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TRIGONOMETRIC EXPRESSIONS FOR FIBONACCI1

AND LUCAS NUMBERS2

B. SURY3

Introduction4

The amount of literature bears witness to the ubiquity of the Fibonacci numbers5

and the Lucas numbers. Not only these numbers are popular in expository lit-6

erature because of their beautiful properties, but also the fact that they ‘occur7

in nature’ adds to their fascination. Our purpose is to use a certain polynomial8

identity to express these numbers in terms of trigonometric functions. It is in-9

teresting that these expressions provide natural proofs of old and new divisibility10

properties for the Fibonacci numbers. One can naturally recover some divisibility11

properties and discover/observe some others which seem to be new. There are12

some fascinating open questions about the periodicity of the Fibonacci sequences13

modulo primes and we shall also prove some partial results on this.14

1. Fibonacci and Lucas numbers in trigonometric form15

The Fibonacci numbers are recursively defined by Fn+1 = Fn+Fn−1 where F0 = 0,16

F1 = 1. The first few are17

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, . . .18

The so-called Cauchy-Binet identity gives an expression in closed form as19

Fn = (αn−βn)/
√

5 where α = (1+
√

5)/2, the “golden ratio” and β = (1−
√

5)/2 =20

−1/α. The Fibonacci numbers have the Lucas numbers as close cousins. The Lu-21

cas numbers are defined by the same recursion Ln+1 = Ln+Ln−1, but the starting22

numbers are L0 = 2, L1 = 1. The first few are23

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, . . .24

We recall a polynomial identity (an identity which holds for every complex value25

of the variable) observed in [6]:26

[(n−1)/2]∑
r=0

(−1)r
(
n− 1− r

r

)
(xy)r(x+ y)n−1−2r = xn−1 + xn−2y + · · ·+ yn−1.

27
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Note that it is a simple exercise to prove this polynomial identity by induction on28

n. The Cauchy-Binet identity can be deduced from the above identity as in [5]29

simply by specializing the values x = α, y = β. The bridge to this deduction is30

provided by the summatory expression Fn =
∑
r≥0

(
n−1−r

r

)
for all n > 0 which is31

also provable by induction on n! See also [1] for a combinatorial interpretation of32

this polynomial identity. We note in passing that Cauchy-Binet type of identity33

is easily obtained for a general linear recurrence relation of any order m. In34

that case the n-th term is an =
∑m
i=1 ciλ

n
i , where λi are the eigenvalues of the35

characteristic equation and the constants ci are evaluated by looking at the initial36

values. We show there is much more scope in exploiting the polynomial identity37

mentioned above; in particular, we use this and similar polynomial identities to38

obtain trigonometric and other expressions such as the following.39

Theorem 1.40

(a) Fn =
[(n−1)/2]∏
r=1

(
3 + 2 cos

2πr
n

)
41

(b) L2n+1 =
n∏
r=1

(
3− 2 cos

2πr
2n+ 1

)
42

(c) L2n =
n−1∏
r=0

(
3− 2 cos

(2r + 1)π
2n

)
43

(d) L2n+1 =
∑
r≥0

(−1)r
(

2n− r
r

)
5n−r

44

(e) L2n = − i(x− x−1)
∑
r≥0

(−1)r
(
n− 1− r

r

)
(x+ x−1)n−1−2r

45

where x =
3 +
√

5
2

e(iπ)/(2n).
46

From these expressions we shall deduce the following divisibility results:47

Corollary 1.48

(i) Fn divides Fmn,
49

(ii) Ln divides L(2m+1)n,
50

(iii) L2n+1 divides F2n(2m+1),
51

(iv) F2n + F2n+2 divides F(2n+1)m,
52

(v) Fn−2k + Fn+2k divides Fmn−2k + Fmn+2k,
53

(vi) Fn−2k−1 + Fn+2k+1 divides F(2m+1)n−2k−1 + F(2m+1)n+2k+1,
54

(vii) Fn−k + Fn+k divides Fn−k(2l+1) + Fn+k(2l+1).55

It is worth remarking that the divisibility properties like (i) above can be deduced56

from the Cauchy-Binet identity equally easily but, there is one subtle difference.57

Using the Cauchy-Binet identity, one needs to use factorization while the proof58

deduced from the trigonometric expression “physically shows” all the terms of the59

denominator “appearing” in the numerator.60
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The proofs will be given in Section 3 using the polynomial identity. Very inter-61

estingly, the Chebychev polynomials are polynomials defined by recursion which62

generalizes the Fibonacci recursion and in Section 4 we look at them and give an-63

other proof of the trigonometric expression. This reveals, in a sense, the mysterious64

connection between Fibonacci numbers and trigonometric functions.65

1.1. A sequence interpolating Fn and Ln66

While discussing the Fibonacci numbers, we also run across accidentally the se-67

quence {an} which is defined by:68

an =
[(n−1)/2]∑
r=0

(−1)r
(
n− 1− r

r

)
5[(n−1)/2]−r for all n ≥ 1.

69

We shall also prove the following lemma70

Lemma 1.71

(i) an =
[(n−1)/2]∏
r=1

(
3− 2 cos

2πr
n

)
.

72

(ii) The sequence {an} satisfies the following Cauchy-Binet-type of identity:73

an =


(1 +

√
5)n − (

√
5− 1)n

2n
for odd n

(1 +
√

5)n − (
√

5− 1)n

2n
√

5
for even n

74

(iii) The sequence {an} satisfies the recursion75

a2n+1 = 5a2n − a2n−1

a2n+2 = a2n+1 − a2n76

(iv) an = Fn or Ln according as n is even or odd.
77

(v) am|an if m|n.78

Note the first few values of {an} are 1, 1, 4, 3, 11, 8, 29, 21, 76, 55, 199,79

144, 521, 377, . . . As it is not increasing, the divisibility result seems surprising!80

2. Proofs using polynomial identity81

Proof of Theorem 1(a). Start with the polynomial identity from [6]82

[(n−1)/2]∑
r=0

(−1)r
(
n− 1− r

r

)
xr(1 + x)n−1−2r = 1 + x+ · · ·+ xn−1

83

The right hand side equals (xn− 1)/(x− 1) =
∏n−1
r=1 (x− e2 i rπ/n). It is crying out84

that we combine the terms corresponding to r and n − r; if n is even, there is a85

middle term corresponding to r = n/2 which is x+ 1. We obtain86

(n−2)/2∑
r=0

(
n− 1− r

r

)(
−x

(1 + x)2

)r
(1+x)n−1 = (x+1)

(n−2)/2∏
r=1

(
x2 − 2x cos

2πr
n

+ 1
)
.

87
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Let us take for x a solution of the quadratic equation (x + 1)2 = −x (that is,88

x2 + 3x+ 1 = 0). Thus, one has for even n89

(1 + x)n−1

(n−2)/2∑
r=0

(
n− 1− r

r

)
= (−x)(n−2)/2(1 + x)

(n−2)/2∏
r=1

(
3 + 2 cos

2πr
n

)
.

90

As (1 +x)2 = −x, we have for even n that (1 +x)n−1 = (1 +x)(−x)(n−2)/2 which,91

therefore, gives the first formula92

Fn =
[(n−1)/2]∏
r=1

(
3 + 2 cos

2πr
n

)
for all n ≥ 1,

93

where, as usual, the usual convention is that an empty product equals 1. This94

proves (a). �95

Proof of Lemma 1. (i) Let us try to carry over the above proof for the se-96

quence97

an =
[(n−1)/2]∑
r=0

(−1)r
(
n− 1− r

r

)
5[(n−1)/2]−r.

98

The polynomial identity99

[(n−1)/2]∑
r=0

(−1)r
(
n− 1− r

r

)
xr(1 + x)n−1−2r =

xn − 1
x− 1

=
n−1∏
r=1

(x− e2 i rπ/n)
100

has the right hand side101

(1 + x)
(n/2)−1∏
r=1

(
x2 − 2x cos

(
2πr
n

)
+ 1
)

or
(n/2)−1∏
r=1

(
x2 − 2x cos

(
2πr
n

)
+ 1
)

102

according as n is even or odd.103

If we now take x to be a solution of x2 − 3x + 1 = 0 (so (x + 1)2 = 5x), we104

obtain for odd n105

(n−1)/2∑
r=0

(−1)r
(
n− 1− r

r

)
5[(n−1)/2]−r =

(n−1)/2∏
r=1

(
3− 2 cos

2πr
n

)
106

and for even n107

(n−2)/2∑
r=0

(−1)r
(
n− 1− r

r

)
5[(n−2)/2]−r =

(n−2)/2∏
r=1

(
3− 2 cos

2πr
n

)
.

108

Therefore, we obtain the identity for all n ≥ 1109

an =
(n−1)/2∏
r=1

(
3− 2 cos

2πr
n

)
.

110

So (i) is proved.
111
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(ii) In the polynomial identity112

[(n−1)/2]∑
r=0

(−1)r
(
n− 1− r

r

)
xr(1 + x)n−1−2r =

xn − 1
x− 1113

specialize x to a root of (x+ 1)2 = 3x.114

Combining the two expressions, we have115

an =
[(n−1)/2]∏
r=1

(
3− 2 cos

2πr
n

)
=


(1 +

√
5)n − (

√
5− 1)n

2n
for odd n,

(1 +
√

5)n − (
√

5− 1)n

2n
√

5
for even n.

116

117

(iii) As an is positive (as it is clear from the right hand side of the Cauchy-118

-Binet-type of identity above) and is an integer (from the definition!) and, since119 (
(
√

5− 1)/2
)n
< 1, it also follows that120

an =

[(√
5 + 1
2

)n]
or

1√
5

[(√
5 + 1
2

)n]
121

according as n is odd or even. Now, one may use the Cauchy-Binet-type identity122

to obtain the recursion which defines an’s. That is123

a2n+1 = 5a2n − a2n−1;
a2n+2 = a2n+1 − a2n.124

125

(iv) The Cauchy-Binet-type identity or simply the expression126

a2n =
n−1∏
r=1

(
3− 2 cos

πr

n

)
127

makes it clear that a2n = F2n for all n.128

As a2n+1 = a2n + a2n+2 = F2n + F2n+2, we have a2n+1 = L2n+1.
129

(v) The proof of this divisibility result is the same as for corollary (i) given130

below. �131

Proof of the rest of the Theorem 1. The proofs of (b), (d) are immediate from132

Lemma 1(i) and (iii).133

For (e), we look again at the polynomial identity134

[(n−1)/2]∑
r=0

(−1)r
(
n− 1− r

r

)
(xy)r(x+ y)n−1−2r = xn−1 + xn−2y + · · ·+ yn−1

135

which has for its right hand side the expression (xn − yn)/x − y whereas L2n =136

α2n + β2n, where α = (1 +
√

5)/2, β = −1/α. If we simply take x = eiπ/2n α2,137



6 B. SURY

y = x−1, we have xn − yn = i(α2n + β2n) = iL2n. Thus, we have138

L2n = − i(x− x−1)
∑
r≥0

(−1)r
(
n− 1− r

r

)
(x+ x−1)n−1−2r

139

where x = eiπ/2n α2. This proves (e).
140

(c) Now L2n = α2n + β2n = α2n + α−2n = (α4n + 1)/α2n = Rn(α4)/α2n where141

the polynomial Rn(x) = xn + 1 satisfies142

Rn(x) =
x2n − 1
xn − 1

=
n−1∏
r=0

(
x− e2 iπ(2r+1)/2n

)
.

143

Thus,144

Rn(x2) =
n−1∏
r=0

(
x− e2 iπ(2r+1)/2n

)(
x− e−2 iπ(2r+1)/2n

)
=
n−1∏
r=0

(
x2 − 2x cos

(2r + 1)π
2n

+ 1
)
.

145

Finally, if we take x = α2 and note that α4 + 1 = 3α2 for the golden ratio146

α = (1 +
√

5)/2, we obtain the product expression147

L2n =
n−1∏
r=0

(
3− 2 cos

(2r + 1)π
2n

)
.

148

This proves (c). �149

Proof of Corollary 1. All the parts follow from the product expressions and the150

identification of the sequence {an} with the sums of Fibonacci and Lucas numbers.151

Let us indicate the proof of (i) in detail.152

In the expression153

Fmn =
[(mn−1)/2]∏

r=1

(
3 + 2 cos

2πr
mn

)
,

154

there are terms corresponding to r = n, 2n, . . . , n[(m− 1)/2] since n[(m− 1)/2] ≤155

[(mn − 1)/2]. Each of these terms is also a term for Fm and, in fact, comprises156

all the terms of Fm! Hence Fmn/Fm is a product of expressions of the form157

3+2 cos(2πr/mn). Each of these is an algebraic integer and thus, the ratio Fmn/Fm158

is simultaneously an algebraic integer and a rational number. Hence the ratio is159

an integer. Thus (i) is proved.160

Similarly (ii) follows when n is odd. Now, observe that L2n divides L2n(2m+1),161

because in the product162

L2n(2m+1) =
n(2m+1)−1∏

r=0

(
3− 2 cos

(2r + 1)π
2n(2m+ 1)

)
163

the terms corresponding to 2r + 1 = 2n + 1, 3(2n + 1), · · · , (2n − 1)(2m + 1) are164

exactly the terms in the product for L2n. Therefore, we have (ii) also for even n.165
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The rest of the divisibility properties asserted follows from the above divisibility166

property for Ln’s and an’s by using the expressions167

Fn−k + Fn+k = FkLn or LkFn according as k is odd or even.168

Note that these well-known expressions themselves follow from the corresponding169

Cauchy-Binet identities. The corollary is proved. �170

Let us finish this theme by writing out a few more such applications of the171

polynomial identity followed by specializations.172

Remark 1. In the polynomial identity, specializations x = e2iπ/3, x = i yield,173

respectively,174

[(n−1)/2]∑
r=0

(−1)r
(
n− 1− r

r

)
= (−1)[(n−1)2]

[(n−1)/2]∏
r=1

(
1 + 2 cos

2πr
n

)
= 0, (−1)n−1 or (−1)n according as n = 0, 1 or 2 mod 3

[(n−1)/2]∑
r=0

(−1)r
(
n− 1− r

r

)
2[(n−1)/2]−r = (−2)[(n−1)/2]

[(n−1)/2]∏
r=1

cos
2πr
n

= 0, (−1)(n−1)/4, (−1)(n−2)/4, or (−1)(n−3)/4 according as
n = 0, 1, 2 or 3 mod 4.175

Finally, the most general identity obtainable by this method is the following.176

Remark 2. For an arbitrary complex number µ 6= −2, we have177 (
µ+ 2

2

)n−1 [(n−1)/2]∑
r=0

(−1)r
(
n− 1− r

r

)(
2µ

µ2 + 4

)r

=
2n − µn

2n−1(2− µ)
=

[(n−1)/2]∏
r=1

(
µ2 + 4

4
− µ cos

2πr
n

)
.

178

When µ = −2, the corresponding identity is179

[(n−1)/2]∏
r=1

4 cos2
πr

n
=
n

2
or 1

180

according as n is even or odd. The latter identity was referred to by some people181

(see [4]) as ‘grandma’s identity’.182

3. Fibonacci polynomials183

Consider the polynomials Fn(x) defined recursively by184

F0(x) = 0, F1(x) = x, Fn+1(x) = xFn(x) + Fn−1(x).185

Observe that Fn(1) = Fn, the Fibonacci numbers. We remark in passing that the186

Chebychev polynomials are related to these polynomials. Recalling the standard187

method of expressing a member of a linear recursion in terms of the characteristic188
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equation (as mentioned in the introduction) one has the following. The recursion189

is expressed formally by the generating function
∑
n≥1 Fn(x)yn = y

1−xy−y2 . The190

characteristic polynomial (in y) 1 − xy − y2 (for each fixed x) has the ‘roots’191

(α, β) = −x±
√
x2+4

2 . Note that αβ = −1. Therefore,192

Fn(x) =

1
αn+1

− 1
βn+1

α− β
= (−1)n

αn+1 − βn+1

α− β
.

193

Now it is easy to find the roots of Fn(x) (they correspond to β/α being a nontrivial194

(n+ 1)-th root of unity); we get195

Fn(x) =
n−1∏
r=1

(
x− 2 i cos

rπ

n

)
.

196

We get197

Fn = Fn(1) =
n−1∏
r=1

(
1− 2 i cos

rπ

n

)

=
[(n−1)/2]∏
r=1

(
1 + 4 cos2

rπ

n

)
=

[(n−1)/2]∏
r=1

(
3 + 2 cos

2rπ
n

)
.

198

4. Periodicity modulo primes199

We recall one open question about the Fibonacci numbers
200

If p is a fixed prime number, what is the period of the sequence Fn mod p?
201

Here is a partial answer202

Theorem 2.203

(a) For any prime p 6= 5, we have Fp ≡ (5/p) and Fp−(p/5) ≡ 0 mod p.204

(b) For every prime p, the sequence {Fn} is periodic mod p. The period di-205

vides p − 1 if (5/p) = 1; it is a divisor of 2p + 2 but not of p + 1 when206

(5/p) = −1. In case of the prime 5, the period is 20.207

In the above statements, we have used the Legendre symbol (a/p) for a prime p.208

For instance, a prime p satisfies (p/5) = 1 if p ≡ ±1 mod 5 and satisfies (p/5) = −1209

if p ≡ ±2 mod 5.210

Proof. (a) We may assume p 6= 2 as obviously F2 = 1 = (5/2) mod 2 and211

F3 = 2.212

We shall use the expression213

Fn =

[(n−1)/2]∑
r=0

(
n

2r + 1

)
5r

2n−1214
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which is just the binomial expansion of the Cauchy-Binet identity. Then, we have215

2p−1Fp =
[(p−1)/2]∑
r=0

(
p

2r + 1

)
5r ≡ 5(p−1)/2 mod p

216

since
(
p
s

)
≡ 0 mod p for 1 ≤ s < p.217

The first statement of (a) follows as 2p−1 ≡ 1 and 5(p−1)/2 ≡ (5/p) mod p.218

Let us now prove the second one.219

First, let (p/5) = −1, i.e., p ≡ ±2 mod 5. Then, (5/p) = −1, i.e., 5(p−1)/2 ≡ −1220

mod p. Now,221

2pFp+1 =
(p−1)/2∑
r=0

(
p+ 1
2r + 1

)
5r ≡ 1 + 5(p−1)/2 ≡ 0 mod p

222

since
(
p+1
s

)
≡ 0 mod p for 0 < s < p. Thus, p divides 2pFp+1 and so, it divides223

Fp+1.224

Now, take (p/5) = 1, i.e., p ≡ ±1 mod 5. Then,225

2p−2Fp−1 =
(p−3)/2∑
r=0

(
p− 1
2r + 1

)
5r ≡

(p−3)/2∑
r=0

−5r
226

since
(
p−1
2r+1

)
≡ −1 mod p for 0 ≤ r ≤ (p− 3)/2.227

Therefore, since (5/p) = 1, i.e., 5(p−1)/2 ≡ 1 mod p, we have228

4 · 2p−2Fp−1 ≡ 4 ·
(p−3)/2∑
r=0

−5r = 1− 5(p−1)/2 ≡ 0.
229

This proves (a).
230

(b) Once again, we assume that p 6= 2, 5 as these two cases are verified individ-231

ually easily. Recall that (5/p) = (p/5) from the quadratic reciprocity law. Thus,232

we have mod p,233

Fp−1 ≡ 0, Fp ≡ 1 if (p/5) = 1,

Fp+1 ≡ 0, Fp ≡ −1 if (p/5) = −1.234

The first two equations mean that if p ≡ ±1 mod 5, then Fp ≡ 1 and Fp+1 =235

Fp−1 + Fp ≡ 1, i.e.,236

Fp−1+n ≡ Fn mod p for all n ≥ 1.237

The second pair of equations means that if p ≡ ±2 mod 5, then Fp+2 = Fp +238

Fp+1 ≡ −1 and Fp+3 = Fp+2 + Fp+1 ≡ −1 mod p.239

Thus, Fp+1+n ≡ −Fn for all n ≥ 1. This gives periodicity to a divisor of 2p+ 2240

but not of p+ 1 when p ≡ ±2 mod 5. Our contention is proved. �241

Finally, let us end with a simple consequence which was implicit in the above242

discussion.243
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Let p > 5 be a prime and let q be a prime dividing Fp. Then, q ≡ ±1 mod p.244

Moreover,245

q ≡ 1 mod p implies q ≡ ±1 mod 5;
q ≡ −1 mod p implies q ≡ ±2 mod 5.246
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