
.

Some algorithms in algebraic number theory

B.Sury

Stat-Math Unit
Indian Statistical Institute

Bangalore
sury@ns.isibang.ac.in

February 2006 - I.I.Sc.

1

Introduction

These talks address some of the topics mentioned in the survey article by
H.W.Lenstra Jr. in the Bulletin of the AMS, 1992. The point of view is
that of a number-theorist approaching for the first time the standard results
of the subject with a view to looking for constructive proofs. Of course,
that is too loose a term; more precisely, one looks for algorithms which can
be practically carried out in reasonable time if possible. As the subject has
grown in leaps and bounds in the last 15 years (mainly due to its relevance to
public key cryptography), it is imperative that the number-theorist introduce
herself to these algorithmic aspects at the earliest. At the same time, the
aim will be modest in that one is not bothered too much about the most
efficient method in terms of complexity.

Let K be an algebraic number field, and let OK denote its ring of integers.
Suppose K = Q(α) be given, in the sense that the minimal polynomial of α
over Q is given. At the first level, the principal objects of computation in
algebraic number theory are (their definitions will be recalled by and by) :
(i) Factors of a given polynomial f ∈ K[X].
(ii) An integral basis of K (and hence, the ring OK).
(iii) The group of units O∗

K .
(iv) The discriminant of K.
(v) The regulator of K.
(vi) The class number of K.
(vii) The class group of K.
(viii) A system of fundamental units of K.
(ix) The Galois group of any (finite) Galois extension of K.
(x) Deciding whether a given polynomial over K is solvable by radicals.
There are several other objects of study which could be discussed at a second
level. For example, the ray class fields and various invariants associated to
objects like elliptic curves over number fields can be studied. We do not
discuss them here. However, in order to discuss any of the ten objectives
outlined above, one has to recall some basic algorithms in elementary number
theory which are needed in almost all of them. In order to understand the
algorithms to compute any of the advanced objects like class group, unit
group etc., these will be discussed first.

2

§ 1. Classical algorithms in elementary number theory

1.1 Power map on a group
If G is a (usually finite abelian) group, then the map g 7→ gn requires at the
most 2log|n| + 1 steps. This is done by writing the base 2 expansion of n
and squaring repeatedly.

1.2 Finding GCD’s of integers
Here, we mean the extended version, where we are given natural numbers
a, b and want to compute two integers u, v such that au + bv is the GCD of
a and b. Of course, the usual Euclidean algorithm gives us u, v also. If the
numbers a, b are at most n, the number of steps of the algorithm is of the
order of log(n). As each division takes O(log(n)2) time, the running time is
O(log(n)3). However, a cleverer way of carrying out the division is due to
D.H.Lehmer and the overall running time is only O(log(n)2).
Note that the Euclidean algorithm provides an algorithm to find the inverse
of any element of the group Z∗

m of all positive integers not exceeding m and
coprime to m.

1.3 GCD’s of polynomials
Although the Euclidean algorithm is valid for polynomials over fields also, it
does not make much sense when the polynomials have real or complex coeffi-
cients as the coefficients are represented only approximately on a computer.
However, if the coefficients are rational numbers or integers, this problem is
overcome but there could be a different problem with the coefficients being
too large in size. This is because the sum of two rational numbers have nu-
merator and denominator of the magnitude of the product. However, as we
shall see later, computations with rational polynomials can often be reduced
to those on integral polynomials and the latter can be reduced to compu-
tations with polynomials over finite fields. Over finite fields, the Euclidean
algorithm works very well.

1.4 Chinese remainder theorem
Although this is mathematically as easy to prove for any commutative ring
as for the integers, a nice algorithm can be given only for Euclidean rings.
If m1, m2, · · · , mr are pairwise coprime, and if a1, a2, · · · , ar are arbitrary inte-
gers, a common solution x (which is unique modulo multiples of m1m2 · · ·mr)
for all the congruences x ≡ ai modulo mi; 1 ≤ i ≤ r is given as x =

3

∑r
i=1 aim

′
i(
∏

j 6=i mj) where m′
i(
∏

j 6=i mj) ≡ 1 mod mi.
Note that we already know from the (extended) Euclidean algorithm how to
compute the various m′

i. For this reason, Chinese remainder theorem is easy
to apply computationally only when Euclidean algorithm can be applied.

1.5 Primitive roots
Many public key cryptosystems require a cyclic group with the knowledge
of a generator. Typically, one uses the multiplicative group of a finite field
and the simplest example is Z∗

p for a prime p. In general, one knows that
the group Z∗

m is a cyclic group if, and only if, m = 2, 4, pr, 2pr for some odd
prime p. A generator of Z∗

m is called a primitive root mod m.
Finding a primitive root mod p for any prime p, is not an easy problem
computationally if p is large. The only method known is to first find all
primes q dividing p − 1 (more or less equivalent to factorising p − 1), and

checking the numbers a from 2 to p − 1 one by one as to whether a
p−1

q is 1
for any prime q/(p − 1). A primitive root is found when an a is found for

which a
p−1

q 6= 1 in Z∗
p for any prime q/(p − 1).

However, once a primitive root mod p is found for an odd p, it is easy to get
a natural number a which is a primitive root mod pr for every r. In fact,
either a or a+p does the job for each pr. Finally, if a is a primitive root mod
pr, then the odd number among a and a + pr is a primitive root mod 2pr.

1.6 Square roots mod primes
This is a special case of finding a root mod p of an integral polynomial, and
can be carried out using the quadratic reciprocity law :
If a, b are odd and b > 0, then (a/b) = (−1)(a−1)(b−1)/4(b/|a|).
This tells us how to check if a is a square mod p but how does one find a
square root b of a mod p ?
If p ≡ 3 mod 4, then b = a(p+1)/4 works.
If p ≡ 5 mod 8, then either b = a(p+3)/8 (if a(p−1)/4 ≡ 1) or (2a)(4a)(p−5)/8 (if
a(p−1)/4 ≡ −1) works.
The hard case is p ≡ 1 mod 8. Here, one has the following probabilistic
algorithm due to Tonelli and Shanks. This can be made deterministic but
becomes exponential time. The algorithm is polynomial time if one assumes
the truth of the generalized Riemann hypothesis (GRH) which predicts that
all nontrivial zeroes of the Dedekind zeta functions of number fields lie on
the line Re(s) = 1/2.

4

Let us describe the algorithm briefly.
Suppose we have found a generator x of a 2-Sylow subgroup P of Z∗

p. Write

p − 1 = 2eq with q odd. Now, aq is a square in P , as (aq)2e−1

= a(p−1)/2 = 1.
Thus, aq = x2n (as squares in P are just the even powers of x). Hence,
b = a(q+1)/2x−n is a solution of b2 = a in Z∗

p.
Now, the probability of finding a generator x for P is attacked probabilis-
tically as follows. Starting with a random r, one computes x = rq mod p.
This x generates P if, and only if, (r/p) = −1. The probability of finding a
quadratic non-residue r is (p−1)/2p which is close to 1/2 when p is large. Ev-
idently, if one goes through all the elements of Z∗

p in order to find a quadratic
non-residue, one may have to pass over (p−1)/2 elements before hitting one,
and, thus the deterministic algorithm would take exponential time. Assum-
ing the GRH, one can show that the smallest quadratic non-residue is of the
order of log(p)2. This is exactly what is used in the Miller-Rabin primality
test too !

1.7 Finding a root of f ∈ Fp[X]
Here, we are dealing with the easy problem of finding roots in Fp itself. Later,
we will see how to factor in Fp[X]. We take p be an odd prime. The idea
is that Fp being the fixed field of the Frobenius map φp : x 7→ xp on the
algebraic closure of Fp, one has

g := GCD(Xp − X, f) = c
∏

α∈Fp,f(α)=0

(X − α).

Then, the algorithm proceeds as follows :
Step 1 : If g(0) = 0, replace g by g(X)/X etc. and proceed.
Step 2 : If g = a0 + a1X with a0a1 6= 0, then the only nonzero root of f in
Fp is −a0a

−1
1 .

Step 3 : If g = a0 + a1X + a2X
2, find the square root of the discriminant

a2
1 − 4a0a2 by 1.6 say. Then, one can determine the roots of g.

Step 4 : In general, take a random a ∈ Fp, and find

h := GCD((X + a)(p−1)/2 − 1, g).

If h is either a constant or a constant multiple of g, go to the next a. Note
that for a root α of g, X −α is a factor of h exactly in the case when α+a is
a quadratic residue mod p. Thus, the chances of not finding a proper factor
h (that is a factor where both h and g/h are non-constant) is at the most

5

1/2deg(g).
Step 5 : Write out g/h and h and stop.
Step 6 : Start again with the smaller degree polynomials g/h and h in place
of g.

6

§ 2. Linear algebra algorithms

2.1 Characteristic polynomial and adjoint
Firstly, one can use Gauss elimination to compute det A for a given n × n
matrix A. There are also variants due to Lewis Carroll and Bareiss. Of
course, for a matrix with real or complex entries, one has many numerical
methods. If A has integer entries, one could compute the determinant modulo
several primes and use the Chinese remainder theorem after having estimated
how large |det(A)| is. Of course, the Gaussian elimination method works well
over finite fields. Being able to compute determinants, how does one compute
the characteristic polynomial ?
A method is to use Lagrange interpolation. One takes n + 1 distinct points,
say 0, 1, · · · , n and finds the values det(rI − A) for 0 ≤ r ≤ n. Then, the
characteristic polynomial

χA(X) := det(XI − A) =
n
∑

r=0

det(rI − A)
∏

s6=r

X − s

r − s
.

Here is a more direct method to compute χA(X) which is based on the
statement :

χ′
A(X) = Tr(adj(XI − A)).

The proof of the above statement is as follows. Expand det(XI − A) along
the i-th column and appeal to the multilinearity of determinant to conclude
χ′

A(X) =
∑n

i=1 aii(X), where aii(X) is the subdeterminant of the (n − 1) ×
(n − 1) matrix obtained by removing the i-th row and the i-th column from
XI − A.
The algorithm to obtain the characteristic polynomial as well as the adjoint
of A can be described as follows :
Start with a0 = 1, B0 = I. Compute a1, · · · , an and B1, · · ·Bn−1 recursively
using

ai =
−Tr(ABi−1)

i
, Bi = ABi−1 + aiI.

Then, χA(X) =
∑n

i=0 aiX
n−i and adj(A) = (−1)n−1Bn−1.

The proof that this algorithm is correct goes as follows.
Write adj(XI − A) =

∑n−1
i=0 BiX

n−i−1 and χA(X) =
∑n

i=0 aiX
n−i. Then, the

above observation gives

(n − i)ai = Tr(Bi) ∀ i < n.

7

Moreover, the equality χA(X)I = (XI−A)adj(XI−A) gives on comparison
of coefficients of like powers of X that

aiI = Bi − ABi−1 , n > i ≥ 1 , anI = −ABn−1 , a0 = 1.

Take traces to get Tr(Bi) = Tr(ABi−1) + nai and we get

ai =
−Tr(ABi−1)

i
∀ 1 ≤ i ≤ n.

Finally, Bn−1 = adj(XI − A) at X = 0 = adj(−A) = (−1)n−1adj(A).

2.2 Free abelian groups defined by an integral matrix
Most of the groups appearing in algebraic number theory like the class group,
the unit group of a number field K, the additive group of any ideal of O etc.
are all finitely generated abelian groups. They are usually given as images,
kernels and cokernels of the homomorphisms on free abelian groups defined
by integral matrices.
Working with algorithms in linear algebra over the field Q is insufficient to
distinguish between different free abelian subgroups of Qn which generate
the same Q-vector space.
The best way to work with an integral matrix is to reduce it to a convenient
normal form. The two forms commonly used are the Hermite normal form
and the Smith normal form.
Hermite normal form (HNF) :
Let A ∈ Mm,n(Z) where m ≤ n, say. Then, there is a (not necessarily unique)
matrix M ∈ GL(n,Z) such that B := AM is in Hermite normal form. The
Hermite normal form of A is unique.
The statement that B is in HNF means :
(i) there is r ≤ n for which the first r columns of B are 0, (ii) on the j-
th column, if l(j) is maximal such that bl(j),j 6= 0, then bl(j),j ≥ 1, (iii)
l(j + 1) > l(j), and (iii) all entries to the right of bl(j),j are strictly less but
non-negative.
If A has maximal rank (must therefore be m), then r = n − m and the last
m columns are linearly independent and form an upper triangular matrix of
a special form.
In general, we have :
The image of A (considered as a homomorphism from Zn to Zm) is free
abelian and has as a Z-basis the non-zero columns of B.

8

The kernel of A is free abelian with a Z-basis the first r columns of (any) M
as above, where r is the largest number for which the first r columns of B
are zero.
The proof of the first statement is clear. Let us prove the second one now. If
Mi denotes the i-th column of M , then AMi is the i-th column of AM = B.
Therefore, AMi = 0 for i ≤ r. Solving the system of linear equations BY = 0
from the bottom, it follows that the last n−r entries of Y are zero and the first
r entries are arbitrary. In other words, the first r canonical vectors e1, · · · , er

of Zn form a Z-basis of Ker B. Thus, the vectors Me1, Me2, · · · , Mer form
a Z-basis of Ker A.
A caveat is that even with a 20 × 20 matrix with integral entries ≤ 10, the
algorithm to computate the HNF may involve integers with 1500 digits !
Here, we are talking about the simple algrithm similar to using Gaussian
elimination to find pivots etc. One way of overcoming these problems is by
using the path-breaking LLL-algorithm which we shall talk about shortly.

An application of HNF - to check equality of lattices :
If L, L′ are lattices in Qn which have the same rank m, then one can use
the HNF to check efficiently whether L = L′. Indeed, let dL, dL′ denote the
denominators of L, L′ resectively; these are the smallest natural numbers for
which dLL, dL′L′ ⊂ Zm. The lattices dLL and dL′L′ have HNF’s B, B′ say.
Then L = L′ if, and only if, B = B′ and dL = dL′.

2.3 Finite abelian groups
Groups like the class group arise as Zn/L for some lattice L of maximal
rank. The earlier method works for free abelian groups but to find quotients,
it is efficient to use the Smith normal form. This is nothing but the matrix
given by the elementary divisor theorem. The standard proof in any algebra
textbook can also be given as an algorithm. However, both the SNF and the
HNF are computed efficiently using the LLL which we shall talk about next.

2.4 The LLL-algorithm
This 1982 method due to A.K.Lenstra, H.W.Lenstra Jr. and L.Lovasz broke
new ground and has proved a most influential method for computations in
number theory - especially in factorisation of polynomials over number fields.
In simple terms, this method starts with a basis of a lattice and reduces it
to a basis which is nearly orthogonal and whose vectors are ‘shorter’ in a
sense. This reduction is managed by the LLL-algorithm in polynomial time.

9

In some sense, the LLL method unwarps a badly warped basis. Let us be
more precise now.
The set-up is as follows. We consider pairs (L.q) where L is a lattice of rank
n and q is a positive-definite quadratic form on the real space L ⊗ R. One
may define an equivalence (L, q) ∼ (L′, q′) if there is an abelian group isomor-
phism between the lattices which respects the forms. As a positive-definite
quadratic form on Rn gives rise naturally to a positive-definite symmetric
matrix, the equivalence above can be expressed in terms of matrices as fol-
lows.
The equivalence classes (L, q) correspond bijectively with the classes of positive-
definite symmetric matrices Q, where Q ∼ Q′ if Q′ = tMQM for some
M ∈ GL(n,Z).
Let {v1, · · · , vn} be a basis of Rn. Consider the lattice L with this as Z-basis.
One calls the positive real number |det(v1, · · · , vn)| given by the absolute value
of the determinant of the matrix with vi’s as columns to be the discriminant
of L and denotes it by disc(L). Note that a change of Z-basis does not affect
the discriminant as the determinant inside can change by ±1 only. Now, the
Gram-Schmidt process produces an orthogonal (not necessarily orthonormal)
basis of V in the usual way :
w1 = v1, wi = vi −

∑

j<i µijwj where µij = <vi,wj>

<wj ,wj>
.

One defines the Z-basis {v1, · · · , vn} of L to be LLL-reduced if :
(i) |µij| ≤ 1

2
for all i > j, and

(ii) |wi + µi,i−1wi−1|2 ≥ 3
4
|wi−1|2 for all i > 1.

In what follows, the constant 3
4

in (ii) can be replaced by any t ∈ (1
4
, 1). Note

that (ii) is equivalent to |wi|2 ≥ (3
4
−µ2

i,i−1)|wi−1|2 for i > 1 and that the vec-
tors wi + µi,i−1wi−1 and wi−1 are the projections of vi and vi−1 respectively,
on the orthogonal complement of

∑

j<i−1 Rvj.
Proposition.
Let {v1, · · · , vn} be an LLL-reduced basis of L. With wi’s defined as above,
we have :
(a) |vj|2 ≤ 2i−1|wi|2 for j ≤ i,
(b) disc(L) ≤ ∏

i |vi| ≤ 2n(n−1)/4disc(L),
(c) |v1| ≤ 2(n−1)/4disc(L)1/n, and
(d) For 0 6= x ∈ L, |v1| ≤ 2(n−1)/2max(|x|.
If the constant 3

4
in (ii) is replaced by some t ∈ (1

4
, 1), then all the powers of 2

in the proposition are replaced by the same powers of the number 4
4t−1

. Also,

10

the inequality disc(L) ≤ ∏

i |vi| is true for any (not necessarily LLL-reduced)
basis and is known as Hadamard’s inequality. The proof of the proposition
is simple.
The reduction of any basis to an LLL-reduced basis can be desribed by an
algorithm whose running time is O(n6(log(C)3), where C is a bound for all
|vi|. In practice, it is often seen to take even less time.
Further, if the Gram matrix of the inner products < vi, vj > of a basis {vi}
is integral, the algorithm can be given in such a way that all computations
are done in Z itself (and not go to Q as may be the case for a general basis).
The LLL algorithm does not give the shortest vector (this is a notoriously
difficult problem) but one reasonably close to it.
One can adopt the LLL-algorithm to compute the kernel and image of an
integral matrix also but the algorithm has to be modified to deal with de-
pendent vectors also.

11

§ 3. Factorisation of polynomials

3.1 GCD’s of polynomials
Multiplication of two polynomials of degrees m, n respectively, can be done by
computing the values at m+n+1 points and using Lagrange’s interpolation.
The extended Euclidean algorithm to find the GCD of two polynomials works
very well over finite fields. For example, for small primes p, and polynomials
of degree of the order of 1000 over Fp, the GCD is found in a few seconds.
But, it can take much longer for polynomials over Q. However, one can use
a modification for integral polynomials where one works over Z itself (that
is not divide polynomials really) and then it is much faster. It is referred to
sometimes as pseudo-division, and can also be used to find GCD of integral
poynomials. However, even that involves finding the content of the remainder
at each step and there is a better algorithm which avoids that. This is the so-
called subresultant algorithm which is similar to finding the resultant of two
polynomials. The basic method of pseudo-division leading to a computation
of the GCD of integral polynomials goes as follows.

Let f, g ∈ Z[X] be nonzero polynomials of degrees m, n (with m ≥ n say).
Denote by l(g) and c(g) respectively, the leading coefficient and the content
of g.
We want to find integral polynomials q, r such that deg(r) < deg(g) and
l(g)m−n+1f = qg + r where we want to avoid dividing polynomials.
Consider

q1 = l(f)Xm−n , r1 = l(g)f − q1g.

Notice that l(g)f = q1g + r1 and deg(r1) < deg(f).
If deg(r1) < deg(g), then we are through by multiplying the above by a power
of l(g).
If deg(r1) ≥ deg(g), define

q2 = l(g)q1 + l(r1)X
deg(r1)−deg(g) , r2 = l(g)r1 − (q2 − l(g)q1)g.

Note that l(g)r1 = (q2− l(g)q1)g+r2 and that deg(r2) < deg(r1). Proceeding
in this manner, since the degrees of the ri’s decrease at each stage, we will
get ri with deg(ri) < deg(g) for some i ≤ m − n + 1.
Note that l(g)i = qg + ri for some q. This completes the pseudo-division of
f by g.
To get the GCD of f, g, proceed as follows.

12

Do the pseudo-division of g by r/c(r) and get a remainder of degree < deg(r).
Proceeding in this manner, it is clear that we are led to a constant polynomial
after finitely many steps, we are led to the GCD of f, g upto a constant
multiple. Then, the GCD of f, g is the corresponding primitive polynomial
multiplied by GCD(c(f), c(g)).
An extension of this algorithm can be given where one can recover u, v ∈ Z[X]
such that fu + gv = GCD(f, g).

3.2 Factorisation in Fp[X]
Factorisation in Z[X] or in Q[X] usually rely on factorisation in Fp[X] for
various primes p. Unlike Z, polynomials tend to have many factors over Fp.
One method is due to Berlekamp and uses the Chinese remainder theorem in
Fp[X] and works well for square-free polynomials. We discuss a probabilistic
algorithm due to Zassenhaus to factorise f ∈ Fp[X] completely.
Step I : Find square-free, relatively prime polynomials f1, · · · , fk ∈ Fp[X]
such that f = f1f

2
2 f 3

3 · · · fk
k .

To do this, one proceeds as follows.
The polynomial fi would be the product of all linear factors X−α for various
roots α ∈ Fp of f having multiplicity equal to i. These are found by taking
GCD’s with auxiliary polynomials as follows.
Note that f =

∏

i f
i
i means f ′ =

∑

i if
i−1
i f ′

i

∏

j 6=i f
j
j and that g := (f, f ′) =

∏{f i−1
i : p 6 |i}∏p|i f

i
i .

Start with g1 = g, h1 = f/g =
∏{fi : p 6 |i}.

Compute hl+1 = hl or (gl, hl) according as to whether p|l or not.
Compute gl+1 = gl

hl+1
.

Now, hl =
∏{fi : i ≥ l, p 6 |i} by induction on l.

Similarly, gl =
∏

p|i f
i
i

∏{fj : j > l, p 6 |j} by induction.

Therefore, fl = hl

hl+1
for all p 6 |l.

When hl is constant, then gl−1 =
∏

p|i f
i
i = α(Xp) for an easily computed α

in Fp[X]. Work with α in place of f all over again.
Step II : Split each fi as fi =

∏

d fi,d where fi,d is the product of all irreducible
factors of degree d.
For this, note that the irreducible polynomials of degree d in Fp[X] are

precisely the factors of Xpd − X which are not factors of Xpe − X for any
e < d. Thus, one can take GCD’s with various Xpe−X to find the irreducible
factors of degree d and then fi,d. To check irreducibility of a polynomial g

13

of degree d over Fp, it is necessary and sufficient to check that g/(Xpd − X)

and, for each prime l|d, GCD(g, Xpd/l − X) = 1. It should be noted that

in finding GCD’s as above, one deals with powers like Xpd/l
by looking at it

mod g and then looking for GCD’s etc.
(Main) Step III : Split each fi,d into the irreducible factors of degree d.
Renaming, let g ∈ Fp[X] be so that all its irreducible factors are of degree d.
Let us take p odd (an analogue can be given for p = 2). Note that for any
h ∈ Fp[X], one has

g = (g, h)(g, h(pd−1)/2 + 1)(g, h(pd−1)/2 − 1).

Therefore, we take a random monic polynomial h of degree ≤ 2d − 1; then
we will have (with probability 1/2) a proper factor (g, h(pd−1)/2 − 1) of g.
Thus, we continue to work with smaller degree factors until ultimately we
obtain all the irreducible factors of our g.
Finally, we can gather together all identical factors and order them by degree.

3.3 Factorisation in Z[X]
As mentioned earlier, this very crucial aspect in algorithmic number the-
ory will depend on factorisation over finite fields. We shall see soon that
a polynomial time (in degree) algorithm exists for factorisation of primitive
integral polynomials if we use LLL. However, it is interesting to note that no
polynomial time algorithm is known for factorisation in Fp[X] !
But, let us first make two simple observations.
First of all, an integral polynomial which is irreducible modulo p for some
prime p is evidently irreducible over Z itself (apart from its content). But,
it is a rare occurrence.
The second observation is more useful. Given any integral polynomial f of
degree n, say, the degrees of the irreducible factors modulo any prime p, give
a partition of n. If the partitions obtained modulo different primes are ‘in-
compatible’, once again f has to be irreducible. For example, if the partitions
are 1 + 3 and 2 + 2 modulo two primes for a polynomial f of degree 4, f has
to be irreducible over Z.
However, in the absence of such obvious occurrences, in general, one tries to
factorise a given f mod some prime p and lift the factorisation to a factori-
sation mod pα for a suitable power and then lift it all the way to Z.
To make such a thing work, one usually needs an a priori bound for the coef-
ficients of all factors of f in Z[X]. Such a bound is provided by the following

14

result of M.Mignotte :
If g =

∑m
i=0 biX

i divides f =
∑n

i=0 aiX
i in Z[X], then

|bi| ≤
(

m − 1

i

)

(
∑

j

|a2
j |)1/2 +

(

m − 1

i − 1

)

|an|.

To see how such a bound is used, let us look at an example.
Example : Let f = X6 − 6X4 − 2X3 − 7X2 + 6X + 1.
For any factor g of degree ≤ 3, and any i ≤ 3, |bi| ≤ 23 by the Mignotte
bound. Consider a prime p > 46, say 47 mod which f is square-free.
Indeed, f mod 47 is (X − 22)(X − 13)(X − 12)(X + 12)(X2 − 12X − 4).
Firstly, as f(0) = 1, f has no roots in Z (as ±1 are not roots mod 47).
To check that f has no quadratic factors, we look at the 2-term products like
22 × 13 etc., none of which are ±1 mod 47.
Thus, f must either be irreducible or a product of two irreducible polynomials
of degree 3. Suppose the latter happens. Then, one of the factors of degree
3 has (X2 − 12X − 4) as a factor mod 47. Since the constant term is ±1,
and (−4)(±12) ≡ ±1 mod 47, one of the cubic factors of f reduces mod 47
to either (X2 − 12X − 4)(X − 12) or to (X2 − 12X − 4)(X + 12).
The first case is ruled out because the integral polynomial reducing to X3 +
23X2 −X +1 mod 47 contradicts Mignotte’s bound 13 for the coefficients of
any possible cubic factor.
The second case X3 − 7X − 1 is indeed possible, and in fact, leads to the
factorisation

X6 − 6X4 − 2X3 − 7X2 + 6X + 1 = (X3 + X − 1)(X3 − 7X − 1)

in Z[X].

In general, here is how factorisation over Z[X] is carried out.
Start with 0 6= f ∈ Z[X].
Reduce to a square-free primitive polynomial (by f 7→ f

(f,f ′)
, f 7→ f/c(f)).

Find p for which f is square-free mod p; that is, such that GCD(f, f ′) = 1
in Fp[X].
Find factorisation of f mod p.
Use Mignotte to find a bound B for the coefficients of any potential factor
in Z[X] of degree ≤ deg(f)/2.

15

Find the smallest α such that pα > 2Bl(f), where l(f) is the leading coeffi-
cient of f .
Lift factorisation of f mod p to a factorisation mod pα using Hensel’s lemma.
Therefore, f ≡ l(f)f1 · · · fr mod pα with fi monic polynomials in Z[X].
Starting with d = 1, consider each combination of products fi1 · · · fid, and
find the unique g ∈ Z[X] whose coefficients have absolute value < pα/2, and
which satisfies g = l(f)fi1 · · · fid if deg(g) ≤ deg(f)/2 and g = l(f) f

∏d

l=1
fil

if

deg(g) > deg(f)/2.
If g|l(f)f in Z[X], output the factor F = g/c(g) and the power to which g
divides f .
Take the new f to be f/F and drop all the corresponding fi’s in the list of
factors mod pα. Work with these now.
Go to d = 2 and repeat as above. Keep increasing d until it exceeds r/2
(remember r is the number of factors of f mod pα).
If d > r/2, terminate and output f/c(f).
This algorithm as written takes exponential time. But, one can get a polynomial-
time algorithm by using LLL-reduction to certain lattices and this method
leads to a factorisation of a polynomial in Q[X] also.
Let us see how LLL comes into the picture.

The basic result on which the algorithm is based is the following :
Let p be a prime, k ∈ N, f ∈ Z[X] of degree n > 0, h ∈ Z[X] monic
such that h mod p is irreducible, h mod pk divides f mod pk and (h mod
p)2 does not divide f mod p. Then, there is an irreducible factor h0 ∈ Z[X]
of f determined uniquely upto sign such that h mod p divides h0 mod p.
Furthermore, a factor g of f in Z[X] is divisible by h0 in Z[X] if, and only
if, g mod pk is divisible by h mod pk. In particular, h0 mod pk is divisible by
h mod pk.

We would like to find a way to compute h0 efficiently. To do this, one
(starts with f, p, k, h as above and) fixes some m ≥ l := deg(h) and considers
the lattice L consisting of all integral polynomials of degree ≤ m which
are, mod pk, divisible by h mod pk. This is a lattice in the vector space
R + RX + · · · + RXm which we can think of as Rm+1. Note that the
Euclidean length provides the notion of the length of a polynomial. That is,
|∑m

i=0 aiX
i| = (

∑ |ai|2)1/2.
Observe that L has a basis {pk, pkX, · · · , pkX l−1, h, Xh, · · · , Xm−lh}.

16

Note that h0 itself belongs to L if, and only if, deg(h0) ≤ m. Now, it can be

checked that an element b ∈ L satisfying the condition |b|n < pkl

|f |m is divisible

by h0 in Z[X]. (This requires proof which is not difficult, and see the LLL-
paper).
In paticular, such an element b gives a factor GCD(b, f) of f of degree > 1.
Let us now choose {b1, · · · , bm+1} to be an LLL-reduced basis. If one had

the condition pkl > 2mn/2
(

2m
m

)n/2|f |m+n, then one may use Mignotte’s result
quoted earlier to prove :
b1| < (pkl/|f |m)1/n if, and only if, deg(h0) ≤ m.
The outline of the proof of this claim goes as follows.
Assume that deg(h0) ≤ m. Then, h0 ∈ L. Then, the statement (d) of the
proposition on LLL-reduced bases tells us that |b1| ≤ 2m/2|h0|.
Now, Mignotte’s bound gives

|h0| ≤
(

2m

m

)1/2

|f |.

Thus, |b1| ≤ 2m/2
(

2m
m

)1/2|f |.
Thus, if one had the condition pkl > 2mn/2

(

2m
m

)n/2|f |m+n, then |b1|n|f |m < pkl.
This proves the claim and thus, the idea would be to get m etc. so that the
above inequality is satisfied and ensure that h0 ∈ L.
Moreover, if t < m + 1 is the largest for which bt satisfies the inequality
|bt|n|f |m < pkl, then it can be shown that all the bj with j ≤ t also satisfy it
and, h0 = GCD(b1 · · · , bt) and deg(h0) = m + 1 − t.
Therefore, in order to describe h0 through an algorithm, one starts with f, p
and a monic integral h which is irreducible mod p, divides f mod p and its
square does not divide f mod p.
We may assume l < n; otherwise f is irreducible.

Find the smallest k satisfying pkl > 2n(n−1)/2
(

2(n−1)
(n−1)

)n/2|f |2n−1.

We may use Hensel to modify h and assume that h divides f mod pk also.
Assume also that the coefficients of h are reduced mod pk.
Now, if u is the largest natural number for which l ≤ n−1

2u , then we start with
m = [n−1

2u] and consider the lattice L that we described above.
We choose an LLL-reduced basis {bi} as before.
Then, as asserted above, either |b1| ≥ (pkl/|f |m)1/n (in which case deg(h0) >

17

m), or |b1| < (pkl/|f |m)1/n (in which case deg(h0) ≤ m, h0 = GCD(b1, · · · , bt)
for some t < m + 1).
In the latter case, we have determined h0. In the former case, we change m
to [n−1

2u−1] and repeat the argument. If deg(h0) > [n−1
2u−1], change m to [n−1

2u−2]
etc. and continue until n− 1. If deg(h0) > n− 1, then obviously h0 = f and
we stop.

3.4 Factorisation in K[X]
Let K be an algebraic number field and OK , its ring of integers. We make
some comments about how the algorithm of the previous section carries over
to polynomials in K[X]. Also, a polynomial f ∈ K[X] can be multiplied by
an element of K∗ to get a polynomial in OK[X]. However, it does not make
sense to factorise over OK as it is not usually a PID (=UFD). However,
it is easy to use the factorisation over Q to get one over K as follows. If
σ1, · · · , σn are the various embeddings of K in C extending the inclusion
Q ⊂ C, then the ‘norm polynomial’ N(f) ∈ Q[X] can be factorised as above
into irreducibles. If f is square-free, then N(f) is also square-free (over Q)
and it is easy to see that the factorisation N(f) =

∏r
i=1 fi into irreducibles

over Q gives the factorisation f =
∏r

i=1 GCD(f, fi) into irreducibles over K.
Here, of course, the GCD is in K[X].
However, one could directly imitate the method for Q, taking f in OK [X],
factorising it modulo a suitable prime ideal P and lifting to an appropriate
power of it (a generalisation of Mignotte’s bound is available) and use the
LLL-reduced bases for powers of P (viewed as lattices) etc., and have a
polynomial-time algorithm. Care is required in the choice of the power of
the prime ideal above because that is crucial in ensuring a lift in OK[X].
Note that an irreducible polynomial in OK[X] may be reducible in K[X].

18

§ 4. Computing unit group and class group

4.1 Computing r1, r2 for K
Given a number field K = Q(θ), with θ ∈ OK and the minimal polynomial
f = min(θ,Z), it is possible to obtain the numbers r1, r2 of real and non-real
places without actually finding all the real roots. This is a method due to
Sturm using sign changes, similar to the Descartes rule of signs. Briefly, it
goes as follows :
Start with F = f/c(f)(= f), G = f ′/c(f ′), a = 1, b = 1, s = sign(l(F))(=
1), n = deg(F), t = (−1)n−1s, r1 = 1.
Perform the GCD operation over Z; that is, put d = deg(F) − deg(G) and
compute polynomial remainder R with l(G)d+1F = QG + R.
If l(G) > 0 or if d is odd, change R to −R.
If sign(l(R)) 6= s, change s to −s, r1 to r1 − 1.
If sign(l(R)) 6= (−1)deg(R)t, change t to −t and r1 to r1 + 1.
If deg(R) = 0, stop and output the value of r1 (and r2 = (n − r1)/2).
If not, change F to G, G to R/abd, a to |l(F)|, b to b1−dad and go back to do
division of this new F by G.

4.2 Standard representation
How does one represent elements of a number field K or of its ring of inte-
gers etc.? As has been hinted earlier, we want to view them as subsets of
Euclidean spaces and be in a position to apply algorithms like LLL.
If K = Q(θ) has degree n, where θ ∈ OK , then every α ∈ K has a unique rep-
resentation α = 1

d

∑n−1
i=0 aiθ

i with ai ∈ Z, d ∈ N and GCD(a0, · · · , an−1, d) =
1.
Then, the standard representation of α is as (a0, a1, · · · , an−1, d) ∈ Zn+1.
It is easy to use the standard representation of α to compute the characteris-
tic polynomial χα of Rα (the ‘multiplication by α map on the Q-vector space
K). Indeed, if we take f = min(θ,Z) and F (X) =

∑n−1
i=0 aiX

i, then

χα(X) = d−nRY (f(Y), dX − F (Y))

where RY denotes the resultant of polynomials in Y .
This expression for χα(X) holds because

χα(X) =
∏

i

(X − σi(α)) =
∏

i

(X − 1

d
F (σi(θ))) = d−n

∏

i

(dX − F (θi)).

19

4.3 Checking isomorphism of fields
To check whether Q(α) is isomorphic to a subfield of Q(β), there are a
number of ways. We want to check if some conjugate of α is in Q(β). One
way is to use factorisation. Decomposing f = min(α,Q) in Q(β)[X] as a
product of irreducibles, one would have a linear factor if, and only if, some
conjugate of α is in Q(β). To check isomorphism of fields, one simply checks
their degrees and checks if one is isomorphic to a subfield of the other.

4.4 OK and ideals as lattices
Let K = ⊕n

i=1Qαi be a number field and let R = ⊕n
i=1Zαi. This is an abelian

subgroup of K having rank n. Then, consider any abelian subgroup M of K
of rank n, one can define the denominator of M with respect to R to be the
smallest natural number d = d(M) such that dM ⊆ R.
The HNF-basis of M with respect to R is defined to be the unique basis
{ω1, · · · , ωn} of M such that dωj =

∑

i ωijαi and the triangular integral ma-
trix (ωij) is in HNF.
In the special case of an order R = Z[θ] where K = Q(θ), the HNF with
respect to R is particularly nice; it is ωj = zj

d
(θj−1 +

∑

i<j hijθ
i−1) with zi

natural numbers such that zj|zi for j > i and 0 ≤ hij < zi

zj
for i < j.

Actually, z1 is the smallest positive element of dM ∩ Z.
Note that as an advantage of using such an HNF-basis, one can compute the
norm of any ideal I of OK as follows.
First, let K = Q(θ) where θ ∈ OK and let R = Z[θ] as above. Of course,
R ⊆ OK and equality may not hold.
For an ideal I of OK , consider the HNF matrix (hij) of I with respect to R
and the denominator d of I with respect to R. Then,

d−nN(I) = [OK : dI] = [OK : R]
∏

i

hii.

Multiplication of ideals is again carried out efficiently by using HNF-bases
as follows. Let I, I ′ be integral ideals given by HNF-matrices M, M ′ with
respect to some integral basis {ω1, · · · , ωn}. That is, the columns of M give
co-ordinates in terms of the integral basis above, for a basis of I etc. If γi

and γ′
j are the various column vectors of M, M ′ respectively, then one looks

at the n × n2 matrix whose columns are the co-ordinates of γiγ
′
j in terms of

the integral basis. Compute the HNF of this n × n2 matrix, and this is the
HNF for II ′.

20

In practice, one can be even more efficient by getting hold of a 2-element
generating set for one of the ideals, say I ′, and working with an n × 2n ma-
trix instead of an n × n2 matrix.
For operating with the class group, one needs to compute the inverse of any
ideal class, and this requires the computation of the different.
Recall that the different δ(K) is the integral ideal whose inverse is the frac-
tional ideal

{x ∈ K : TrK/Q(xOK) ⊆ Z}.
To find it, start with an integral basis {ω1, · · · , ωn} and compute the inverse
of the matrix T = (TrK/Q(ωiωj)). Then, the columns of this inverse matrix
when considered as co-ordinates on the basis {ω1, · · · , ωn} give a Z-basis of
the fractional ideal δ(K)−1.
Further, if I is an integral ideal given by a matrix M = (mij) whose columns
give co-ordinates for a Z-basis of I, then the columns of (tMT)−1 give a
basis for I−1δ(K)−1. Thus, I−1 is found by looking at the above method to
compute the basis for the inverse (Iδ(K)−1)−1 but since Iδ(K)−1 may not
be an integral ideal, one usually modifies the method as follows. Firstly, we
note that the matrix T above has determinant disc(K), the discriminant of
K and therefore disc(K)δ(K)−1 is an integral ideal.
We are given the integral ideal I as a matrix M = (mij) whose columns
give the co-ordinates of a Z-basis {γj} of I in terms of a given integral basis
{ω1, · · · , ωn}. We wish to compute the HNF-basis of I−1. Let us proceed as
follows.
Compute T, det(T) and det(T)T−1.
Call {δj}, the columns of det(T)T−1; they give a basis for the integral ideal
disc(K)δ(K)−1. Compute N , the HNF of the n × n2 matrix whose columns
are the co-ordinates on the n2 products γiδj; evidently the columns of N give
a basis for disc(K)Iδ(K)−1.
Put P = disc(K)(tNT)−1, and let d be the common denominator for entries
of P . Compute W , the HNF of dP . Then, W is the HNF of I−1 and d is the
denominator of I−1 (with respect to OK).

4.5 Computing an integral basis for OK

In each computation above, we pre-supposed that we know OK and that we,
in fact, know an integral basis. However, it is a highly nontrivial problem
to find OK. As a matter of fact, finding OK is equivalent to finding the
square-free part of a given natural number. As of now, one does not know

21

if this latter problem is any easier than the hard problem of factorisation of
natural numbers.
If K = Q(θ) with θ ∈ OK of degree n, the discriminant of the number field
K satisfies disc(1, θ, · · · , θn−1) = disc(K)[OK : Z[θ]]2.
Therefore, a criterion for OK to be equal to Z[θ] is that disc(1, θ, · · · , θn−1)
is square-free.
Due to this difficulty, one sometimes tries to work with orders like Z[θ] in
place of the maximal order OK but this raises other complications. For
instance, not all ideals over an order may be invertible; of course, all invertible
ideals do form a group called the class group of that order.
A method to obtain OK starting from an order like Z[θ] is to deal with the
primes dividing the index [OK : Z[θ]] one at a time and enlarging the order
to get to the maximal order. This works by applying the famous result of
Dedekind on the reciprocity for prime ramification and is due to Zassenhaus;
it goes as follows.

First, write K = Q(θ) with θ ∈ OK , f = min(θ,Q) of degree n. Write
disc(f) = dc2 where d is a fundamental discriminant (or 1). Hence, the only
possible primes dividing the index [OK : Z[θ]] are among the prime divisors
of c.
Start with the order A = Z[θ] and any prime p|c.
We shall first use the following steps to check whether A is p-maximal; that
is, whether p does not divide the index [OK : Z[θ]].
Write f mod p (say f̄) as the product

∏g
i=1 f̄i

ei of monic irreducibles in Fp[X].
Let fi ∈ Z[X] be arbitrary monic lifts of f̄i.

Let h ∈ Z[X] be a monic lift of
∏g

i=1 f̄i
ei−1

.
Look at the polynomial g(X) = 1

p
(h(X)

∏g
i=1 fi(X) − f(X)) ∈ Z[X].

Then, Z[θ] is p-maximal ⇔ GCD(ḡ, h̄,
∏g

i=1 f̄i) = 1 in Fp[X].
Now, if A := Z[θ] is not p-maximal, then for any monic lift u(X) ∈ Z[X]
of ḡ

GCD(ḡ,h̄,
∏g

i=1
f̄i)

, one has the enlarged order A′ = Z[θ] + 1
p
u(θ)Z[θ] which

satisfies [A′ : A] = pm where m is the degree of GCD(ḡ, h̄,
∏g

i=1 f̄i).
Thus, note that disc(A′) = 1

p2m disc(f).

So, if p2 6 |disc(A′), then A′ is p-maximal, and one goes to the next prime
divisor of c.
If p2|disc(A′), then work with A′ in place of A and continue as above.

4.6 Decomposing prime ideals in OK

22

If K = Q(θ) with θ ∈ OK , then we know the decomposition of any unramified
integral prime p which does not divide [OK : Z[θ]] from the decomposition
mod p of the minimal polynomial of θ over K. This is Kummer’s theorem.
So, let us look at a prime p dividing this index; that is, a prime p for which
Z[θ] is not p-maximal. More generally, instead of the whole of OK, the
following procedure due to Buchmann and Lenstra works for any order O
which contains Z[θ] for which p|[O : Z[θ]].
Let pO =

∏g
i=1 P ei

i .
Consider the ideal Ip =

∏g
i=1 Pi. The point is that the Fp-algebras O/P ei

i

may not be separable, and one wants to get to separable algebras over the
finite field and lift the information. In order to do this, we define

Kj = Ij
p + pO =

g
∏

i=1

P
min(ei,j)
i .

Then, Kj ⊆ Kj−1, and so Jj := KjK
−1
j−1 =

∏

ei≥j Pi.
Note Jj ⊆ Jj+1. So, Hj := JjJ

−1
j+1 =

∏

ei=j Pi is a product of distinct maximal
ideals.
Moreover, Hj’s are pairwise coprime, and pO =

∏max(e1,...,eg)
j=1 Hj

j .
(This is exactly the anlogue of the square-free factorisation in Fp[X] we
discussed earlier.)
Thus, we need to say how to compute the Hj’s. Now, O/Hj = Fp[ᾱj], as it
is a separable Fp-algebra.
Let h̄j be the characteristic polynomial of ᾱj over Fp.

For any lift hj ∈ Z[X], let hj ≡
∏tj

i=1 uij mod p where ūij are irreducibles.

Then, the ideals Uij := Hj + uij(αj)O are maximal, and Hj =
∏tj

i=1 Uij.
It should be remarked that the finding a primitive element of a separable
Fp-algebra (and therefore splitting Hj into the product of maximal ideals)
is not as time-consuming as multiplying and dividing ideals ! Therefore, to
speed up these latter jobs, one observes that our multiplication of ideals etc.
takes place only mod pO. It is quicker to multiply or divide mod pO using
easy linear algebra over Fp.

4.7 Roots of unity in K
We start first by recalling some basic objects. Recall the ‘log’ map that one
introduces while proving Dirichlet’s unit theroem for a number field K.
If σ1, · · · , σr1

are the real embeddings of K and σr1+1, · · · , σr1+r2
, ¯σr1+1, · · · , ¯σr1+r2

are the complex (that is, non-real) embeddings, the ‘log’ map is the group

23

homomorphism
‘log′ : K∗ → Rr1+r2

x 7→ (log|σ1(x)|, · · · , log|σr1
(x)|, 2log|σr1+1(x)|, · · · , 2log|σr1+r2

(x)|).
Image(log) is contained in the hyperplane {v :

∑

i vi = 0}, and Ker(log) =
µ(K). Further, log(O∗

K) is a lattice in Image(log) and its volume is called
the regulator of K and is denoted by reg(K).
Of course, µ(K) is just the kernel of the ‘log’ map above. Being a finite,
cyclic group it suffices thus to find |µ(K)|.
One uses LLL-reduction to do this. Given a real, symmetric n × n positive-
definite matrix A and some c > 0, LLL-reduction can be used to find all
nonzero vectors x ∈ Zn such that qA(x) ≤ c, and finds also all the corre-
sponding values qA(x). One first uses Gram-Schmidt or Cholesky to find R
such that A =t RR and then applies LLL-reduction to the row vectors of
R−1. To adopt this for computing |µ(K)|, we follow a method of Fincke and
Pohst, as follows.
Assume that we ’know’ θ, its conjugates, and an integral basis {ωi}n

i=1of K
(as polynomials in θ).
We are looking for elements of Ker(log); that is, for integers x1, · · · , xn such
that all the conjugates of

∑n
i=1 xiωi are on the unit circle.

Thus, we want q(x) :=
∑

j |σj(
∑

i xiωi)|2 = n.
Note that for arbitrary integers y1, · · · , yn, the AM-GM inequality gives

∑

j

|σj(
∑

i

yiωi)|2 ≥ n(
∏

j

|σj(
∑

i

yiωi)|)2/n ≥ n

with equality if and only if |σj(
∑

i xiωi)|2 are equal for all j.
In other words, the minimum value of the above quadratic form on Zn is n,
and it is attained at (y1, · · · , yn) if and only if

∑n
i=1 yiωi ∈ µ(K).

Start with the matrix A = (aij), where aij =
∑

k σk(ωi) ¯σk(ωi).
Of course, one takes ‘good approximations to aij just as one takes ‘good’
approximations to θ.
Then, with c = n + 0.1, one obtains all points x ∈ Zn with q(x) ≤ c. Then,
one can check each corresponding

∑

i xiωi to see if it is a root of unity. The
actual order of µ(K) will be twice the number so obtained.

4.8 Approach to computing the class group
First of all, we remark that one application of class group computation is to

24

factorisation of natural numbers. Indeed, factorising n can be proved to be
equivalent to the computation of the 2-Sylow subgroup of the class group of
Q(

√
−n).

Computations of the class number, the regulator and a fundamental system of
units are all inter-related. Note that the class number is not any reasonable
function of the discriminant of the field; that is, discriminants very close
to each other can correspond to very different class numbers. Similarly, the
regulator is also not a good function of the discriminant. However, the nice
thing is that the product of the class number and the regulator varies well with
the discriminant of the field as evinced by Dedekind’s formula for the residue
of the Dedekind zeta function at 1. This is what is exploited in forming
algorithms for the class number and the regulator.
Recall that the regulator reg(K) is defined using any fudamental system of
units (a basis of the free abelian part of the unit group) u1, · · · , ur1+r2−1 as
the absolute value of the determinant of ay (r1 + r2 − 1) × (r1 + r2 − 1)
submatrix of the (r1 + r2 − 1) × (r1 + r2) matrix (log||σj(ui)||)ij where ||x||
stands for |x| or |x|2 according as to whether x is real or not.
Here are three results which we shall need :
(I) (Minkowski) Each ideal class has an ideal of norm ≤ (4/π)r2 n!

nn

√

|disc(K)|.
(II) (Dedekind’s formula for residue of ζK(s) at s = 1 :)
h(K)reg(K)2r1(2π)r2

|µ(K)|
√

|disc(K)|
=
∏

p{(1 − 1
p
)
∏

P |p(1 − 1
NP

)−1}.
(III) (assuming GRH) Non-inert prime ideals of norm ≤ 12(log|disc(K)|)2

generate the class group.

A brief, rough description of our procedure
The computation of Cl(K) needs prior computation of reg(K) and of O∗

K .
But, let us view it backwards. Suppose we have found fractional ideals
I1, · · · , Ir such that the classes Ī1, · · · , Īr generate Cl(K). Then, we have
a surjection

Zr → Cl(K) ; x 7→
∏

i

Īi
xi

whose kernel is a lattice Λ (called the lattice of relations) which we want to
find. For the moment, suppose we have found some number m of relations
sufficient to generate Λ.
Put these relations as column vectors of an r × m matrix M (of course,
Λ = Image(M : Zm → Zr)).
We first find a basis of Λ in terms of the m generators, using HNF. That is,

25

we get some U ∈ GL(m,Z) such that MU = (0 H) where 0 is r × (m − r)
and H is r × r and is in HNF.
Then, the columns of H form a basis for Λ.
In order to determine the class group, apply the elementary divisor theorem
(that is, the SNF) to get H = V diag(d1, · · · , dr) V ′ with di|di+1.
If Vi is the i-th column of V (considered as an element of Zr), then

Zr/Λ = ⊕r
i=1(Z/diZ)V̄i

where V̄i is the image of Vi mod Λ.
Note that the above is an equality - not just an isomorphism.
To get Cl(K) (which is isomorphic to Zr/Λ) as something concrete, we look
at the isomorphism Zr/Λ ∼= Cl(K). Then, we get

Cl(K) =
r
⊕

i=1

(Z/diZ)
r
∏

j=1

I
aji

j

where V = (aij).
This finishes the rough sketch of the procedure to compute Cl(K).
Therefore, we are reduced to determining generators for Cl(K) and finding
enough relations. The latter step proceeds by finding some generators and
checking whether they suffice - this requires us to be able to compute reg(K)
- and then proceed to find more relations if they do not suffice.

4.9 Computing reg(K), h(K)
At the moment, let us start with some generators {Īi}r

1 of Cl(K). Suppose
we already have a few relations written in terms of a relation matrix M =
(mij)r×m; in other words, the j-th column of M gives a relation

∏r
i=1 I

mij

i =
αjOK. In order to keep track of relations among ideals and not merely among
ideal classes, we wish to keep along with M also track of the αj’s. The way
to do this is by considering the ‘complex log’ map LC defined as follows :

x 7→ (logσ1(x), · · · , logσr1
(x), 2logσr1+1(x), · · · , 2logσr1+r2

(x))

where the logarithm is defined only upto addition of integral multiples of 2iπ.
Then, one keeps the r × m matrix M and the m vectors αj together as an

(r + r1 + r2) × m matrix
(

M
MC

)

.

Note that the first r rows are integral and the last r1 + r2 are complex. The

26

HNF-algorithm gives U ∈ GL(m,Z) such that MU = (0 H) with H in
HNF.

So,
(

M
MC

)

U =
(

0 H
ZC HC

)

for some ZC and HC.

We notice that linear combinations of relations are relations - multiplying
ideals corresponds to addition of exponents and the mutliplication of α’s
corresponds to the addition under the log map.

Thus, both
(

0
ZC

)

and
(

H
HC

)

are matrices of relations among ideals. The

former matrix has m − r colums; for each j ≤ m − r, its j-th column corre-
sponds to a unit uj.
Thius, we note that this method already finds some (m − r) units. Suppose,
we have found r1 + r2 − 1 units; that is, suppose m − r ≥ r1 + r2 − 1.
In such a case, any r1 +r2−1 columns of the real part of ZC gives the matrix
of the usual ‘log’ map. Now, let us use these r1 + r2 − 1 units ε1, · · · , εr1+r2−1

and consider the (r1 + r2) × (r1 + r2) matrix where the last column is the
vector (1, · · · , 1, 2, · · · , 2) with the first r1 entries 1, and the first r1 + r2 − 1
similar to those in the definition of the regulator (for defining the regulator,
recall that the units are fundamental).
In other words, our matrix has, for j ≤ r1+r2−1, the (i, j)-th entry log|σi(εj)|
if i ≤ r1 , and 2log|σi(εj)| if i > r1.
The determinant of this matrix is a multiple (possibly 0 (!)) of reg(K). The
hope is that one gets a non-zero, small multiple r′(K) of reg(K). The point
is that one can then check if r′(K) = reg(K) using the following procedure.
If unequal, it means that the number of relations found is insufficient.
Checking if r′(K) = reg(K) turns out equivalent to simultaneously checking
if h′(K) = h(K).
Here, we mean by h′(K), the tentative class number computed for the lat-
tice Λ′ of relations found so far (about which we do not know whether they
suffice). Now, the residue is given in terms of an infinite product over all
primes. But, GRH implies by a result of E.Bach that the subproduct over
only the primes ≤ 12(log|disc(K)|)2 changes the infinite product only by a
factor <

√
2. In other words, assuming the GRH, one has some positive real

a such that
a√
2

< h(K)reg(K) < a
√

2.

a is nothing but the expression
|µ(K)|

√
|disc(K)|

2r1(2π)r2

∏

p≤12(log|disc(K)|)2
1− 1

p
∏

P |p
(1− 1

NP
)−1} .

27

Therefore, if h′(K)r′(K) = mh(K)reg(K), then the inequality h′(K)r′(K) <
a
√

2 can hold if, and only if, m = 1 (because m ≥ 2 would imply h(K)reg(K) <
a
√

2
m

≤ a√
2
, an impossibility).

Thus, the upshot is that once we compute the above expression a, we need
only check if h′(K)r′(K) < a

√
2.

If so, then h′(K) = h(K), r′(K) = reg(K). Therefore, the units we have form
a fundamental system of units. Of course, we have assumed the validity of
GRH.
Now, if h′(K)r′(K) ≥ a

√
2, we go about finding more relations, as said ear-

lier. One hopes (and this happens in practice) that after a finite number of
steps, h′(K)r′(K) < a

√
2 is satisfied.

4.10 Starting to find generators and relations for Cl(K)
As we have seen now, the discussion depends on our being able to find some
generators and relations for the class group. In the previous section, we
looked at the bound 12(log|disc(K)|)2; it turns out that (under GRH) this
bound is also such that the class group is generated by all prime ideals of
norm bounded by it. Without appealing to GRH, there is the Minkowski

bound (4
π
)r2 n!

nn

√

|disc(K)|. Of course, a bound like 12(log|disc(K)|)2, is ef-

ficient to find generators of Cl(K) - simply take all prime ideals of norm
at most this number. However, the number of relations among them seems
to be computationally rather large. So, in practice, one considers only the
prime ideals {Pi}r

i=1 of norm ≤ 0.1(log|disc(K)|)2; they lead to much fewer
relations. Though these prime ideals need not generate the whole class group,
they almost always do. Once a (nice) bound B such as above, say, is fixed,
the set P of prime ideals of norm ≤ B is found by starting with any integral
prime p ≤ B and factorising pOK . One refers to a choice of P as a factor
base. Choosing random exponents xi (preferably small, with most of them
zero), and considering the ideal I =

∏

Pi∈P P xi
i . There is a way of using LLL-

algorithm to reduce ideals along various directions which leads to another
ideal in the same class but having ‘small’ norm in a sense. Thus, we would
have α ∈ K∗ such that J = αI has small norm and then JI−1 = αOK is a
relation in Cl(K). This relation is hopefully made from primes in P only.
Thus, under the assumption of GRH, we would have an efficient algorithm
to determine some generators and some relations in Cl(K) to start with.

4.11 Checking if an ideal is principal

28

This essentially involves solving the discrete log problem in Cl(K). Let us
take a factor base P as before. Look at only the ideals I =

∏

Pi∈P P xi
i with

xi ≤ di; recall that Cl(K) =
⊕r

i=1(Z/diZ)Īi.
Let X be the column vector made of the xi’s. Then, as the columns of the
HNF matrix H (obtained during the computation of Cl(K)) form a basis of
the relation lattice Λ, we have :
I is principal if, and only if, H−1X has integer entries.
This is easy to check as H is upper triangular.
If I is not principal, then one can find the xi’s - they are the fractional parts
of the entries of H−1X multiplied by the corresponding di’s.

29

§ 5. Galois groups

5.1 A ‘polynomial time’ determination of Galois groups
If K is a number field, and f ∈ K[X], one is seeking a computation of the
Galois group of (the splitting field of) f over K. Now, if we mean determi-
nation of GalK(f) to to mean that we have a multiplication table for this
group, there may be no polynomial time (in the input size) algorithm.
However, we may do one of two things : (i) look for an algorithm which
is polynomial time in input plus output, or (ii) look for a polynomial time
algorithm in the usual sense but express the answer (the Galois group) in
some other way.
The second problem is not solved satisfactorily as yet. The first problem, on
the other hand, is easy to solve affirmatively using the usual construction of
SplK(f).
Indeed, given a natural number N , one can decide whether GalK(f) has or-
der ≤ N , actually give in this case all the elements, the multiplication table
and an embedding in the symmetric group - all in “polynomial in (N + l)
time” where l is the input data size.
To see this, as usual, let us take an irreducible factor g ∈ K[X] of degree > 1
of f and consider the field L = K[X]/(g). If [L : K] > N the Galois group
certainly has order > N , and we stop. If not, continue with L in place of K
and build the splitting field of f over L (which is also SplK(f)), and check
at each stage whether the degree over K has exceeded N or not.
If the algorithm has run with the conclusion that the order of GalK(f) is
≤ N , then one can easily determine all its elements as follows.
This is similar to checking whether two given fields are isomorphic. Evi-
dently, writing SplK(f) = K(α), each root of min(α, K) corresponds to a
K-automorphism of SplK(f). Thus, one can find all the elements and their
products in time which is polynomial in O(GalK(f)) + l. This also gives an
embedding of the Galois group into Sn where n = deg(f).

5.2 Deciding if Galois group is abelian
The algorithm of the previous section applied with N = n certainly gives a
decision as to whether the Galois group is abelian because of the following
fact :
A transitive abelian subgroup subgroup of Sn has order n.
Applying this to each irreducible factor of f , one can decide whether GalK(f)

30

is abelian (which happens exactly when GalK(g) is abelian for each irre-
ducible factor g).
However, even in the abelian case, the Galois group is not determined in time
which is polynomial in the input data size.
In the special case of K = Q with f =

∏n
i=1(X

2 − ai) for distinct ai ∈ Q, an
algorithm has been given, but no such algorithm has been written down for
general K. H.W.Lenstra Jr. believes that it can probably be done under the
GRH.

5.3 Deciding solvability
This is obviously a very interesting and important problem and has been
solved by S.Landau and G.Miller.
As a first guess, one could try to imitate the abelian case and check whether
there is a polynomial (in n) bound for transitive solvable subgroups of Sn.
But, no such bound exists. Very fortunately, such a bound is proved by Palfy
to exist when one restricts oneself to primitive such groups.
Let us recall that a subgroup of Sn is primitive if its stabilisers of points
are maximal subgroups. For GalK(f), this means that there are no proper
intermediate fields between K and K(α) for any root α of f .
Now, to reduce the general case to the primitive case, one finds a chain

K = K0 ⊂ K1 ⊂ · · ·Kt = K(α)

which cannot be refined. Observe that this is what we need because GalK(f)
is solvable if, and only if, the Galois group of Ki+1 over Ki is solvable for
each i.
How does one find such a chain ? This is the problem of finding maximal
proper intermediate subfields which was done by Landau and Miller. We
must note that finding all subfields is not a tractable problem as there are
too many.
To find maximal intermediate subfields, split f into monic irreducible factors
over K(α). Of course, one factor is X − α. For any other irreducible factor
g, one has an intermediate proper subfield Lg of K(α) as follows.
If g = X − β, then writing σα = β, take Lg = K(α)σ.
If deg(g) > 1, take a root β in an extension of K(α) and take Lg = K(α) ∩
K(β).
Checking that all intermediate maximal proper subfields are among these is
a consequence of the following purely group-theoretic observation.

31

Let G be a finite group and H < J ≤ G be subgroups with H a maximal
proper subgroup of J . Then, any g ∈ J \ H is so that

< H, g >= J if gHg−1 = H,

< H, gHg−1 >= J if gHg−1 6= H.

It ought to be noted that this algorithm only decides whether the Galois
group is solvable but does not determine it even if f is irreducible (unlike
the abelian case).

32

§ 6. Miscellaneous topics

6.1 Determining number fields from the zeta function
We already saw in the computation of the class number that analytic infor-
mation in terms of the Dedekind zeta function of a number field was used.
A natural question is whether the zeta function determines the number field.
Unfortunately, this is far from true and, indeed, different number fields with
the same zeta function can be constructed using simple finite group theory.
Actually, this was imitated by T.Sunada to construct so-called isospectral
manifolds which are not isomorphic - the phenomenon has been referred to
informally as ‘one cannot hear the shape of a drum’. However, if two number
fields are solvable by radicals (that is, are Galois over Q and have solvable
Galois groups), they are isomorphic if, and only if, their zeta functions are
the same provided we avoid certain degrees as follows.
If K, L are number fields, and X, Y are the sets of Q-embeddings of K, L
respectively, in Q̄, then the absolute Galois group G := Gal(Q̄/Q) acts
transitively by permutations on X and Y . By Galois theory, X and Y are
isomorphic as G-sets if, and only if, the fields K, L are isomorphic.
Further, if one calls X and Y linearly equivalent if the permutation characters
of G on X and Y are the same (that is, each g ∈ G fixes the same number of
elements on X and Y), then such a thing happens if, and only if, K, L have
the same Dedekind zeta function.
The following purely group-theoretic statement proved by De Smit and H.W.Lenstra
Jr. ([3]) shows that a number field that is solvable by radicals and has degree
n different from (ii) in the theorem, is determined upto isomorphism by its
zeta function.

Theorem ([3])
For any n ∈ N, the following statements are equivalent :
(i) There exists a finite, solvable group G and non-isomorphic transitive G-
sets of cardinality n which are not linearly equivalent.
(ii) There are primes p, q, r with pqr|n and q|p(p − 1).

33

6.2 Deciding if P ∈ Z[X] has a root mod every integer
A necessary condition for a polynomial P ∈ Z[X] to have a root in Z is
that it has a root mod m for every m. Unfortunately, this is not a sufficient
condition.
For example, it can be seen as a simple application of the quadratic reci-
procity law that (X2 − 13)(X2 − 17)(X2 − 221) has roots mod m for every
m but, evidently, has no rational root.
What if P ∈ Z[X] is irreducible ? Then, a deep theorem of Chebotarev im-
plies that a similar cannot happen now. In fact, one has the effective result
that given any irreducible P of degree > 1, there is a computable constant
N > 0 such that for some prime p ≤ N , P has no root mod p. The following
beautiful result has been proved by Berend & Bilu ([2]).
Let P be monic and P = h1 · · ·hr be its factorisation in Z[X] into monics.
Let L be SplQ(P), and G = Gal(L/Q). For each hi, fix a root θi and let
Ki = Q(θi). Put Hi = Gal(L/Ki).
Three more constants depending on P which will feature, are the following.
Write δ =

∏r
i=1 Res(hi, h

′
i) =

∏s
j=1 p

mj

j ,

∆ =
∏s

j=1 p
2mj+1
j and D = (

∏r
i=1 δ

1−1/ni

i)n1!···nr! where ni = deg(hi).
Then, we have :

Theorem ([1])
The following are equivalent :
(i) P has a root mod every m ∈ N ;
(ii) P has a root mod ∆ and

⋃

g∈G

r
⋃

i=1

gHig
−1 = G ;

(iii) P has a root mod ∆ and mod every prime p ≤ 2Dc, where c is an
effectively computable constant.

34

Suggested Reading :

1. D.Berend & Y.Bilu, Polynomials with roots modulo every integer, Proc.Amer.Math.Soc.
124 (1996) P.1663-1671.

2. H.Cohen, A course in computational algebraic number theory, Springer-
Verlag 1996.

3. B.De Smit & H.W.Lenstra,Jr., Linearly equivalent actions of solvable
groups, J.Algebra 228 (2000) P.270-285.

4. Susan Landau, How to tangle with a nested radical, Math. Intelligencer,
Vol. 16 (1994) P.49-55.

5. H.W.Lenstra, Jr., Algorithms in algebraic number theory, Bulletin of the
AMS Vol. 26 (1992) P.211-244.

6. References in 5.

35

