
∑
σ∈G

σ−1(f(στ.v))

= |G|−1
∑
σ′∈G

τσ
′−1
f(σ

′
v)

= τg(v)

(13)

For the ”only if ” part of the theorem ,assume now that R = kG is semisimple
.We have a ring homomorphism (the augmentation map)

ε : kG −→ k
defined by taking ε|k = Idk and ε(G) = 1.Therefore,as a homomorphic image
of kG,k is semisimple . We finish by showing that p dividing |G| is a unit in
k.By Cauchy’s Theorem in group theory there exists an element in σ ∈ G of
order p.Since the semisimple ring R is von Neumann regular ,there exists an

element α ∈ R such that (1 - σ)α(1− σ) = 1− σ,from which

[1− (1− σ)α].(1− σ) = 0
By the lemma below, we can write

1− (1− σ)α = β.(1 + σ + . . .+ σn−1)
for some β ∈ R.Applying the augmentation map ε , we have 1 = ε(β).p, so p

= p.1 is invertible in k, as desired. QED
We now prove the required lemma

Lemma 1. For r ∈ R = kG,and σ ∈ G of order p,r.(1 - σ) = 0 iff r ∈
R.(1 + σ + . . .+ σp−1)
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Proof. We need only prove the ” only if ” part.Let r =
∑

τ∈G rττ .We shall

induct on the number n of τ
′s occurring in r with nonzero coefficients .If n =

0 then r = 0 and we are done .Otherwise,look at some τ with rτ 6= 0.Since ,

r = r.σ = r.σ2 = . . . ,
the group elements τ, τσ, . . . , τσp−1 all appear in r with the same coefficient

rτ .Therefore

r = rτ (τ + τσ + . . .+ τσp−1) + (K-combination of other group elements)

= rτ (1 + σ + . . .+ σp−1) + r′(say)
(14)

Since r.(1 - σ) = 0 implies that r’.(1 - σ) = 0,the proof proceeds by induction.
QED

Proposition. Let k 6= 0 be any ring , and G be an infinite group.Then the
group ring R = kG is never semisimple.

Proof. For the augmentation map ε : kG −→ k defined above ,Let U := ker(ε)
be the ” augmentation ideal ”.Assuming R = kG is semisimple,we have R =
U ⊕ B ,where B ⊂ R is a suitable left ideal.Write

U = R.e and B = R.f

where e,f are idempotents such that e + f = 1.Clearly e,f are not zero .We
have U.f = Re.f = 0,so (σ − 1)f = 0,i.e.,f = σf,for any σ ∈ G .Let τ ∈ G be a
group element which appears in f with a nonzero coefficient.Then στ appears

in f with the same coefficient,for any σ ∈ G .This means that f involves all
group elements of G; since G infinite,this contradicts the definition of group

ring. QED

Theorem 11 (Amitsur’s Theorem). Let K be a non algebraic field extension
of Q.Then for any group G, the group ring kG is J-semisimple

Proof. Let F = Q({xj}),where {xj} is a non empty transcendence basis for
K/Q.Note that the sclar extension QG⊗QF is just FG.Let J = rad FG.So N
= J ∩QG is a nil ideal of QG and J = N ⊗QF = N.F.However, QG has no
non zero nil left ideal; hence N = 0 and so J = 0.This shows that FG is J-
semisimple.Since we are in characteristic zero, K/F is a separable algebraic
extension.Therefore,the scalar extension FG ⊗F K = KG is also J-semisimple.
QED

Proposition. Let k be a commutative reduced ring of prime characteristic p
> 0.Let G be any p’-group .Then R = kG has no non zero nil left ideals.

Proof. Assume that R has a non zero nil left ideal B ,say
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0 6= β =
∑
βgg ∈ B

After left multiplying with β with a suitable group element ,we may assume
that tr(β) = β1 6= 0.We claim that tr(βp) = tr((β))p.If so ,then by iteration,

tr(βp
n
) = (tr(β))p

n 6= 0

for every n ,and we get the desired contradiction .To show our claim,note that

tr(βp) = tr
((∑

βgg
)p)

=
∑

βg1βg2 . . . βgp (15)

where the sum is over the set S of ordered p-tuples (g1, g2 . . . , gp) of group
elements such that g1 . . . gp = 1.The cyclic group H = < σ > of order p acts

on S by

σ ∗ (g1, g2, . . . , gp) = (g2, . . . , gp, g1) (16)

The H-orbits on S have cardinality either 1 or p .For an orbit of cardinality p
,since all the p-tuples in the orbit make the same contribution to tr(βp),the

total contribution is a multiple of p,and therefore is zero .Now look at a
singleton orbit H ∗ (g1, . . . , gp).We must have g1 = g2 = . . . = gp and hence

gp1 = 1.Since G is a p’-group,we have g1 = g2 = . . . = gp = 1.Therefore,there is
a unique singleton orbit in S and its contribution to tr(βp) is βp,as claimed.

QED

Proposition. Let K/F be an algebraic extension of fields of characteristic p,
and let G be a p’-group.If FG is J-semisimple,so is KG.

Proof. Fist let us assume that [K :F] = N <∞
Therefore

(rad(KG))n ⊆ (radFG).K
and,rad FG = 0.Thus ,rad KG is a nilpotent ideal .By the above

proposition,therefore, rad KG = 0.Now drop the assumption that [K :F] < n
∞.Given any element α ∈ KG, we can find a field K0 ⊆ K of finite degree

over F such that α ∈ K0G.Therefore,we have

α ∈ K0G ∩ rad KG ⊆ rad K0G (17)

But by the case that we have already treated , rad K0G = 0 and so α = 0.
QED

Theorem 12 (Passman’s Theorem). Let K be a non algebraic field extension
of Fp ( the field of p elements ).Then for any p’-group G, the group ring KG
is J-semisimple.
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Proof. As before , let {xj} be a non empty transcendence basis for K/Fp,and
let F = Fp({xj}).By one of the previous propositions FpG has no non zero nil
left ideals.Arguing as in the proof of the previous proposition ,we see that FG
is J-semisimple.Applying the previous proposition to the algebraic extension
K/F, it follows that KG is also J semisimple. QED

Theorem 13. Let k be a domain and (G,<) be an ordered group.Then A =
kG has only trivial units and is a domain.If G 6= {1},A is J -semisimple .

Proof. Consider a product αβ where

α = a1g1 + . . .+ amgm, g1, . . . , gm, a1 6= 0(1 ≤ i ≤ m),

β = b1h1 + . . .+ bnhn, h1, . . . , hn, bj 6= 0(1 ≤ j ≤ n),
(18)

W e have g1h1 ≤ gihj,with equality iff i = j.Thus, the smallest group ele-
ment appearing in αβ is g1h1(with non-zero coefficient a1b1),and similarly the
” largest ” one is gmhn(with nonzero coefficients ambn).In particular ,αβ 6= 0,
and if αβ = βα = 1, we must have m = n = 1,so α = a1g1, β = b1h1, with
a1b1 = b1a1 = 1 in k and g1h1 = 1 in G.This proves that A is a domain, and
that A has only trivial units.The last statement of the theorem then follows .

Theorem 14. Let k be a field and G be an abelian group.

1. If char k = 0,then A = kG is J-semisimple.

2. If char k = p,then A = kG is J-semisimple iff G is a p’-group.

Proof. First assume that char k = p and A is J-semisimple.Then G must be
a p’-group for if x ∈ G has order p,then ((x− 1)A)p = 0 and rad A ⊇ (x-1)A
6= 0.Now assume that char k = 0, or that char k = p and G is a p’-group.To
show that kG is J-semisimple,we may assume that G is finitely generated .For,
if α ∈ rad kG,there exists a finitely generated subgroup G0 ⊆ G such that
α ∈ kG0.Then α ∈ kG0∩ rad kG ⊆ rad kG0,so it suffices to show that rad
kG0 = 0.If G is finitely generated ,we can write G = Gt ×H where Gt is the
torsion subgroup of G and H is a free abelian group of finite rank.As is easily
verified,A = kG is isomorphic to the group ring RH where R = kGt.Since Gt

is finite and char k does not divide its order, Maschke’s Theorem implies that
R is semisimple ,and so R ∼= k1× . . .× km where the ki’s are suitable fields.We
have an isomorphism

A ∼= RH ∼= (k1 × . . .× km)H ∼= k1H × . . .× kmH

so it suficces to show that kiH is J-semisimple.But H is an ordered group
since H ∼= Z× . . .× Z can be given the lexicographic ordering .Therefore, the

J-semisimplicity of kiH follows. QED
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0.5 Introduction to Representation Theory

0.5.1 Modules Over Finite Dimensional Algebras

Let R̄ = B1× . . .×Bt be the decomposition of R̄ into simple components and
let Mi(1 ≤ i ≤ r) be the unique simple left module over B′is. Then

R̄ = Mn1(D1)× . . .×Mnr(Dr)

RR̄ ∼= n1M1 ⊕ . . .⊕ nrMr(19)

Proposition. In this notation we have

1. dimkMi = nidimkDi

2. dimkR = dimk rad R +
∑r

i=1 n
2
i dimkDi

3. The natural map R : → End(Mi)Di
is onto .

If Di = k, the last part of the proposition amounts to this lemma

Lemma (Burnside’s Lemma). Let M be a finite-dimensional right k-vector
space and A be a k-subalgebra of End(Mk)such that M is simple as a left A-
module.If End(AM) = k,then A = End(Mk).

Proof. By Schur’s Lemma theDi’s are finite dimensional k-division algebras.The
easiest case is when k is an algebraically closed field.In this case Di must be k
itself (for, if d ∈ Di,then k[d] is a finite field extension of k, and hence d must
be in k ).Consequently we have

R̄ = Mn1(k)× . . .×Mnr (20)

and simplifies to dimkMi = ni and

dimkR = dimkradR +
r∑
i=1

n2
i (21)

Also the condition End(AM) = k is automatic and therefore can be removed:this
gives in fact the Burnside’s Theorem in its original form.

Theorem 15. Let R be a k-algebra and let M be a simple left R-module with
dimkM < inf.The following statements are equivalent :

1. End(RM) = k.

2. The map R → End(Mk) expressing the R-action on M is surjective.

3. For any field extension K ⊇ k, MK is a simple RK-module.
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4. There exists an algebraically closed field E ⊇ k such that ME is a simple
RE -module.

If one (and hence all) of these conditions holds,we say that M is an absolutely
simple (or absolutely irreducible) R-module.

Proof. Clearly 3 =⇒ 4 , so it suffices to show that

4 =⇒ 1 =⇒ 2 =⇒ 3
Assume 4.Since E is algebraically closed,this implies that
HomRE(ME,ME) ∼= E and therefore HomR(M,M) ∼= k.

Next, 1 =⇒ 2 follows from the Burnside’s lemma.
Now assume (2).To prove (3),we may replace R by End(Mk).If Mk = kn,we

can then identify R with the full matrix algebra Mn(k).With these
identifications,we have MK = Kn and RK = Mn(K),so MK is a left simple

RK-module,as desired. QED

Definition. Let R be a finite dimensional k-algebra .We say that a field K
⊃ k is a splitting field for R if every left irreducible RK-module is absolutely
irreducible.

Theorem 16. In the previous notation ,K is a (left) splitting field for R iff
RK/rad (RK) is a finite direct product of matrix algebras over K.

Proof. To simplify notation , we take K = k .If each irreducible R-module Mi

is absolutely irreducible ,then , each Di = EndR(Mi) is k so R/rad R is a finite
direct product of matrix algebras over k.The converse is proved similarly. QED

Corollary 0.3. A k-algebra R splits over k iff

dimkR = dimk(radR) +
∑

(dimkMi)
2, (22)

where {Mi} is a full set of simple left R-modules.

0.6 Representation of Groups

Let k be a field and G be a finite group such that char k does not divide |G| and
letM1, . . . ,Mr be a complete set of simple left kG-modules;letDi = End(kGMi)
and ni = dimDi

Mi.Then we have

Theorem 17. 1. kG/rad kG ∼= Mn1(D1)× . . .×Mnr(Dr)

2. As a left kG-module,kG/rad kG ∼= n1M1 ⊕ . . .⊕ nrMr.

3. dimkMi = nidimkDi.

4. |G| = dimk(rad kG) +
∑r

i=1 n
2
i dimkDi.
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Definition. We say that a field k is a splitting field for G if the group algebra
kG splits over k .

Theorem 18. Let k be any field,and G be any group.Then some finite extension
K ⊇ k is a splitting field for G

Proof. Let K0 be the prime field of k, and K̄ be the algebraic closure of k.Since
k0 is perfect , it implies that a finite extension k1 ⊇ k0 in k̄ is a splitting field
for G .Let K = k.k1,the field composition being formed in k̄.Clearly K is a
finite extension of k,and by k1 being a splitting field for G implies the same for
K . QED

Theorem 19. Let k be a field of characteristic p ≥ 0,and G be a finite group.Then
any normal p-subgroup H ⊂ G acts trivially on any simple left kG-module.Thus,simple
left kG-modules are the same as simple left k[G/H]-modules.(In particular,if G
is a p-group,then the only simple left kG -module is k , with trivial G-action).

To prove this theorem we would be using another very handy theorem

Theorem 20 (Clifford’s Theorem). Let k be any field , and H be a normal
subgroup of a (possibly infinite) group G.If V is a simple left kG-module,then

kHV is a semisimple kH-module .

Proof. Let M be a simple kH-submodule of V .For any g ∈ G,g.M is also a
kH-submodule of V since

h(gM) = g(hgM) = gM (23)

where hg =g−1hg ∈ H.Moreover,gM is a simple kH-module because if M’ is a
kH-submodule of it,g−1M ′ would be a kH−submodule of M .Now consider V’:
=
∑

g∈G gM .This is semisimple kH- module,and since it is also a kG-submodule
of V,we have V’ = V.
Proof of the main TheoremBy Clifford’s Theorem we are reduced to proving
that H acts trivially on the any simple kH-module M .We do this by induction
on |H|,the case |H| = 1 being trivial. If |H| > 1, let h 6= 1 be an element in
the center of H , say of order pn.Since

(h− 1)p
n

= hp
n − 1 = 0 ∈ kH (24)

h - 1 acts as a nilpotent transformation on M,so its kernel is nonzero.Let
M0 = {m ∈M |hm = m} 6= 0.This is kH-submodule of M and so M0 =

M.Therefore, M may be viewed as a simple k[H/< h >]-module,and we are
done by induction. QED

Corollary 0.4. Let k be a field of characteristic p > 0 ,and G be a finite group
.For h ∈ G, the following are equivalent
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1. h ∈ Op(G).

2. h acts trivially on all simple left kG-modules.

3. h - 1 ∈ rad(kG).

Proof. 2 =⇒ 3 is trivial and 1 =⇒ 2 follows from the previous theorem since
Op(G)is normal.Now assume (2).By considering a composition series of the left
regular module kG, we see that h - 1 acts as a nilpotent transformation on
kG.Thus, for a sufficiently large integer n ,

(h− 1)p
n

= hp
n − 1 = 0 ∈ kG (25)

i.e, the order of h is a power of p.Now let H be the set of all elements h of G
satisfying (2).This H is easily seen to be a normal subgroup of G , and what
we did above shows that H is a p-group .Thus H ⊆ Op(G) and we are done .
QED

Corollary 0.5 (Wallace). Let k be a field of characteristic p,and G be a finite
group with a normal p-Sylow group H .Then

rad kG =
∑
h∈H

kG.(h− 1) (26)

with dimk rad kG =[ G:H ](|H| - 1)

Proof. Since (h - 1)g = g(hp − 1)for any g ∈ G ,the left ideal

U =
∑
h∈H

kG.(h− 1) (27)

is in fact an ideal, and this lies in rad kG .The quotient kG/U is easily seen to
be isomorphic to k[G/H].Since p = char k is not a divisor of [ G : H ], k[G/H]
is semisimple by Maschke’s theorem.Therefore we have rad kG = U and

dimkrad kG = |G| − |G/H| = [G : H](|H| − 1) (28)

QED
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PART - 2 - LOCAL FIELDS
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0.7 Localisation

Let R be an integral domain. This means R is a commutative ring with identity
having no zero divisors. Let S be a subset of R which does not contain zero
and which contains the product of any two elements in S. A set satisfying these
conditions is called a multiplicative set in R.

Proposition 4. There is a ring Rs which contains R as a subring (up to
isomorphism) and such that each element of S has a multiplicative inverse in
Rs.

Proof. Let us first consider the collection of all pairs (r, s) in R× S. Call two
such pairs (r, s) and (q, t) equivalent if qs = rt.This is an equivalence relation.
Let r/s denote the equivalence class containing (r, s). By definition of the
equivalence class we see that r/s = rt/st for any tin S. Let Rs = {r/s | r ∈ R, s
∈ S}. Addition and multiplication are defined for elements of Rs by the rules

r/s+ r′/s′ = (rs′ + r′s)/ss′

r/s.r′/s′ = rr′/ss′
(29)

The ring Rs constructed in the proof has the following universal property:
If φ is a homomorphism of R into a ring T such that every element in φ(S)
has an inverse in T, then φ has a unique extension to a homomorphism from
Rs into T. The extended map is defined by φ(r/s) = φ(r)φ(s)−1 This kind of
reasoning shows the ring Rs is characterized as the smallest ring containing R
and inverses for the elements of S.

Definition. The ring Rs is called the localization of R at S.

Proposition 5. Let R be an integral domain and S a multiplicative set in R.
There is a one-to-one correspondence between the prime ideals of Rs and the
prime ideals of R which have empty intersection with S. Under the correspon-
dence, a prime ’ p ’ of R is associated with the ideal ’ pRs ’ in Rs.

Proof. Let Q be a prime ideal in Rs. From the definition it is immediate that
B = Q ∩ R is a prime ideal of R. Then BRs is an ideal of Rs contained in Q.
We show these are equal. Let q/s be any element in Q with q in R and s in S.
Then q = (q/s)s is in R ∩ Q = B. Thus q/s is in BRs since q(1/s) = q/s, q in
B, 1/s in Rs. So far we have proved that every prime ideal in Rs has the form
Q = BRs with B = Q ∩Rs uniquely determined by Q. Since every element in
S has an inverse in Rs we know Q ∩ S is empty. Thus B ∩ S is empty. Now
suppose we start with the prime ideal B of R which has no elements in S. Let
Q = BRs. This is an ideal of Rs which we shall prove is prime. Suppose a, b
are elements in Rs with ab in Q, then ab = x/s with some x in B and some s
in S. Suppose a = r1/s1 , b = r2/s2 with r1, r2 in R and s1, s2 in S. We have
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r1r2s = xs1s2 belongs to B. Thus one of the elements r1 , r2 or s is in B since
B is prime.Also s is not in B by choice of B. Thus r1orr2 belongs to B and so
a = r1/s1orb = r2/s2 is in Q. Thus Q is prime. Now finally we prove Q ∩ R
= B. If u is in Q ∩ R then u = x/s with x in B because Q = BRs. But u also
belongs to R and so x = us implies u or s is in B. Since s is not, we have u is in
B. Hence the correspondences B → BRs and Q → Q ∩ R are inverses of one
another and the proposition is proved.
Example - Let B be a prime ideal in the domain R and let S = {r|r /∈ B} =
R - B. The definition of prime ideal is equivalent with the assertion that S is a
multiplicative set. Then Rs can be identified with {a/b|a, b ∈ R, b /∈ B}.
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0.8 Discrete Valuation Rings

Definition. A ring A is called a discrete valuation ring if it is a principal ideal
domain that has a unique non-zero prime ideal m(A). [Recall that an ideal p
of a commutative ring A is called prime if the quotient ring A/p is an integral
domain.)

The field A/m(A) is called the residue field of A. The invertible elements of
A are those elements that do not belong to m(A); they form a multiplicative
group and are often called the units of A (or of the field of fractions of A). In a
principal ideal domain, the non-zero prime ideals are the ideals of the form πA,
where π is an irreducible element. The definition above comes down to saying
that A has one and only one irreducible element, up to multiplication by an
invertible element; such an element is called a uniformizing element of A . The
non-zero ideals of A are of the form m(A) = πnA, where π is a uniformizing
element. If x 6= 0 is any element of A, one can write x = πnu, with n ∈ N
and u invertible; the integer n is called the valuation(or the order) of x and
is denoted v(x); it does not depend on the choice of π. Let K be the field of
fractions of A, K× be the multiplicative group of non-zero elements of K. If x
= a/b is any element of K×, one can again write x in the form πnu, with n ∈
Z this time, and set v(x) = n. The following properties are easily verified:

1. The map v: K* → Z is a surjective homomorphism

2. One has v(x + y) ≥ Inf((v(x),v(y)) (We take the convention that v(0) =
+∞

Proposition 6. Let K be a field, and let v: K× → Z be a homomorphism
having properties (1) and (2) above. Then the set A of x ∈ K such that v(x) ≥
0 is a discrete valuation ring having v as its associated valuation.

Proof. Indeed, let ,π be an element such that v(π) = I. Every x ∈ A can be
written in the form x = πnu, with n = v(x), and v(u) = 0,i.e., u invertible.
Every nonzero ideal of A is therefore of the form ,πnA, with n ≥ 0, which shows
that A is indeed a discrete valuation ring.
A valuation v of k is called discrete if v(k×) is a discrete subgroup of R+, that
is , if v(k×) = Z β = { n β | n = 0, ±1,±2, . . . } for some real number β > 0.
If β = 0, then v is the trivial valuation v0 . When β = 1,that is, when v(k×)
= Z = { O , ±1 , ±2 , . . . }, v is called a normalized, or normal, valuation of
k. It is clear that a valuation v of k is discrete but non-trivial if and only if v
is equivalent to a normalized valuation of k.
Let k’ be an extension field of k, and v’ a valuation of k’. Let v’|k denote
the function on k, obtained from v’ by restricting its domain to the subfield k.
Then v’|k is a valuation of k, and we call it the restriction of v’ to the subfield
k. On the other hand, if v is a valuation of k, any valuation v’ on k’ such that
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v’|k = v
is called an extension of v to k’. When v’ on k’ is given, its restriction v’| k is
always a well-determined valuation of k. However, given a valuation v on k, it
is not known a priori whether v can be extended to a valuation v’ of k’. The
study of such extensions is one of the main topics in the theory of valuations.

Let v’|k = v as stated above. Then the v’-topology on k’ induces the
v-topology on the subfield k so that k is a topological subfield of k ’. Let o’,
B’, and T’ denote the valuation ring, the maximal ideal, and the quotient

field of v’, respectively:

o′ = {x′ ∈ k′|v′(x′) ≥ 0}
B′ = {x′ ∈ k′|v′(x′) > 0}

T ′ = o′/B′
(30)

Then o = B’ ∩ k, B = B’ ∩ k = B’ ∩ o T = o/p = o/(B’ ∩ o) = (o + B’)/B’
⊆ o’/B’ = T’ Thus the residue field f of v is naturally embedded in the

residue field k’ of v’. On the other hand, v’|k = v also implies
v(k×) ⊆ v′(k′×) ⊆ R+ . Let,

e = e(v’/v) = [v’(k’×) : v(k×)] and f = f(v’/v) = [T’ :T] where
[v’(k’×) : v(k×)] is the group index and [T’ : T] is the degree of the extension
T’, e and f are called the ramification index and the residue degree of

v’|v, respectively.
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0.9 Complete-Fields

Let v be a valuation of a field k. We say that k is a complete field with
respect to v, or, simply, that (k, v) is a complete field, if v is a complete,

normalized valuation of k.
Example 1- Let p be a prime number and let vP be the p-adic valuation of
the rational field Q . Since vP is a normalized valuation, the completion (k’,

v’) of (Q, vP ) is a complete field. k’ is nothing but the classical p-adic
number field Qp, and v’, often denoted again by vp , is the standard p-adic
valuation of (Qp, vp), the valuation ring is the ring Zp of p-adic integers and
the maximal ideal is pZp so that the residue field is Zp/pZP = Fp , the prime

field with p elements. Note that vp(p) = 1.
Example 2- Let F be a field, T an indeterminate, and F((T)) the set of all

formal Laurent series of the form∑
−∞<<n

anT
n, an ∈ F (31)

where -∞ << n indicates that there are only a finite number of terms anT
n

with n < 0, an 6= 0. Then k = F((T)) is an extension field of F in the usual
addition and multiplication of Laurent series. Let v(O) = + ∞ and let v(x)

= i if

x 6= 0, x =
∞∑
n=i

anT
n, ai 6= 0 (32)

Then one checks easily that (k, v) is a complete field. The valuation ring is
the ring F[[T]] of all (integral) power series in T over F, the maximal ideal is

TF[[x ]], the residue field is F[[T]]/TF[[T]] = F, and v(T) = 1

0.9.1 Finite Extensions of Complete Fields

A complete field (k’, v’) is called an extension of a complete field (k, v) if k’ is
an extension field of k and if the restriction of v’ on k is equivalent to v:

k ⊆ k′

and v’|k ∼ v
(33)
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In such a case, we shall also say that (k’, v’) is a complete extension of (k, v),
or, in short, that k’ I k is an extension of complete fields.

Let (k, v) and (k’, v’) be as above and let

µ = v′|k, e = e(v′/µ), f = f(v′/µ) (34)

e and fare then denoted also by e(k’/k) and f(k’/k), respectively, and they are
called the ramification index and the residue degree of the extension k’Ik of

complete fields:

e = e(k′/k) = e(v′/µ), f = f(k′lk) = f(v′/µ) (35)

Let µ = αv, α > 0 Then µ(k×) = αv(k×) = aZ so that
e = [v′(k×) : µ(k×)] = [Z : αZ] = α.

Therefore

Lemma. Let (k’, v’) be a complete extension of a complete field (k, v). Assume
that f(k’|k) is finite. Then k’|k is a finite extension and

[k′ : k] = ef, e = e(k′/k), f = f(k′/k) (36)

Proof. Let w1, . . . , wn be a basis of T’ over T and let εi ∈ B’ be an element,
taken from the residue class wi in T’ = o’/B’.Let A be a complete set of
representatives of T = o/B in o, containing 0,and let

A′ = {
f∑
i=1

aiεi|a1, . . . , af ∈ A} (37)

Then A’ is a complete set of representatives of T’ = o’/’B’ in o’. Fix a prime
element π of k and a prime element π’ of k’: v(π) = v’(π’) = 1. Writing each
integer m in the form

m = te+ j, t = 0,±1,±2, . . . , j = 0, 1 . . . , e− 1 (38)

we put

π′m = πtπ′j

Since v’|k = ev, we then have

v′(π′m) = et+ j = m
and we see that each x’ ∈ k’ can be uniquely written in the form

x′ =
∑
∞<<m

a′mπ
′
m with a′m ∈ A′ (39)

a′m =
∑f

i=1 ai,mεi ai,m ∈ A.
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Then,

x′ =
∑
m

f∑
i=1

ai,mεiπ
′
m =

∑
i,j

xijεiπ
′, 1 ≤ i ≤ f, 0 ≤ j ≤ e (40)

where xij =
∑
−∞<<i ai,te+jπ

′ ∈ k
Thus every x’ in k’ is a linear combination of

ηij = εiπ
′j1 ≤ i ≤ f, 0 ≤ j ≤ e,with coefficients in k .However the elements ηij
are linearly independent over k. Therefore [k’ : k] = ef < ∞.

Proposition 7. Let (k, v) be a complete field, and k’ a finite extension of k.
Then there exists a unique normalized valuation v’ on k’ such that

v′|k ∼ v

(41)

(k’, v’) is then a complete extension of (k, v) and

[k′ : k] = ef, fore = e(k′/k), f = f(k′/k),

v’(x’) = 1/f v(Nk′/k(x
′))forx′ ∈ k′.

(42)

where N is the Norm map from k’ to k.

Proof. We know that there exists a unique valuation µ on k’ such µ’|k ∼ v
Furthermore, such a valuation µ is complete and it satisfies,

µ′(x′) =
1

n
v(Nk′/k(x

′))forx′ ∈ k′ (43)

with n= [k’ :k].Since v(k×) = Z. It follows that

µ(k×) ⊆ 1
n
Z

so that µ’ is discrete. Hence, there exists a unique normalized valuation v’ on
k’ such that v’∼ µ’. It then follows that v’ is the unique normalized valuation
on k’ such that v’|k ∼ v. As µ is complete, v’ is also complete, and (k’, v’) is

a complete extension of (k, v). Let wl, . . . , ws be any finite number of
elements in f’ that are linearly independent over f and let εi be an element in
the residue class wi, 1 ≤ i ≤ s, in T’ = o’/B’. Then, we know that εl, . . . , εs
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are linearly independent over k so that s =[k’ :k]. This implies that f =
f(k’|k)= [T’ : T] ≤ n <∞. Therefore, n = ef. Now, since v’∼ µ′ that is, I,

v’ = αµ′ , α > 0, we have

v′(x′) = βv(Nk′/k(x
′)) for x′ ∈ k′

with β = α/n > 0. For x in k , this implies
v’(x) = βv(xn) = βnv(x)(44)

However, v’(x) = ev(x).As n = ef , it follows that β =1/f, so that

v′(x′) = 1
f
v(N(k′/k(x

′)) for x′ ∈ k′
Now, let {α1, . . . , αn} denote the elements

ηij = εiπ
′j 1 ≤ i ≤ f, 0 ≤ j ≤ e.

arranged in some order.We saw that ef = [k’ :k] = n and that {α1, . . . , αn} is
a basis of k’ over k. Let

x′ =
∑n

i=1 xiαi, xi ∈ k
Then it follows that for any integer r,

v′(x′) ≥ re⇔ v(xi) ≥ r for i = 0,1, . . .,n
For r = 0, this means that {α1, . . . , αn} is a free basis of the o-module : o’ =
{oα1, . . . , oαn}. Let kn (resp. on) denote the direct sum of n copies of k (resp.

o) and let kn be given the product topology of the v-topology on k. The
above equivalence then shows that the k-linear map

kn → k
(x1, . . . , xn)→ x′ =

∑n
i=1 xiαi

is a topological isomorphism and it induces a topological o-isomorphism
on → o′ = oα1 ⊕ . . .⊕ oαn.

Proposition 8. Let (k, v) and (k’, v’) be the same as in the previous Propo-
sition , and let o and o’ be their valuation rings. Then the trace map and the
norm map of the finite extension k’ /k:

Trk′/k : k′ → k Nk′/k : k′ → k

(45)

are continuous in the v-topology of k and the v’-topology of k’, and

Trk′/k(o
′) ⊆ o and Nk′/k(o

′) ⊆ o (46)

Proof. Let x’ ∈ k’ and
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x′αi =
∑n

j=1 xijαjxij ∈ k.

for the basis {α1, . . . , αn} stated above. Then x0 depends continuously on x’
∈ k’. Since Trk′/k(x

′)andNk′/k(x
′) are the trace and the determinant of the n

× n matrix (xij), respectively, the first half is proved. If x’ ∈ 0’, then xij ∈ o
for all i, j. Therefore, the second half is also clear.

Now, let α′ be an ideal of (k’, v’) that is, an o’-submodule of k’ different from
{0} , k’. We define the norm Nk′/k(α

′) of to be the o-submodule of k
generated by Nk′/k(x’) for all x’ ∈ α′. Then Nk′/k(α

′) is an ideal of (k, v) and
it follows from the formula for v’(x’) that if α′ = B′n,m ∈ Z, then

Nk′/k(α
′) = B′mf where f = f(k′/k)

=⇒ Nk′/k(o
′) = o and Nk′/k(B

′) = Bf .
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0.10 Local-Fields

A complete field, is called a local field when its residue field is a finite field.

0.10.1 General-Properties

Let (k, v) be a local field. By the definition, (k,v) is a complete field and its
residue field T = o/p is a finite field. Let q be the number of elements in T

that is,

T = Fq

Fq denoting, in general, a finite field with q elements. When f is a field of
characteristic p namely, when q is a power of a prime number p ,the local

field (k, v) is called a p-field. This happens if and only if

B.o ⊂ B that is v(p.1k) > 0
where 1k denotes the identity element of the field k. Hence it follows that if

(k, v) is a p-field, then the characteristic of the field k is either 0 or p.
Example - 1Let Qp be the p-adic number field, and vp the p-adic valuation

on Qp. Then (Qp, vp) is a complete field and its residue field is

T = Zp/pZ = Fp
Hence (Qp, vp) is a p-field of characteristic O. On the other hand, let F be any

finite field of characteristic p; for example, F = Fp . Let k = F((T)) be the
field of formal Laurent series in T with coefficients in F, and let VT be the

standard valuation of k . Then (k, vT ) is a complete field and its residue field
is

T = o/B = F[[T]]/TF[[T]] = F
Therefore (k, vT ) is a p-field of characteristic p..

Proposition 9. Let (k, v) be a local field. Then k is a non-discrete, totally
disconnected, locally compact field in its v-topology. The valuation ring o(=
po) and the ideals pn of o, n ≥ l, are open, compact subgroups of the additive
group of the field k, and they form a base of open neighbourhoods of 0 in k.
Furthermore, o is the unique maximal compact subring of k.

Proof. Let A be a complete set of representatives of T = o/p in o, containing
0 . Since T is a finite field, A is a finite set. Hence the set A =

∏∞
n=0An , An

= A, is a compact set as a direct product of finite sets An , n ≥ O. Therefore,,
o is compact in the v-topology. We already stated in that each pn, n ≥ 0, is
at the same time open and closed in k and that the pn’s gives us a base of
open neighbourhoods of 0 in k so that k is a non-discrete, totally disconnected
topological field. Since o is compact, k is locally compact, and since pn is
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closed in o, pn is also compact. Let R be any compact subring of k. Then the
compactness implies that the set {v(x)|x ∈ R} is bounded below in the real
field R. If x ∈ R, then xn ∈ R and v(xn) = n.v(x) for all n ≥ l. Hence, by the
above remark, v(x) ≥ 0 that is, x ∈ o. This proves that R ⊆ 0 so that o is
the unique maximal compact subring of the field k. QED

Proposition 10. Let (k, v) be a local field.

V = {x ∈ k|xq−1 = 1} A = V ∪ {0} = {x ∈ k|xq = x} (47)

Then A is a complete set of representatives of T = o/p in o, containing 0; V is
the set of all (q 1) roots of unity in k; and the canonical ring homomorphism
o → T =o/p induces an isomorphism of multiplicative groups:

V → T× (48)

In particular, V is a cyclic group of order q 1.

Proof. Let A’ = {w(x)|x ∈ o}. As w(x) = x mod p, each residue class of o
mod p contains at least one element in A’, and as w(x)q = w(x), A’ is a subset
of A. However, the number of elements x in k satisfying xq − x = 0 is at most
q, while the number of elements in T = o/p is q. Hence A = A’ and A is a
complete set of representatives of T = o/p in o. Obviously, 0= w(0) ∈ A. Since
w(xy)= w(x)w(y), the other statements on V are clear.

Proposition 11. Let (k, v) be a p-field of characteristic 0:Q ⊆ k. Let e =
v(p), where p = p . 1k and let f = Fq , q = pf , for the residue field T = o/p.
Then (k, v) is a complete extension of the p-adic number field (Qp, vp, ) and

[k : Qp] = ef <∞ (49)

Furthermore, the valuation ring o of (k, v) is a free Zp-module of rank ef =[k:
Qp ].

Proof. Let λ = v|Q Since (k,v) is a p-field and p = p.lk 6= 0,

0 = λ(p) = v(p) <∞ (50)

However, it is known that such a valuation λ on Q is equivalent to the p-adic
valuation vp, of Q. Let k’ denote the closure of Q in k. As (k, v) is complete,
(k’,v|k’) is a completion of (Q, λ). It then follows fromλ ∼ vp that k’ = Qp and
vIQp ∼ vp . Hence (k, v) is a complete extension of (Qp, vp). Since vp(p) = 1,
y(p) = e, and v|Qp = e(k|Qp)vp , we obtain e(k|Qp) = e. On the other hand,
T = Fq , q = pf , and Zp/pZp = Fp f (k|Qp) = f <∞. Therefore, [k :Qp] = ef
and o is a free Zp-module of rank ef.
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Proposition 12. Let (k, v) be a p-field of characteristic p with f = o/p = Fg
and let (Fq((T )), vT ) denote the p-field of Laurent series in T. Then k contains
Fq as a subfield and there exists an Fq isomorphism

(k, v)→ (Fq((T )), vT ) (51)

namely, an Fq-isomorphism k → Fg((T)), which transfers the valuation v of k
to the valuation vTofFg((T)).

Proof. Since k is a field of characteristic p, the set A = {x ∈ k|xq = x} is a
subfield of k with q elements. Then Fq = A ⊆ k. Now, fix a prime element π
of k, then for A = Fq and πn = πn, n ∈ Z. We then see that the map∑

n

anπ
n →

∑
n

anT
n, an ∈ Fq (52)

defines an Fq -isomorphism (k,v): → (Fq((T)),vT ).
Taking account of the above propositions , we can get the following simple
description of the family of all p-fields for a given prime number p, although
the statement here is not as precise as in those propositions:

Theorem 21. A field k is a p-field of characteristic 0 if and only if it is a finite
extension of the p-adic number field Qp , and k is a p-field of characteristic p
if and only if it is a finite extension of the Laurent series field Fp((T)).
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