[month] [year] filler, page [page number]

Placing Signs

Can one find a natural number n and a way to place + and - signs between consecutive terms of the sequence $1^k, 2^k, 3^k, \ldots, n^k$ so that the sums are zero for each of $k = 1, 2, \ldots, 100$? It turns out to be possible, and one has more generally:

Theorem. Given any natural number n, the set $\{1, 2, 3, ..., 2^{n+1}\}$ can be partitioned into two subsets A_n and B_n , each of size 2^n , such that

$$\sum_{a \in A_n} a^k = \sum_{b \in B_n} b^k \quad \text{for } k = 1, 2, \dots, n.$$
 (1)

This can be proved by induction. For n = 1, take $A_1 = \{1, 4\}$ and $B_1 = \{2, 3\}$. If one has chosen A_n and B_n of size 2^n with $A_n \sqcup B_n = \{1, 2, 3, \ldots, 2^{n+1}\}$ and such that (1) holds, simply take

$$A_{n+1} = A_n \cup (2^{n+1} + B_n), \quad B_{n+1} = B_n \cup (2^{n+1} + A_n).$$

Here, of course, d + S denotes the set $\{d + s : s \in S\}$. The proof of

$$\sum_{a \in A_n} a^k + \sum_{b \in B_n} (2^{n+1} + b)^k = \sum_{b \in B_n} b^k + \sum_{a \in A_n} (2^{n+1} + a)^k \quad \text{for } k = 1, 2, \dots, n+1$$

is evident by the binomial expansion.

-Submitted by B. Sury, Indian Statistical Institute, Bangalore, India