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If S(X1, · · ·Xk) =
∑

sgn(σ)Xσ1 · · ·Xσk is the polynomial in k noncommuting
variables where the sum is over all permutations σ of k symbols and sgn(σ)
denotes the sign of σ, it is not difficult to show that S(A1, · · · , An2+1) = 0 for
arbitrary n× n matrices Ai. Amitsur & Levitzki proved the beautiful result
that

S(A1, · · ·A2n) = 0

and that there is no nonzero polynomial in k variables with k less than 2n
satisfied by arbitrary n × n matrices.
Here, we shall discuss a graph-theoretic method of R.Swan which gives a geo-
metric proof of this result. This graph-theoretic result is also of independent
interest.

We first make the following elementary but important observation that S(X1, · · · , Xk)
depends linearly on the Xi’s.
Therefore, it suffices to prove the Amitsur-Levitzki identity holds for the
elementary n × n matrices ei,j with 1 at the (i, j)th place and 0’s elsewhere.

Graph theory enters in the following manner. For us, a graph would be
finite and oriented, that is, the edges would be directed. Let A1, · · ·A2n

be elementary matrices. Note that the product ei,jek,l = δj,kI where δj,k is
Kronecker’s delta.
Given these Ai’s, we define an oriented graph Γ as follows :
Γ has n vertices P1, . . . , Pn and has one edge ei for each Ai where, if Ai =
ej,k, ei has initial point Pj and terminal point Pk. Clearly, the number E of
edges and the number V of vertices have the relation E = 2V for this graph.
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The multiplication rule for elementary matrices now shows that a product
Aσ(1) · · ·Aσ(2n) has a nonzero (i, j)th entry if and only if the corresponding
sequence of edges eσ(1) . . . eσ(2n) is a unicursal path from Pi to Pj. Here, by
a unicursal path (see figure 1), we mean a method of walking from Pi to Pj

along edges so that every edge is traversed just once, and is traversed in the
proper direction. In case such a unicursal path exists, the (i, j)th entry of
Aσ(1) · · ·Aσ(2n) is 1.
Figure 1: A Unicursal Path
Thus, in any graph, if we fix an ordering of the edges, each unicursal path
ω = (e1, . . . , eE) then gives a permutation of the edges of Γ. Define ε(ω) to
be the sign of this permutation Note that a unicursal path is nothing but the
analogue of an Euler path in the oriented case.

In the case of our graph, we note that the (i, j)-th entry of S(A1, · · ·A2n) is
zero if, and only if, the number of unicursal paths ω from Pi to Pj for which
ε(ω) = +1 is equal to the number of unicursal paths ω from P to Q for which
ε(ω) = −1. In fact, this holds for more general graphs as well :

Theorem 1: Suppose E ≥ 2V . Let P and Q be any fixed vertices of Γ (not
necessarily distinct). Then the number of unicursal paths ω from P to Q
with ε(ω) = +1 is equal to the number of unicursal paths ω from P to Q with
ε(ω) = −1.

As observed above, this theorem implies:

Theorem 2 (Amitsur and Levitzki): If A1, . . . , A2n are any n × n ma-
trices with entries in any commutative ring, then S(A1, . . . , A2n) = 0.

Before starting the proof of theorem 1, we make a few very simple observa-
tions after recalling two definitions. We allow a vertex to be joined to itself
and we also allow two vertices to be joined in many ways. If P is any vertex
of Γ, the Order of P is defined to be the total number of edges beginning or
ending at P . An edge which joins P to itself will be counted twice. The flux
of P is defined to be the number of edges beginning at P minus the number
of edges ending at P .
From now on we will assume that Γ has no vertices of order 0. The reason
for this assumption is that connectedness of the graph is a necessity for the
existence of a unicursal path.
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In an unoriented graph, we have the famous result due to Euler that if the
number of vertices with odd order is more than 2, there cannot exist any Eu-
lerian path. We have the following analogous result for the oriented graphs.

Proposition : If there is a unicursal path from P to Q, then
(a) Γ is connected.
(b) Every vertex other than P and Q has flux 0.
(c) If P = Q, then P has flux 0.
(d) If P 6= Q, then P has flux +1 and Q has flux -1.

Proof: We can prove (a) easily as, in a disconnected graph, there will not be
any path that connects all edges and, so there can’t be any unicursal path.
Since we must leave each vertex the same number of times that we enter it,
all vertices apart from the origin and the terminus have flux 0; that is, (b) is
clear.
Of course, (c) is a special case of (b).
(d) follows from the fact that we leave P one more time than we enter it,
and the reverse holds for Q.

Preliminary observations:

1. Suppose that the two edges e and e′ of Γ have same initial points and
the same terminal points. Then the theorem holds for Γ. To see this,
we merely observe that, given any unicursal path ω, we can form a new
one ω′ by interchanging e and e′. Since we have performed transposition
which is equivalent to adding one 2-cycle to the permutation and hence
equivalent to changing sign of the permutation, so ε(ω) = −ε(ω ′).

2. The theorem is true if Γ is not connected since then there are no uni-
cursal paths at all.

3. If the theorem is true for the case E = 2V , it is also true for the case
E > 2V . To see this, we modify Γ by introducing k = E − 2V new
vertices and edges as in Figure 2, getting a new graph Γ′.
Figure 2
This new graph satisfies the condition E = 2V .There is a 1-1 correspon-
dence between the unicursal paths from P1 to Q on Γ′ and unicursal
paths from P to Q on Γ, because for any path from P1 to Q on Γ′,
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the path from P1 to P is always included without any permutations,
similarly any path from P can be extended to get a path from P1

which has the same number and kinds of permutations as before. This
correspondence preserves the signs ε(ω).

4. If the theorem is true for the case where E = 2V and all vertices have
flux 0, it is then true in general. To see this, we note that if not all
vertices have flux 0, the only non-trivial case is that where all have flux
0 but P has flux +1 and Q, which has flux -1. Proposition 1 shows
that there is no unicursal paths from P to Q in any other case. We now
define a new graph Γ′ by adding two edges and a vertex as in Figure 3.

Figure 3

There is clearly 1-1 correspondence between unicursal paths from P to Q on
Γ and unicursal paths from R to R on Γ′. This can be seen in a way similar to
the previous argument for correspondence between paths in the augmented
and the original graph. Again ε(ω) is preserved by this correspondence.

Now we proceed to prove Theorem 1.
By the points noted above, we can assume E = 2V and that all vertices
have flux 0. All the transformations of Γ performed below will preserve these
conditions. We now proceed by induction on V , the number of vertices. For
V = 1, the theorem is trivial by the first observation above. Let us assume
that V > 1. We shall show that all the possible graphs which fall under the
above assumptions (E = 2V and flux = 0) may be classified into three cases.
Then, every graph satisfying the assumptions will be reduced into a graph
which has fewer vertices and still satisfies the assumptions and thus, to a
case for which the theorem holds.

Case 1. Γ contains the configuration of Figure 4
Figure 4
This is the only case in which the induction hypothesis will be used. The
other cases will be treated by reducing them to this case.
If P = B, note that every unicursal path must begin or end with e2. By
moving e2 from beginning to end or vice-versa, we get a correspondence
ω ↔ ω′ between unicursal paths. Which means that for every unicursal path
with sign ε(ω), there is a unicursal path with sign −ε(ω){= ε(ω ′)}, so the
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theorem holds in this case.
If P 6= B, we replace the configuration made up of e1, e2, e3, and B by a single
edge e as in figure 5, getting a new graph Γ′. There is a 1-1 correspondence
between unicursal paths from P on Γ and Γ′ because any path from A to C
must pass through e1, e2, e3 in that order only, thus eliminating the need for
vertex B.
Figure 5
This correspondence also preserves ε(ω) since the part between A to C has
no permutations in either case. Now Γ′ has fewer vertices than Γ so the
induction hypothesis applies.

Case 2. Γ has vertex of order 2

Since E > V , not all vertices have order 2. By the second observation, we
may assume Γ is connected. Therefore Γ contains a configuration as in Figure
6 where A has order greater than 2.
Figure 6
For each edge ei, i = 1, . . . , k terminating at A, define a new graph Γi by
making transformation indicated in Figure 7. The part of Γ not shown is left
unaltered.
Figure 7
In any unicursal path on Γ, one of the ei’s must immediately precede e.
Consequently, this path is also unicursal on Γi; moreover, this path is not
unicursal for any other Γj, j 6= i since, on any other Γj, it is ej which precedes
e.
Conversely, we claim that any unicursal on any Γi, is also unicursal on Γ. To
see this, we break up vertex B of Γi into two vertices, A′ and B, where A′

and B are joined by e, and we fuse vertex A′ with A giving us Γ. Because
of this correspondence, it is sufficient to prove the theorem for each Γi. But,
each Γi satisfies the condition of Case 1.

Case 3. Cases 1 and 2 do not apply.

Since each vertex has flux 0, it must have even order. Consequently, each
has order ≥ 4 since Case 2 does not apply. Now, the average order of the
vertices is 2(E/V ) = 4, since each edge has 2 endpoints. This implies that
each vertex has order exactly 4. Therefore, Γ contains the configuration of
Figure 8.
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Figure 8
Let us now try the construction used in Case 2. This gives us the graphs
Γi, i = 1, 2 of figure 9. Here we let i′ = 2 if i=1 and i′ = 1 if i = 2.
Figure 9.
As in Case 2, every unicursal path on Γ is unicursal on exactly one of Γ1

and Γ2. However, we note that there are paths on Γi which enter B by ei,
but then leave by e6 or e7 without going around e4. Such paths are not
unicursal on Γ. However, they all contain a subpath e5e4ej where j = 6 or 7.
Consequently, they are exactly those paths which are unicursal on one of the
graphs Γ′

j, j = 6, 7 of Figure 10. Here, as before, j ′ = 7 if j = 6, and j ′ = 6
if j = 7.
Figure 10.
Now, the unicursal paths on the Γi, i = 1, 2 are exactly those unicursal on
either Γ or on some Γ′

j, j = 6, 7. Since Case 2 applies to the Γi and Case 1
applies to the Γ′

j, it follows that the theorem holds for Γ.

Finally, we finish by showing that the condition E ≥ 2V is really needed in
Theorem 1. Consider the graph Γ in figure 11. Here E = 2V − 1 and there
is evidently only one unicursal path from P to P .
Figure 11.
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