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Introduction

In this project, we study Galois theory and discuss some applications. The the-
ory of equations and the ancient Greek problems were the initial motivations for
the theory of Galois to come into being. However, in present-day mathematics,
Galois theory is ubiquitous. Whether it is a coding theorist or a cryptogra-
pher working with finite fields or a geometer working with Riemann surfaces
or a number theorist interested in problems involving prime numbers, they all
employ Galois theory in a crucial manner.

We begin by discussing the basic notions and results in Galois theory. We discuss
also in detail the Galois theory of polynomials of degrees up to 4 first, where we
recall how formulae similar to those arising in the solution of quadratic equations
exist for degrees 3 and 4 also. We describe the fundamental theorem of Galois
theory and show how to draw important consequences like: (i) the three Greek
problems, (ii) the impossibility of such formulae for roots to exist for general
polynomials of degree 5 or more, (iii) constructibility of regular polygons by a
straightedge and compasses, and (iv) the fundamental theorem of algebra. There
are numerous applications of Galois theory which are not so well known as to
appear in any text books; we will look at a couple of non-standard applications
in the area of number theory which are solved using Galois theory.

Support problem:
Given positive integers a, b > 1 with the property that for every n, the prime
numbers dividing an− 1 also divide bn− 1, does it follow that b is a power of a?
The analysis of this problem depends on Kummer theory, which is the study of
Galois extensions whose Galois groups are abelian.

Reducibility mod p of irreducible integral polynomials:
If P is a polynomial with integer coefficients which is irreducible, is it necessary
that it must be irreducible modulo some prime number?
The answer turns out to be dependent on the existence or not, of an element of
order deg (f) in the Galois group of f . Consequently, the answer is ‘yes’ if deg
f is prime and ‘not necessarily yes’ when deg f is composite.
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1 Field Theory

1.1 Definition

We start by recalling that a field is a set F together with two binary operations
+ and · on F such that (F ,+) is an Abelian Group (having additive identity 0)
and (F - {0} , · ) is also an Abelian Group, and the following distributive law
holds :

a · (b+ c) = (a · b) + (a · c)
Usually, we suppress the dot of the multiplication and use juxtaposition for the
multiplication.

1.2 Basic Terminology

1. Characteristic of a Field

The characteristic of a field F is defined to be the smallest positive integer
p such that

p · 1 = 0

if such a p exists, and is defined to be 0 otherwise. Here 1 denotes the
identity of F .

2. Prime Subfield

The Prime subfield of a field F generated by the multiplicative identity 1
of F .

3. Extension Field

If K is a field containing the subfield F , then K is said to be an Extension
Field or simply an extension of F , denoted K/F or by the diagram

K

F

The Field F is sometimes called the Base Field of the extension.

4. Degree

The Degree of a field extension K/F , denoted by [K : F ], is the dimension
of K as a vector space over F . The extension is said to be finite if [K :
F ] is finite and infinite otherwise.

5. Simple Extension

If the field K is generated by a single element α over F , K = F (α), then
K is said to be a simple extension of F and the element α is called the
primitive element for the extension.

6. Algebraic

The element α ∈ K is said to be algebraic over F if α is a root of some
nonzero polynomial f(x) ∈ F [X].

If α is not algebraic it is said to be transcendental.
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7. Splitting Field

The extension field K of F is called a Splitting Field for the polynomial
f(x) if f(x) factors completely into linear factors in K[X] and f(x) does
not factor completely in to factors over any proper subfield of K containing
F .

8. Primitive nth root of unity

A generator of the cyclic group of all nth roots of unity is called a Primitive
nth root of unity. If ω is a Primitive nth root of unity then, [Q(ω) : Q] =
φ(n) where φ is called the Euler Phi function.

9. Cyclotomic Field of nth root of unity

The field Q(ζ) is called the cyclotomic Field of nth root of unity

10. Separable Polynomial

A polynomial over F is called separable if it has no multiple roots. A
polynomial which is not separable is called inseparable

11. Automorphism

An isomorphism σ of K with itself is called an automorphism of K. We
denote the collection of all automorphisms of K by Aut(K).

An automorphism σ ∈ Aut(K) is said to fix an element α ∈ K if

σα = α

12. Aut(K/F )

Let K/F be an extension field. Then Aut(K/F ) is the collection of auto-
morphisms of K which fix F .

13. Fixed Field

If H is a subgroup of the group of automorphisms of K, the subfield of K
fixed by all elements of H is called fixed field of H.

14. Normal Extension

An algebraic field extension L/K is said to be Normal if L is the Splitting
field of the family of polynomials K[X].

2 Galois Theory

2.1 Definitions

1. Let K/F be a finite extension. Then K is said to be Galois over F and
K/F is a Galois Extension if | Aut(K/F ) | = [K:F ]

2. If K/F is Galois the group of automorphisms Aut(K/F ) is called the
Galois Group of K/F , denoted by Gal(K/F ).

3. If f(x) is a separable polynomial over F , then the Galois Group of f(x)
over F is the Galois group of the splitting field of f(x) over F .
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2.2 Important Results

1. Aut(K) is a group under composition and Aut(K/F ) is a subgroup.

2. Let K/F be a field extension and let α ∈ K be algebraic over F . Then for
any σ ∈ Aut(K/F ), σ α is a root of the minimal polynomial for α over F .

3. If K is the splitting field over F of a separable polynomial f(x) then K/F
is Galois.

4. Let K/F be any finite extension. Then

| Aut(K/F ) |≤ [K : F ]

with equality if and only if F is the fixed field of Aut(K/F ).

2.3 Characterizations of Galois extensions K/F

1. K/F are the splitting fields of separable polynomials over F .

2. K/F are the fields where F is precisely the set of elements fixed by
Aut(K/F )

3. K/F are the fields with [K:F ] = | Aut(K/F ) |.

4. K/F are finite, normal and separable extensions.

3 Fundamental Theorem of Galois Theory

Let K/F be a Galois extension and set G=Gal(K/F ). Denote by E subfields
of K containing F and H the subgroups of G.Then there is a bijection:

K

E

F

↔

1

H

G

given by the correspondence

E → {elements of G fixing E}
{the fixed field of H} ← H

which are inverses to each other. Under this correspondence ,

1. (inclusion reversing) If E1, E2 correspond to H1, H2 respectively, then
E1⊆E2 if and only if H2⊆H1.

2. we have [K:E] = | H | and [E:F ] = | G:H | the index of H in G

3. Also , K/E is always Galois, with Galois group Gal(K/E) = | H | :
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K

E

H

4. E is Galois over F if and only if H is a normal subgroup in G. If this is
the case, then the Galois group is isomorphic to the quotient group

Gal(E/F ) ∼= G/H

More generally, even if H is not necessarily normal in G, the isomorphisms
of E into a fixed algebraic closure of F containing K which fix F are in
one to one correspondence with the cosets { σ H} of H in G.

5. If E1, E2 correspond to H1, H2 respectively, then the intersection E1

∩E2 corresponds to the group 〈H1, H2〉 generated by H1 and H2 and the
composite field E1E2 corresponds to the intersection H1∩H2.

4 Some Classical Applications

Having discussed the basic notions and properties of Galois extensions in the
previous section, we shall now start with some applications. In this section,
we look at classical problems. Later on, we briefly describe some applications
which are modern or which are not well-known.

4.1 The classical Straightedge and Compass constructions

Ancient Greek mathematicians were restricted in their Geometric constructions
by the fact that very few instruments were available to them for this construc-
tion. At that time, the only available instruments were the straightedge (un-
marked) and compasses. Using just these two, they were able to carry out a
number of constructions- line segments could be divided into any number of
equal parts, angle bisections, construction of a square of the same area as that
of a given polygon etc. However, even this process had its limitations.

First we shall understand algebraically the construction of lengths using a
straightedge and compass. Then, we shall look at the four famous constructions
that the Greeks could not perform.

4.1.1 Construction of lengths

Let 1 denote the fixed unit length. By denoting any distance by a ∈ R, we can
think of distances as the elements of the real number R. We can then construct
the usual Cartesian plane R2. Any point (x,y) in it is constructible starting with
the distance 1 if and only if its coordinates x and y are constructible elements
of R.Every construction using a straightedge and compass consists of a series of
operations:

1. connecting two points by a given straight line

2. finding a point of intersection of two straight lines.

3. drawing a circle with given radius and center
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4. finding the point(s) of intersection of a line and a circle or of two circles.

Given two lengths a and b, one can construct using a straightedge and com-
pass, the lengths a ± b, ab and a/b. Similarly we can construct

√
a for a given

a.Thus we see that all straightedge and compass constructions give all alge-
braic operations of addition, subtraction multiplication and division as well as
square root of constructible elements. This gives us the understanding that the
collection of constructible elements is a subfield of R.

From the length 1, we can construct all rational numbers Q.In R2 any (x,y)
having rational coordinates can be constructed. More elements in R can be
constructed by taking square root, so that we get a collection of constructible
elements from 1 in R that is larger than Q.

Let us now consider the first of the four constructions mentioned above. The
equation of a straight line passing through two points with coordinates in a field
F is given by:

ax+ by − c = 0 (1)

where a, b, c ∈ F
To find the point of intersection of two lines we simultaneously solve the two

equations. The solution will also be elements of F .
Now, the constructions of the remaining two types involves the intersection

of a circle with a straight line or another circle. The equation of a circle of
center (h,k) and radius r is given by:

(x− h)2 + (y − k)2 = r2 (2)

where h, k, r ∈ F
In the case of intersection of a circle with a straight line we are looking

at the solution obtained by simultaneously solving equations (1) and (2). By
substituting for y in terms of x from equation (1) in equation (2), we get a
quadratic equation in x. This implies that the point of intersection lies in a
Quadratic Extension of F .

Consider the equation of another circle centered at (h′,k′) having radius r′.

(x− h′)2 + (y − k′)2 = r′2 (3)

where h′, k′, r′ ∈ F Subtraction of equation (3) from (2) gives

2(h′ − h)x+ 2(k′ − k)y = r2 − h2 − k2 − r′2 − h′2 − k′2 (4)

This is the intersection of a circle with a straight line, which is discussed above.
Thus we see that, given a collection of constructible elements, we can con-

struct all elements of the subfield F of R generated by these elements. Further-
more, any straightedge and compass operations on the elements of F results in
elements which are at most in the Quadratic Extension of F . Quadratic Ex-
tensions have degree 2 and the extension degrees are multiplicative. Hence any
α ∈ R obtained from elements of subfield F , will be an element of an extension
K of F of degree which is a power of 2. For some m,

[K : F ] = 2m (5)

Since [F (α) : F ] divides the extension degree in (5), it must be a power of 2.
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The above explanation can be stated in the following proposition:
Proposition 1:
If the element α ∈ R is obtained from a field F ⊂ R by a series of compass and
straightedge constructions then

[F (α) : F ] = 2k (6)

for some integer k≥0.

4.1.2 Doubling the Cube

We shall look at whether or not it is possible to construct a cube of volume
twice that of a given cube using a straight edge and compass.
A cube of volume 2 has sides of length 3

√
2. The minimal polynomial of 3

√
2 is

x3 -2. But
[Q(

3
√

2) : Q] = 3

which is not a power of 2. So the construction is not possible.

4.1.3 Trisecting the Angle

Let angle θ be constructible. A point p at a unit distance from the origin and
angle θ from the X-axis in R2 , shows that cos θ and sin θ can be constructed.
Conversely if cos θ and sin θ can be constructed, then so can the point at an
angle of θ from the X-axis. Certain angles like 180◦ can be trisected. But this
is not always possible. We shall prove this using a counter example. Let θ =
60◦. Then cos θ = 1

2 . We have the formula,

cos θ = 4cos3(
θ

3
)− 3 cos(

θ

3
)

At θ = 60◦

4(β)3 − 3β − 1

2
= 0

where β = cos( θ3 ). Then,

8(β)3 − 6β − 1 = 0

(2β)3 − 3(2β)− 1 = 0

Then α = 2β is a real number between 0 and 2 satisfying the equation

α3 − 3α− 1 = 0

As in the case with doubling the cube, since

[Q(
3
√

2) : Q] = 3

the construction is not possible.

4.1.4 Squaring the Circle

We shall now determine whether it is possible to construct a square of area π.
Consider a circle of radius 1. Then its area is π. To construct a square of the
same area would require the construction of a line segment of length

√
π ,

which is transcendental over Q. Thus, since Q(
√
π) is not algebraic over Q, the

degree [Q(
√
π) : Q] is not a power of 2, and the construction is not possible.
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4.1.5 Constructibility of regular polygons

Recall from section 1 the definition of Euler’s phi function φ(n). We shall
prove that a regular n- gon is constructible if and only if φ(n) is a power of 2,
by showing that a regular n-gon is constructible if and only if the central
angles 2π/n are constructible and this occurs if and only if cos(2π/n) is a
constructible number.

Let ω = e2πi/n = cos(2π/n) + isin(2π/n)

be a Primitive nth root of unity. Then cos(2π/n) = 1
2 (ω + ω−1), since

ω−1 = cos(2π/n)− isin(2π/n). Thus cos(2π/n) ∈ Q(ω).
However,cos(2π/n) ∈ R and ω /∈ R, so Q(ω) 6= Q(cos(2π/n)). But ω is a root
of x2 − 2cos(2π/n)x+ 1, and so [Q(ω) : Q(cos(2π/n))] = 2 Therefore if
cos(2π/n) is constructible, then [Q(cos(2π/n)) : Q] is a power of 2. Hence,
[Q(ω) : Q] = φ(n) is also a power of 2.
Conversely, suppose that φ(n) is a power of 2. The field Q(ω) is a Galois
extension of Q with Abelian Galois group. If H = Gal(Q(ω) : Q(cos(2π/n)))
by the theory of finite Abelian groups there is a chain of subgroups

H0 ⊆ H1 ⊆ H2 ⊆ · · · ⊆ Hr = H

with |Hi−1 −Hi| = 2. If Li = F(Hi), then [Li : Li+1] = 2 , thus
Li = Li+1(

√
ui) for some ui.Since Li ⊆ Q(cos(2π/n)) ⊆ R, each of the ui ≥ 0.

Since the square root of a constructible number is constructible, we see that
everything in Q(cos(2π/n))is constructible. Thus cos(2π/n) is constructible
and hence so is a regular n-gon.

4.2 Fundamental theorem of Algebra

The field C is Algebraically closed
Proof:
Let us first take a look at the 2 results that will be used in the proof:

1. There are no nontrivial finite extensions of R of odd degree.

2. There are no quadratic extensions of C.

Let L be a finite extension of C . Since characteristic of R is 0, the field L is
separable over R , and L is also a finite extension of R. Let N be the normal
closure of L/R. To prove the theorem we prove N = C. Let G = Gal(N/R).
Then

|G| = [N : R] = [N : C] · [C : R] = 2[N : C]

is even. Let H be 2-sylow subgroup of G, and let E be the fixed field of H.
Then |G : H| = [E : R] is odd. Since the only odd extension of R is R itself,
G = H is a 2-group. Then Gal(N/C) is also a 2-group. Since 2-groups have
subgroups of all orders dividing it, if this group is non-trivial, there would
exist a quadratic extension of C which is not possible since C has no quadratic
extensions. Hence N = C
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5 Symmetric Groups

Let A be any nonempty set and let S be the set of all bijections from A to
itself. The set S is a group under function composition ◦ since:

1. if σ, τ ∈ S, then σ ◦ τ ∈ S

2. function composition is associative in general.

3. the permutation 1 ∈ S defined by 1(a) = a, ∀a ∈ A.

4. for every mapping σ, ∃ an inverse mapping σ−1 satisfying

σ ◦ σ−1 = σ−1 ◦ σ = 1

This is called the symmetric group on A. When A = {1, 2, 3, . . . n} the
symmetric group on A is called Symmetric Group of degree n denoted by
Sn. It has order n!. A cycle of a Sn is a string of integers which represents
the element of Sn which cyclically permutes these integers and fixes the
rest.The product of all the cycles is called the cycle decomposition of σ. A
2-cycle is called a Transposition. Every element of Sn maybe written as a
product of transpositions.

5.1 Alternating Group

Let σ ∈ Sn. Let x1, x2, . . . , xn be independent variables and let ∆ be the
polynomial

∆ =
∏

1≤i<j≤n

(xi − xj)

For n=4, i.e. σ = (1234)

∆ = (x1 − x2)(x1 − x3)(x1 − x4)(x2 − x3)(x2 − x4)(x3 − x4)

σ(∆) = (x2 − x3)(x2 − x4)(x2 − x1)(x3 − x4)(x3 − x1)(x4 − x1)

In general we get for any n,

σ(∆) =
∏

1≤i<j≤n

(xσ(i) − xσ(j))

Collecting together all the changes in sign,

σ(∆) = ±∆,∀σ ∈ Sn

For each σ ∈ Sn let

ε(σ) =

{
+1 if σ(∆) = ∆

−1 if σ(∆) = −∆

σ is called an even permutation if ε(σ) = 1 and an odd permutation if ε(σ) =
-1 The Alternating Group of degree n denoted An is the set of even
permutations.
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6 Galois group of Polynomials

6.1 Definitions

1. Let x1, x2, . . . , xn be indeterminates. The Elementary symmetric
functions s1, s2, . . . , sn are defined by

s1 = x1 + x2 + · · ·+ xn

s2 = x1x2 + x1x3 · · ·+ xn−1xn

...

sn = x1x2 . . . xn

i.e.,the ith symmetric function si of x1, x2, . . . , xn is the sum of all
products of the xj ’s taken i at a time.

2. The general polynomial of degree n is the polynomial

(x− x1)(x− x2) . . . (x− xn)

whose roots are the indeterminates x1, x2, . . . , xn. It is important to note
that

(x−x1)(x−x2) . . . (x−xn) = xn− s1xn−1 + s2x
n−2 + · · ·+ (−1)nsn (7)

3. A rational function f(x1, x2, . . . , xn) is called symmetric if it has not
changed by any permutation of the variables x1, x2, . . . , xn.

4. The Discriminant D of x1, x2, . . . , xn is given by

D =
∏

1≤i<j≤n

(xi − xj)2

It is a symmetric function in x1, x2, . . . , xn and hence is an element of
F (s1, s2, . . . , sn)

5. If f(x) is irreducible over the field K, then given any two roots of f(x)
there is an automorphism in the Galois group G of f(x) which maps one
root to another. Then the group G is said to be a Transitive Group.

6.2 Important results on Symmetric Functions

1. Preposition 2:

The fixed field of the symmetric group Sn acting on the field of rational
functions in n variables F (x1, x2, . . . , xn) is the field of rational functions
in the elementary symmetric functions F (s1, s2, . . . , sn).

2. Fundamental Theorem on Symmetric Functions:

Any symmetric function in the variables x1, x2, . . . , xn is a rational
function in the elementary symmetric functions s1, s2, . . . , sn.
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3. Theorem 1 :The general polynomial
xn − s1xn−1 + s2x

n−2 + · · ·+ (−1)nsn over the field F (s1, s2, . . . , sn) is
separable with Galois group Sn.

One rephrases the above statement as asserting that a general
polynomial of degree n has splitting field whose Galois group is the full
symmetric group Sn.

4. Proposition 3

If characteristic of F is not 2 then the permutation σ ∈ Sn is an element
of An , if and only if it fixes the square root of the discriminant D.

5. If α1, α2, . . . , αn are the roots of the polynomial
f(x) = xn + an−1x

n−1 + · · ·+ a1x+ a0 then the discriminant of the
polynomial is

D =
∏

1≤i<j≤n

(αi − αj)2

It is zero if and only if the polynomial is not separable.

6. The Galois group of polynomial f(x) ∈ F [X] is a subgroup of An, if and
only if the discriminant D ∈ F is the square of an element F .

7. Theorem 2 :Let f(x) ∈ K[X] be a separable polynomial in degree n

(i) If f(x) is irreducible in K[X] then its Galois group over K has order
divisible by n.

(ii) The polynomial f(x) is irreducible in K[X] if and only if its Galois
group over K is a transitive subgroup of Sn.

8. Theorem 3 :Let f(x) ∈ K[X] be a separable polynomial in degree n. If
K does not have characteristic 2, the Galois group of f(x) over K is a
subgroup of An if and only is discriminant of f is a square in K.

We start by discussing the Galois theory of polynomials of small degrees.

6.3 Polynomials of degree 2

Let α and β be the 2 roots of the polynomial

f(x) = x2 + ax+ b

Then by result 5 of section 6.2 the discriminant of the polynomial is

D = (α− β)2

By equation 7 we have ,

D = s21 − 4s2 = (−a)2 + 4b = a2 − 4b

The polynomial is separable if and only if D 6= 0. By result 6 of section 6.2 the
above polynomial has Galois group A2 if and only if a2 − 4b is a rational
square.
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6.4 Polynomials of degree 3

Consider the cubic polynomial

f(x) = x3 + ax2 + bx+ c

Substituting for x as y- a
3 we get

g(y) = y3 + py + q (8)

where

p =
1

3
(3b− a2) q =

1

27
(2a3 − 9ab+ 27c)

Let us assume the roots of the polynomial to be α, β and γ, we get

g(y) = (y − α)(y − β)(y − γ)

Differentiating we get,

Dyg(y) = (y − α)(y − β) + (y − α)(y − γ) + (y − β)(y − γ)

= 3y2 + p

Then
Dyg(α) = (α− β)(α− γ)

Dyg(β) = (β − α)(β − γ)

Dyg(γ) = (γ − α)(γ − β)

Taking product we see that

D = [(α− β)(β − γ)(γ − α)]2

= −Dyg(α)Dyg(β)Dyg(γ)

= −(3α2 + p)(3β2 + p)(3γ2 + p)

= −[27α2β2γ2 + 9p(α2β2 + α2γ2 + β2γ2) + 3p2(α2 + β2 + γ2) + p3]

From equation 8,

s1 = 0

s2 = p = αβ + βγ + γα

s3 = −q = −αβγ

Making the above substitutions in D, we get

−D = 27(−q)2 + 9p(p2) + 3p2(−2p) + p3 (9)

D = −4p3 − 27q2 (10)

= a2b2 − 4b3 − 4a3c− 27c2 + 18abc (11)
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6.5 Polynomials of degree 4

Consider the quartic polynomial

f(x) = x4 + ax3 + bx2 + cx+ d (12)

Substituting for x as x = y − a
4 ,

g(y) = y4 + py2 + qy + r (13)

p =
1

8
(−3a2 + 8b)

q =
1

8
(a3 − 4ab+ 8c)

r =
1

256
(−3a4 + 16a2b− 64ac+ 256d)

Let α1, α2, α3, α4 be the roots of equation (13). Consider the elements

θ1 = (α1 + α2)(α3 + α4)

θ2 = (α1 + α3)(α2 + α4)

θ3 = (α1 + α4)(α2 + α3)

By simple calculations we get the symmetric functions to be

s1 = 2p

s2 = p2 − 4r

s3 = −q2

with θ1, θ2, θ3 as the roots of the polynomial

h(x) = x3 − 2px2 + (p2 − 4r)x+ q2

From the formula of discriminant for a cubic polynomial we get

D = 16p4r − 4p3q2 − 128p2r2 + 144pq2r − 27q4 + 256r3

= −128b2d2 − 4a3c3 + 16b4d− 4b3c2 − 27a4d2 + 18abc3 + 144a2bd2 − 192acd2

+ a2b2c2 − 4a2b3d− 6a2c2d+ 144bc2d+ 256d3 − 27c4 − 80ab2cd+ 18a3bcd

The above equation for the discriminant of a quartic can be simplified for
different polynomials as follows:

Disc(x4 + ax+ b) = −27a4 + 256b3 (14)

Disc(x4 + ax2 + b) = 16b(a2 − 4b)2 (15)
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6.6 Galois group of Cubics

We shall write theorem 3 for a cubic polynomial.

Theorem 4 :Let f(x) ∈ K[X] be a separable irreducible cubic polynomial. Let
K not have characteristic 2. If discriminant of f is a square in K then the
Galois group of f(x) over K is A3. If disc f is not a square then the Galois
group of f(x) over K is S3.

Let us look at a few examples.

f(x) disc f Galois group
x3 − x− 1 -23 S3

x3 − 3x− 1 81 A3

x3 − 4x− 1 229 S3

x3 − 5x− 1 473 S3

x3 − 6x− 1 837 S3

Table 1: Examples of Galois group of cubics over Q

In table 1 we look at polynomials of the type x3 − ax− 1 for 1 ≤ a ≤ 6, a 6= 2.
x3 − 2x− 1 has been left out because it is reducible. Using equation (10) we
calculate the discriminant for each polynomial. We make the following
observations from table 1:

1. Since x3 − 3x− 1 has a perfect square as the discriminant, it has Galois
group A3 by theorem 4.

2. The rest of the polynomials have Galois group S3 since their
discriminant are not perfect squares.

3. If a cubic polynomial has Galois group A3 over Q we see that every root
of that polynomial generates the same field extension of Q and all the
roots are real since at least one root is.But the converse need not be true.
The polynomial x3 − 4x− 1 has all real roots but has Galois group S3.

It is important to check if the polynomial is irreducible before applying
theorem 4. Here are a few more examples of irreducible cubics over Q that
have Galois group A3.

f(x) disc f Roots
x3 − 3x− 1 92 r, r2 − r − 2, −r2 + 2
x3 − x2 − 2x+ 1 72 r, r2 − r − 1, −r2 + 2
x3 + x2 − 4x+ 1 132 r, r2 + r − 3, −r2 − 2r + 2
x3 + 2x2 − 5x+ 1 192 r, r2 + 2r − 4, −r2 − 3r + 2

Table 2: Examples of cubics having Galois group A3 over Q

In the table 2 we see that all 3 roots of every polynomial has been listed in
terms of one of the roots r. From this we can see that the 3 elements of
Gal(Q(r)/Q) are, as each automorphism is determined by its effect on r.
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Corollary 1:
For any integer k, set a = k2 + k + 7. The polynomial x3 − ax+ a is
irreducible over Q and has Galois group A3.
Proof:
If a is an odd number then

x3 − ax+ a ≡ x3 + x+ 1(mod2)

is irreducible over Q, since x3 + x+ 1 is irreducible mod 2. The value of the
discriminant is given by

−4(−a)3 − 27a2 = a2(4a− 27)

For the polynomial to have Galois group A3 we need (4a− 27) to be a square.

4a− 27 = c2

a =
1

4
(c2 + 27)

Since c has to be odd, we make the substitution c = 2k + 1

a =
1

4
(4k2 + 4k + 28) = k2 + k + 7

For any integer k, k2 + k + 7 is odd, so if we denote this value by a then
x3 − ax+ a has Galois group A3 over Q.

Theorem 5 Let K not have characteristic 2 and f(x) ∈ K[X] be a separable
cubic with discriminant ∆ . If r is one root of f(x) then a splitting field of
f(x) over K is K(r,

√
∆). In particular, if f(x) is a reducible cubic then its

splitting field over K is K(
√

∆).

Proof:
Without the loss of generality let f(x) be monic. Let the roots of f(x) be
r, r′, r′′. Write f(x) = (x− r)g(x) so that r′ and r′′ are the roots of g(x). In
particular, g(r) 6= 0. By the quadratic formula for g(x) over K(r),

K(r, r′, r′′) = K(r)(r′, r′′) = K(r)(
√
discg)

Since f(x) is monic, so is g(x) and disc f = g(r)2 disc g, so
K(r,
√

discg) = K(r,
√

discf) = K(r,
√

∆)
If f(x) is reducible, we can take for r above a root of f(x) in K. Then
K(r,
√

∆) = K(
√

∆).

6.7 Galois Group of Quartics

By theorem 2 we see that the only possible Galois groups of separable
irreducible quartics are the transitive subgroups of S4.
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Type S4 A4 D4 Z/4Z V
(1,1,1,1) 1 1 1 1 1
(1,1,2) 6 2
(2,2) 3 3 3 1 3
(1,3) 8 8
(4) 6 2 2
sum 24 12 8 4 4

Table 3: Transitive subgroups of S4

where,
S4 - The symmetric group of degree 4
A4 - The alternating group of degree 4
D4 - The dihedral group of order 4
Z/4Z - The quotient group, group of remainders modulo 4.
V - The Klein’s four-group Z/2Z X Z/2Z
(1,1,1,1) - Identity permutation
(1,1,2) - Transposition
(2,2) - Product of 2-cycles
(1,3) - 3-cycles
(4) - 4-cycles
The transitive subgroups of S4 isomorphic to

• D4 are 〈(1234), (13)〉, 〈(1324), (12)〉, 〈(1243), (14)〉

• Z/4Z are 〈(1234)〉, 〈(1243)〉, 〈(1324)〉

• V is {(1), (12)(34), (13)(24), (14)(23)}

We make the following observations from the table 3:

1. The only transitive subgroups of S4 which are inside A4 are A4 and V .

2. The only transitive subgroups of S4 with size divisible by 3 are S4 and
A4.

3. The only transitive subgroups of S4 containing a transposition are S4

and D4.

Let us consider a monic irreducible quartic polynomial in K[X] having roots
r1, r2, r3, r4 and Disc f 6= 0. Then

f(x) = x4 + ax3 + bx2 + cx+ d = (x− r1)(x− r2)(x− r3)(x− r4) (16)

The Galois group of separable irreducible cubics is determined by the the
value of the discriminant; whether or not its a perfect square. We will see that
the Galois group of a Quartic polynomial is determined by an associated cubic
polynomial. We can find the polynomial from roots in the splitting field of
f(x) over K by finding an expression in the roots of f(x) which has only 3
possible images under the Galois group.Since the Galois group is in S4, we
look for a polynomial in 4 variables which, under all 24 permutations of the
variables, has 3 values. One possibility is

x1x2 + x3x4
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Under S4, acting on F (x1, x2, x3, x4), x1x2 + x3x4 can be moved to

x1x2 + x3x4, x1x3 + x2x4, x1x4 + x2x3

When we specialize xi → ri these become

r1r2 + r3r4, r1r3 + r2r4, r1r4 + r2r3

It might not be the case that these are all K-conjugates, since not all 24
permutations of the ri’s have to be in the Galois Group. Let us look at the
cubic :

(x− (r1r2 + r3r4))(x− (r1r3 + r2r4))(x− (r1r4 + r2r3))

Since the 3 factors are permuted among themselves by any element of the
Galois group , which in this case is a subgroup of S4, the coefficients of the
above polynomial are symmetric polynomials in ri’s. So the coefficients must
be in K by Galois theory.

(x−(r1r2+r3r4))(x−(r1r3+r2r4))(x−(r1r4+r2r3)) = x3+Ax2+Bx+C (17)

Expanding we get,

A = −(r1r2 + r3r4 + r1r3 + r2r4 + r1r4 + r2r3) = −b
B = r21r2r3 + r1r

2
2r4 + r1r

2
3r4 + r2r3r

2
4 + r21r2r4 + r1r

2
2r3 + r1r3r

2
4

+ r2r
2
3r4 + r21r3r4 + r1r2r

2
3 + r1r2r

2
4 + r22r3r4

C = −(r1r2 + r3r4)(r1r3 + r2r4)(r1r4 + r2r3)

From the symmetric function theorem,

B = s1s3 − 4s4 = ac− 4d

C = −(s21s4 + s23 − 4s2s4) = −(a2d+ c2 − 4bd)

Then equation (17) becomes,

x3 +Ax2 +Bx+ C = x3 − bx2 + (ac− 4d)x− (a2d+ c2 − 4bd)

Cubic Resolvent : When f(x) is a quartic with roots r1, r2, r3, r4 its Cubic
Resolvent R3(x) is the cubic polynomial given by equation (17). When f(x) is
monic

R3(x) = x3 − bx2 + (ac− 4d)x− (a2d+ c2 − 4bd)

which may be reducible or irreducible. When a = b = 0,

f(X) = x4 + cx+ d =⇒ R3(x) = x3 − 4dx− c2 (18)

Theorem 6 The quartic f(x) and its cubic resolvent R3(x) have the same
discriminant. In particular, R3(x) is separable since f(x) is separable.

Theorem 7 Let Gf be the Galois group of f(x) over K. Then Gf can be
described in terms of whether or not the discriminant of f is a square in K and
if R3(x) is reducible or irreducible in K[X] as shown in the table below.
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disc f R3(x) in K[X] Gf
Not square irreducible S4

Square irreducible A4

Not square reducible D4 or Z/4Z
Square reducible V

Table 4:

Proof:
Let us look at each case separately.

• Disc f is not a square and R3(x) is irreducible over K

Since R3(x) is irreducible over K, and has its roots in the splitting field
of f(x) over K; adjoining a root of R3(x) to K gives us a cubic extension
of K inside the splitting field of f(x). Therefore the order of Gf is
divisible by 3 and 4. This is possible only if Gf is either S4 or A4. Since
Disc f is not a square, by theorem 3, Gf * A4. This implies that
Gf = S4

• Disc f is a square and R3(x) is irreducible over K

By the reasoning mentioned in the case above Gf is either S4 or A4.
Since Disc f is a square, by theorem 3, Gf ⊂ A4. This implies that
Gf = A4

• Disc f is not a square and R3(x) is reducible over K

Since Disc f is not a square, by theorem 3, Gf * A4. Thus the only
possibilities are S4, D4,Z/4Z. We will now eliminate the possibility of
Gf being S4.

By table 3 what distinguishes S4 from the other 2 is that it contains
3-cycles. If Gf = S4 then (123) ∈ Gf . If we apply this automorphism to
the roots of R3 in its Galois group, it carries them through a single orbit.

r1r2 + r3r4 7→ r1r3 + r2r4 7→ r1r4 + r2r3 7→ r1r2 + r3r4

These numbers are distinct since R3(x) is separable. At least one root of
R3(x) lies in K, so the Gf - orbit of that root is just itself, not three
numbers. This is a contradiction.

• Disc f is a square and R3(x) is reducible over K

Since Disc f is a square, by theorem 3, Gf ⊂ A4. From table 3 Gf = A4

or Gf = V . Like in the previous case we eliminate the first possibility.
What distinguishes S4 from V , is that it contains 3-cycles.If Gf = A4,
applying a 3-cycle of A4 to a root of R3(x) shows that all the roots of
R3(x) are in a single Gf -orbit, which is a contradiction to R3(x) being
reducible and separable over K. Therefore, Gf = V .

Let us take a look at a few examples.
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f(x) disc f R3(x) Gf
x4 − x− 1 −283 x3 + 4x− 1 S4

x4 + 2x+ 2 101 · 42 x3 − 8x− 4 S4

x4 + 8x+ 12 5762 x3 − 48x− 64 A4

x4 + 3x+ 3 21 · 152 (x+ 3)(x2 − 3x− 3) D4 or Z/4Z
x4 + 5x+ 5 2 · 552 (x− 5)(x2 + 5x+ 5) D4 or Z/4Z
x4 + 36x+ 63 43202 (x− 18)(x+ 6)(x+ 12) V

Table 5: Examples of Galois group computations over Q

Corollary 2:
With the notation as in theorem 7, Gf = V if and only if R3(x) splits
completely over K and Gf = D4 or Z/4Z if and only if R3(x) has a unique
root in K.
Proof:
From table 4 when Disc f is a square and R3(x) is reducible over K, then
Gf = V . By theorem 6 since, Disc R3(x) =Disc f , we can restate it as
:Gf = V if and only if Disc R3(x) is a square in K and R3(x) is reducible over
K. By theorem 5 a splitting field of R3(x) over K is K(r,

√
discR3), where r is

any root of R3(x). Therefore, Gf = V if and only if Disc R3 splits completely
over K.
From table 4 when Disc f is not a square and R3(x) is reducible over K, then
Gf = D4 or Z/4Z. By theorem 6 Disc R3(x) = Disc f , we can restate it as;
Gf = D4 or Z/4Z if and only if Disc R3(x) is not a square in K and R3(x) is
reducible over K. By theorem 5, this implies that R3(x) has root in K but not
splitting completely over K, which is the same as saying R3(x) has a unique
root in K.

Theorem 8 Let f(x) be an irreducible quartic in Q[X]. If Gf = Z/4Z then
Disc f > 0. Therefore if Gf = D4 or Z/4Z and Disc f <0, Gf = D4.

Proof:
If Gf = Z/4Z then the splitting field of f(x) over Q has degree 4.Any root of
f(x) already generates an extension of Q with degree 4, so the field generated
over K by one root of f(x) contains all the other roots. Therefore if f(x) has
one real root it has 4 real roots. Thus the number of real roots of f(x) is
either 0 or 4.
Case (i): f(x) has 0 real roots.
Then all 4 roots are imaginary, i.e. they are complex conjugates. Let z, z̄, w
and w̄ be the roots of f(x). Then Disc f is the square of

(z− z̄)(z−w)(z−w̄)(z̄−w)(z̄−w̄)(w−w̄) = |z−w|2|z−w̄|2(z− z̄)(w−w̄) (19)

The differences (z − z̄) and (w − w̄) are purely imaginary (since z and w are
not real), so their product is real and nonzero. Thus when we square equation
(19) we find that Disc f > 0.
Case (ii):
If f(x) has 4 real roots then the product of the product of the difference of its
roots is real and nonzero , so Disc f > 0.
Let us look at an example for the above theorem:
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The polynomial x4 + 4x2 − 2 which is irreducible by the Eisenstein criterion,
has discriminant -18432 ( by equation (15)) and cubic resolvent is as follows:

x3 − 4x2 + 8x− 32 = (x− 4)(x2 + 8)

Applying theorem (7) and table (4) we get that Gf = D4 or Z/4Z. By
theorem (8), since the discriminant is negative, the Galois group must be D4.
Remark:
The theorem (8) does not distinguish between D4 and Z/4Z when Disc f > 0.

6.8 Distinguishing D4 and Z/4Z
Theorem 7 tells us that the Galois group of a Quartic is D4 or Z/4Z when it’s
discriminant is not a square and when the cubic resolvent of the polynomial is
reducible over K. Corollary 2 tells us that, then R3 has a unique root in K.

Theorem 9 (Kappe, Warren) :
Let K be a field not of characteristic 2. Let

f(x) = x4 + ax3 + bx2 + cx+ d ∈ K[X] (20)

and ∆ = Disc f . Suppose ∆ is not a square in K and R3(x) is reducible in
K[X] with unique root r′ ∈ K. Then Gf = Z/4Z if the polynomials

x2 + ax+ (b− r′) and x2 − r′x+ d split over K(
√

∆) and Gf = D4 otherwise.

Proof:
Let r1, r2, r3, r4 be the roots of f(x) so that r′ = r1r2 + r3r4. Both D4 or Z/4Z
as subgroups of S4 contain 4-cycles. The following table the effect of each
4-cycle in S4 on r1r2 + r3r4, if the 4-cycle were in the Galois group, is
described.

(abcd) (abcd)(r1r2 + r3r4)
(1234) r2r3 + r4r1
(1432) r4r1 + r2r3
(1243) r2r4 + r1r3
(1342) r3r1 + r4r2
(1324) r3r4 + r2r1
(1423) r4r3 + r1r2

We observe from the table that each root of R3(x) appears twice. Since
r1r2 + r3r4 is fixed by Gf the only possible 4-cycles in Gf are (1324) and
(1432) (from table). Since they both are each others’ inverses and fix
r1r2 + r3r4 , both are in Gf .

Let σ = (1324)
If Gf = Z/4Z then Gf = 〈σ〉. If Gf = D4 then from subsection 6.7 we see that

Gf = 〈(1324), (12)〉 (21)

= {(1), (1324), (12)(34), (1432), (12), (34), (13)(24), (14)(23)} (22)
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and the elements fixing r1 are (1) and (34). Let τ = (34). Then we have

1 σ σ2 σ3 τ στ σ2τ σ3τ
(1) (1324) (12)(34) (1432) (34) (13)(24) (12) (14)(23)

Table 6: Products of σ and τ

The subgroup lattices(upside down) of 〈σ〉 and 〈σ, τ〉 are given:

{id}

〈σ2〉

〈σ〉

{id}

〈τ〉 〈σ2τ〉 〈σ2〉 〈στ〉 〈σ3τ〉

〈σ2, τ〉 〈σ〉 〈σ2, στ〉

〈σ, τ〉

Corresponding to the above subgroup latices we have the subfield lattices of
the splitting field, where L in both cases denotes the unique quadratic
extension of K inside K(r1)

• if Gf = Z/4Z then L corresponds to 〈σ2〉

• if Gf = D4 then L corresponds to 〈σ2, τ〉

Since ∆ is not a square in K [K(
√

∆) : K] = 2.
If Gf = Z/4Z, then L = K(

√
∆) since there is only one quadratic extension of

K in the splitting field.
If Gf = D4 then let us look at how K(r1), K(r3) and K(

√
∆) correspond to

〈τ〉 , 〈σ2τ〉 and 〈σ2, στ〉. Order of D4 is 8.

• Since [K(r1): K] = 4 the corresponding subgroup in D4 of K(r1) must
be of order 2 and fixes r1. From table 6 this corresponds to 〈τ〉.

• Since [K(r3): K] = 4 the corresponding subgroup in D4 of K(r3) must
be of order 2 and fixes r3. From table 6 this corresponds to 〈σ2τ〉.

• Since [K(
√

∆): K] = 2 the corresponding subgroup in D4 of K(r3) must
be of order 4 and is the even permutations in the Galois group and is
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{(1),(12)(34),(13)(24),(14)(23)}. From table 6 this corresponds to
〈σ2, στ〉.

Although the two cases Gf = Z/4Z and Gf = D4 differ a lot, let us develop a
few common ideas regarding the quadratic extensions K(r1)/L and L/K.
If Gf = Z/4Z, Gal(K(r1)/L) = {1 , σ2 }.
If Gf = D4, Gal(K(r1)/L) = 〈σ2, τ〉/〈τ〉 = {1 , σ2 }.
So in both cases, the L- conjugate of r1 is

σ2(r1) = r2

and the minimal polynomial of r1 over L must be

(x− r1)(x− r2) = x2 − (r1 + r2)x+ r1r2

Therefore r1 + r2 and r1r2 are in L. Since [K(r1): K] = 4, this polynomial is
not in K[X] :

r1 + r2 /∈ K or r1r2 /∈ K (23)

If Gf = Z/4Z then Gal(L/K) = 〈σ〉/〈σ2〉 = {1, σ̄} and if Gf = D4 then
Gal(L/K) = 〈σ, τ〉/〈σ2, τ〉 = {1, σ̄}
The coset of σ in Gal(L/K) represents the nontrivial coset both times, so
Lσ = K. That is, an element of L fixed by σ is in K. Since

σ(r1 + r2) = r3 + r4

σ(r1r2) = r3r4

the polynomials

(x− (r1 + r2))(x− (r3 + r4)) = x2 − (r1 + r2 + r3 + r4)x+ (r1 + r2)(r3 + r4)
(24)

(x− r1r2)(x− r3r4) = x2 − (r1r2 + r3r4)x+ r1r2r3r4 (25)

have coefficients in Lσ = K.
The linear coefficient in equation (24) is a and the constant term is

(r1 + r2)(r3 + r4) = r1r3 + r1r4 + r2r3 + r2r4

= b− (r1r2 + r3r4)

= b− r′

so equation (24) equals x2 + ax+ (b− r′). The quadratic polynomial (25) is
x2 − r′x+ d.
When r1 + r2 /∈ K the polynomial (24) is irreducible in K[X] , so its
discriminant is not a square in K.
When r1 + r2 ∈ K the polynomial (24) has a double root and its discriminant
is 0.
Similarly equation (25) has a discriminant that is not a square in K or is 0.
Therefore the splitting field of (24) or (25) over K is either L or K and (23)
tells us at least one of (24) and (25) has a nonsquare discriminant in K.
Since r1 + r2 and r1r2 are in L and [L : K] = 2, each one generates L over K if
it is not in K. This happens for at least one of the two numbers by (23).
First suppose Gf = Z/4Z. Then L = K(

√
∆), since their roots are in L.
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Next suppose Gf = D4. Then L 6= K(
√

∆). By (23) at least one of (24) or (25)
is irreducible over K, so its roots generate L over K and therefore are not in
K(
√

∆). Thus the polynomial (24) or (25) will be irreducible over K(
√

∆) if it’s
irreducible over K.
Since the conclusions about the two quadratic polynomials over K(

√
∆) are

different depending on whether Gf is Z/4Z or D4 these conclusions tell us the
Galois group.

6.9 General polynomials of degree ≥ 5

The pinnacle of Galois’s theory is his theorem on solvability by radicals. We
do not discuss this in detail but merely outline it.
Throughout this section, we take K to be a field of characteristic 0.
A polynomial f ∈ K[X] is said to be solvable by radicals over K if there exists
a finite tower of finite field extensions

K ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kr

such that Ki = Ki−1(ai) for some ai with some power ani
i ∈ Ki−1 or

apii − ai ∈ Ki−1 for some prime pi and such that the splitting field of f over K
is contained in Kr.
Recall that a finite group G is said to be solvable if the derived series

G1 = G,G2 = [G,G], G3 = [G2, G2], · · ·

becomes the trivial group at some finite stage (that is, Gn = {1} for some
n ≥ 1).
The basic theorem can be stated as:
Galois’s Theorem
Let f be a polynomial of degree n over a field K of characteristic 0, and L be
a splitting field of f over K. Then, the Galois group of the Galois extension
L/K is solvable if and only if f is solvable by radicals over K.
Indeed, this theorem is the origin of the word “solvable” in the context of
group theory. Now, we saw earlier that the general polynomial of degree n has
Galois group equal to the full symmetric group Sn. Using the group-theoretic
property that Sn is not a solvable group when n ≥ 5, one has:
Corollary (Galois)
A general polynomial of degree n ≥ 5 cannot be solved by radicals; that is,
there is no single expression in n+ 1 variables involving addition,
multiplication, and taking r-th roots which when applied to the n+ 1
coefficients of each polynomial of degree n gives its roots.

7 Two non-standard applications

In this section, we describe two applications which are not found in textbooks
of Galois theory as they require some additional features. We merely outline
these applications.
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7.1 The support problem

Let x, y be positive integers such that each prime divisor of xn − 1 also divides
yn − 1 for every n. What can we say about the relation between x and y?
For instance, if y is a power of x, the above property holds. We may ask
whether the converse also holds. This problem came to be known as the
‘support problem’ because one calls the ‘support’ of a natural number a to be
the set of its prime divisors. The support problem can be proved using
Kummer theory.
Basically, Kummer theory is a correspondence between abelian extensions of a
field and subgroups of the n-th powers. This works if the field has enough n-th
roots of unity. A more precise statement is:
If K contains the n-th roots of unity, then abelian extensions L of K whose
Galois groups have exponent n correspond bijectively to subgroups Ω of K∗

containing (K∗)n via L 7→ K∗ ∩ (L∗)n and its inverse map Ω 7→ K(Ω1/n).
The support problem is, in reality, a local-global theorem. To explain:
For a prime p not dividing the numerator and denominators of x and y, look
at the order of x mod p; viz., the smallest n such that p|(xn − 1). We have
p|(yn − 1) so that the order of y mod p divides n, the order of x. A simple
exercise in the cyclic group Z∗p shows that y must be a power of x mod p.
Therefore, the support theorem says that if y is a power of x modulo p for any
prime p, then y is actually a power of x; this is what Kummer theory
accomplishes. We do not say any more about it here.

7.2 Polynomials reducible modulo all primes

Consider any integral polynomial f of degree > 1. Then, it is an elementary
exercise to show that there are infinitely many primes p such that not divide
any of the integers f(n) as n varies over integers. In other words, f does not
have roots modulo p. More generally, let us ask:
Question: If f is an irreducible integral polynomial, is it necessarily
irreducible modulo some prime p?
The answer to this turns out to be ‘yes and no’ !
It is “yes” if the degree is prime and “no” if it is composite!
In what follows, we show how such questions are attacked and how the earlier
lemma is proved. Recall from basic Galois theory that if f is an irreducible,
integral polynomial of degree n, its Galois group is a subgroup of the
permutation group Sn, permuting the roots transitively.
The answer to the question above lies in knowing whether or not Gal(f) has
an element of order n, where deg(f) = n.
Therefore, if Gal(f) does not contain an element of order n, then f is
reducible modulo every prime!
Now, Gal(f) is a transitive subgroup of Sn and, hence, its order is a multiple
of n.
If n is a prime, then evidently Gal(f) must contain an element of order p by
Cauchy’s theorem.
On the other hand, if n is composite, Gal(f) may or may not contain an
element of order n.
Hilbert showed that the polynomial x4 − 10x2 + 1 is irreducible over the
integers whereas it is reducible modulo each prime (this latter property is
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verified using the quadratic reciprocity law). For Hilbert’s example, the Galois
group is isomorphic to Klein’s four group Z/2Z× Z/2Z.
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