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“Only that thing is free which exists by the necessities of its own nature,
and is determined in its actions by itself alone” - Baruch Spinoza

“Everything that is really great and inspiring is created by the individual
who can labor in freedom” - Albert Einstein

“Now go we in content
To liberty, and not to banishment.”
... W.Shakespeare (As You Like It)

“Freedom is like drink. If you take any at all, you might as well take
enough to make you happy for a while” - Finley Peter Dunne
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Introduction

Free objects in a category (whatever these animals may be) are the most basic
objects in mathematics. A paradigm is the theory of free groups. They arose
naturally while studying the geometry of hyperbolic groups but their fundamental
role in group theory was recognized by Nielsen (who named them so), Dehn and
others. In these lectures, we introduce free groups and their subgroups and study
their basic properties. The lectures by Professor Anandavardhanan would treat
the more general notions of free products with amalgamation and HNN extensions
in detail. However, it is beneficial to look at them already for our purposes as they
bear repetition. We shall do so briefly in the course of these lectures.

The notions of free groups, free products, and of free products with amalga-
mation come naturally from topology. For instance, the fundamental group of
the union of two path-connected topological spaces joined at a single point
is isomorphic to the so-called free product of the individual fundamental
groups.

(More generally) The Seifert-van Kampen theorem asserts that if X = V ∪
W is a union of path-connected spaces with V ∩ W non-empty and path-
connected, and if the homomorphisms π1(V ∩W )→ π1(V ) and π1(V ∩W )→
π1(W ) induced by inclusions, are injective, then π1(X) is isomorphic to the
so-called free product of π1(V ) and π1(W ) amalgamated along π1(V ∩W ).

Many naturally occurring groups can be viewed in terms of these construc-
tions.
For instance, SL(2,Z) is the free product of Z/4 and Z/6 amalgamated along
a subgroup isomorphic to Z/2.
The fundamental group of the Klein bottle is isomorphic to the free product
of two copies of Z amalgamated along 2Z.

The so-called HNN extensions also have topological interpretations. Suppose
V and W are open, path-connected subspaces of a path-connected space X
and suppose that there is a homeomorphism between V and W inducing
isomorphic embeddings of π1(V ) and π1(W ) in π1(X). One constructs a
space Y by attaching the handle V × [0, 1] to X, identifying V ×{0} with V
and V × {1} with W . Then, the fundamental group π1(Y ) of Y is the HNN
extension of π1(V ) relative to the isomorphism between its subgroups π1(V )
and π1(W ).
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The HNN extensions give several universal constructions in group theory
like ‘every countable group can be embedded as a subgroup of a 2-generated
countable group’. They even occur concretely; for instance, the proof that
the automorphism group of a free group of finite rank > 2 does not admit a
faithful matrix representation goes by showing that a certain HNN extension
does not.

One final word about free groups is that they abound. In any finitely gener-
ated group of matrices, there is a free non-abelian subgroup unless the group
has a solvable subgroup of finite index (this is the so-called Tits-alternative
which has been generalized to several other groups as well).

1 Free groups

Informally, when we have a sequence g1, · · · , gn of (not necessarily distinct) ele-
ments from some groupG which satisfy some constraint/relation like ga1

1 ga2
2 · · · gann =

1 for some non-zero integers ai, the group is not deemed to be free. For instance,
in any finite group, there are such constraints. Even in infinite groups, often

one comes across such relations; for instance, the matrix W =
(

0 1
1 0

)
satisfies

W 2 = I. We shall look for a group where there are ‘no nontrivial relations’ and
call it a free group. This concept seems esoteric and one can imagine it being use-
ful because one may perhaps obtain any group by starting out with a free group
and imposing more and more relations on it. The interesting part is that the free
group is a concretely occurring – even ubiquitous – object ! For instance, we shall

see that the group of all integer 2 × 2 matrices
(
a b
c d

)
having determinant 1

and having a, d odd and b, c even, will turn out to be a free group. If we look
at the fundamental group of the symbol ∞, this also turns out to be free (and
isomorphic to the above group of matrices !). Without further ado, we turn to the
formal definitions now.

Definition
Given a nonempty set S, and a map θ : S → F into a group F , the pair
(F, θ) is said to be a free group on S if, for any function α : S → G to any
group G, there is a unique homomorphism α̃ : F → G such that α = α̃ ◦ θ.
If (F, θ) is free on a set S, observe :
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(i) θ must necessarily be one-one.
(ii) (F,inclusion) is free on the subset Image(θ).
(iii) Image(θ) generates F .
Proof : Assume (i),(ii) without loss of generality and so S ⊂ F . Consider the
subgroup < S > of F generated by S; this is, by definition, the intersection
of all subgroups containing S. Consider the inclusions i, i1, i2 of < S > in F ,
S inside < S > and S inside F . So i ◦ i1 = i2. The unique extension of i2 to
F is clearly the identity map. If π1 : F →< S > is the unique extension of
i1 to F , then clearly i ◦ π1 must be the identity map by uniqueness.

To construct a free group on any arbitrary nonempty set X :
Let X ′ be a set in bijection with X and disjoint from X. Under a fixed
bijection, write the element of X ′ corresponding to an element x ∈ X as
x−1. Define a nonempty word in X to mean a formal expression of the form
xε11 · · · xεrr where xi ∈ X, εi = ±1 and r > 0. Call two such expressions to be
the same word if they have the same elements in the same positions. Define
the ‘product’ (in that order) of two nonempty words xε11 · · ·xεrr and yυ1

1 · · · yυss
to be the juxtaposed word xε11 · · · xεrr yυ1

1 · · · yυss . One also denotes the empty
word (!) by 1 and defines the product of any word w with 1 in both the
ways to be w itself. Call x−εrr · · · x−ε11 to be the inverse of the nonempty word
xε11 · · · xεrr ; write (xε11 · · ·xεrr )−1 = x−εrr · · · x−ε11 . We also write 1−1 = 1. On
the set of all nonempty words together with the empty word 1, one defines
the following relation.
w1 ∼ w2 if w2 is obtained from w1 by a finite sequence of the operations :
inserting or deleting expressions like xx−1 or x−1x for x ∈ X.
This is an equivalence relation and the set F of equivalence classes [w] will be
given the structure of a group now in an obvious manner. Define [w1][w2] =
[w1w2]. It is easy to verify that this gives a well-defined group structure on
F (although associativity is a messy check as usual !). Defining the map
θ : X → F by x 7→ [x], let us show that (F, θ) is free on X.
Suppose α : X → G be a map into any group. Extend α to words on
X by putting α(xε11 · · · xεrr ) = α(x1)ε1 · · ·α(xr)

εr on nonempty words and
α(1) =identity of G. If w1 ∼ w2, then evidently α(w1) = α(w2) because a
product of the form xx−1 or of the form x−1x maps to the identity of G.
Thus, α induces a map α̃ from F to G which is clearly a homomorphism. It
is clear that this homomorphism α̃ on F is unique with the property that
α̃[x] = α(x) for all x ∈ X; for, the image of X in F generates F .
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Reduced words
It is much more convenient to work with (instead of with the equivalence
classes as above) so-called reduced words. Call a word w reduced if it does
not contain any x adjacent to x−1 with x ∈ X. In particular, the empty word
is reduced. The key observation is :

Claim : Each equivalence class in F contains a unique reduced word.

Indeed, start with any word w and, by cancelling off expressions of the forms xx−1

and x−1x with x ∈ X, land in a reduced word. So, each equivalence class does
contain a reduced word.
To show that two reduced words cannot represent the same element unless they are
equal, is clearly the same as showing that no reduced nonempty word represents 1.
For, suppose x1 · · ·xr ∼ y1 · · · ys with both x1 · · ·xr and y1 · · · ys reduced. Then, by
cancelling off the right ends as much as possible, we may assume xr 6= ys. Look at
the reduced (why?) word x1 · · ·xry−1

s · · · y−1
1 . Make all the insertions and deletions

into the first part x1 · · ·xr which makes it y1 · · · ys. This can be viewed as making
insertions and deletions in the word x1 · · ·xry−1

s · · · y−1
1 which clearly changes it to

y1 · · · ysy−1
s · · · y−1

1 = 1. Thus, the reduced word x1 · · ·xry−1
s · · · y−1

1 ∼ 1.

So, suppose xε1i1 · · · xεnin is a reduced word∼ 1 and εr = ±1 for each r. Consider
the following homomorphism fromG to Sn+1 = Sym{1, 2, · · · , n+1}. Map xir
to a permutation which sends r to r+1 if εr = 1 and map xir to a permutation
which sends r+1 to r if εr = −1. Note that this is possible because there can
be a clash only if the following situation arises. Some xir = xir−1 and r is sent
to r + 1 because εr = 1 while it has to be sent to r − 1 with εr−1 = −1. But
this is not possible in a reduced word. Send all other x ∈ X to the iedntity.
Hence, we do have at least one well-defined homomorphism from F to Sn+1

in which the reduced word xε1i1 · · ·xεnin is mapped to the identity permutation.
However, this word is mapped to a permutation which cannot be the identity
(where does 1 go if ε1 = 1 for instance?). This is the reason for choosing
permutation group on n+ 1 symbols. Thus, no reduced nonempty word can
give the identity element. Thus, the set of reduced words (including the
empty word) are in bijection with equivalence classes of all words.

The above remarks show that the free group on a set X can be thought of as
the set of all reduced words. Using this identification and, writing [w] simply
as w for simplicity, and writing xx as x2 etc, we have the so-called :

Normal form :
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In a free group F on a subset X, every nontrivial element has a unique
expression of the form xr11 · · ·xrkk with xi ∈ X, k ≥ 1, xi 6= xi+1 for all
1 ≤ i < k, ri 6= 0.

The advantage of the normal form is that it also characterizes free groups
from the above remarks. In other words,
Let G be a group, X be subset. Then, G is free on X if, and only if, every
nontrivial element of F has a unique expression of the form xr11 · · ·xrkk with
k ≥ 1;xi ∈ X(1 ≤ i ≤ k);xi 6= xi+1(1 ≤ i < k); ri 6= 0∀i.

Definition. Let F be free on a subset X and w ∈ F , w 6= 1. Consider
the unique expression w = xr11 · · · xrkk with k ≥ 1;xi ∈ X(1 ≤ i ≤ k);xi 6=
xi+1(1 ≤ i < k); ri 6= 0∀i. Then, the length of w with respect to F is defined
to be |r1| + · · · + |rk|. One also defines the length of the identity element
1 to be 0. This notion of length is very useful (see below for an immediate
application and the exercises for other instances).
We mentioned that the associativity of the product law is a messy check; let
us do it here working with reduced words. Remember that the product of two
reduced words a1a2 · · · ar and b1b2 · · · bs (in that order) is a1 · · · ar−ibi+1 · · · bs where
arb1 = ar−1b2 = · · · = ar−i+1bi = 1 and ar−ibi+1 6= 1.
Look at reduced words a, b, c. The equality (ab)c = a(bc) is evident if ab and bc
are formed without cancellations. In general, we induct on the length of b and, for
fixed b, on l(a) + l(b) + l(c). If b = 1, then again (ab)c = ac = a(bc).
Assume l(b) = 1. So, b ∈ X ∪ X−1. Now, if ab involves a cancellation, then
a ends in b−1; that is, a = wb−1. If bc is formed without cancellations, then
clearly (ab)c = wc and a(bc) = (wb−1)(bc) = wc as this is the way the two
reduced words wb−1 and bc are multiplied in F (X). Thus, (ab)c = a(bc) when
bc is reduced. Suppose now that bc involves a cancellation; so c = b−1v starts
with b−1. Therefore, (ab)c = wc = w(b−1v) while a(bc) = a(v) = (wb−1)v. Since
l(w) + l(v) < l(a) + l(c), the last two terms are equal by induction hypothesis.
Hence, the associativity holds when l(b) = 1.
Now, suppose the reduced word b has l(b) = n > 1 and write b = b1b2 with
l(b1), l(b2) < n. Then, by induction hypotheses

(ab)c = (a(b1b2))c = ((ab1)b2)c = (ab1)(b2c) = a(b1(b2c)) = a((b1b2)c).

Thus, the proof of associativity is complete.

The following fact is very easily proved using the universal property.

Lemma.
If |X1| = |X2|, then F (X1) ∼= F (X2).
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Lemma.
If F (X1) ∼= F (X2), then |X1| = |X2|.
Proof.
Look at the sets Hom(F (X1),F2) and Hom(F (X2),F2) of group homomor-
phisms to the field F2 with 2 elements. These sets are vector spaces over
F2 with bases X1 and X2 respectively. Fixing an isomorphism θ : F (X1)→
F (X2), we have an isomorphism of F2-vector spaces from Hom(F (X2),F2)
to Hom(F (X1),F2) given by φ 7→ φ ◦ θ. Thus, their bases must have the
same cardinality, which proves that |X1| = |X2|.
In view of the above lemmata 2 and 3, one may define the rank of any free
group to be the cardinality of a set X on which they are free. However, the
length function does depend on the choice of X.

Examples of free groups occurring naturally

Example 0.
The only free group of rank 1 is, up to isomorphism, the infinite cyclic group.

Example 1.
Consider the functions α and β on the set C ∪ {∞} defined by the rules

α(x) = x+ 2, β(x) =
x

2x+ 1
.

here the symbol ∞ is subject to such formulae as 1
0

=∞ and ∞
∞ = 1. Then

α and β are bijections since they have inverses

α−1(x) = x− 2, β−1(x) =
x

1− 2x
.

Thus α and β generate a group F of permutations of C ∪ {∞}.
F is free on the set {α, β}.
Note that F is nothing but the group generated by

(
1 2
0 1

)
and

(
1 0
2 1

)
.

Proof.
Note that every non-zero power of α maps the interior of the circle |z| = 1
to the exterior of the unit circle and a non-zero power of β maps the exterior
of the unit circle to the interior with 0 removed. Thus, no nontrivial word
can be the identity (why?); lemma 1 shows that F is free on α, β.

Example 2. (Generalization of example 1)

For any complex number z with |z| ≥ 2, the matrices
(

1 z
0 1

)
and

(
1 0
z 1

)
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generate a free group of rank 2.
It is convenient to postpone the proof to section 2 where the so-called ping-
pong lemma is discussed.

Open problem.
Does there exist a rational number α with 0 < |α| < 2 such that the group

generated by
(

1 α
0 1

)
and

(
1 0
α 1

)
is free ?

We mention in passing that several rational α with 0 < |α| < 2 are known

for which the group generated by
(

1 α
0 1

)
and

(
1 0
α 1

)
is NOT free. The

proof interestingly goes via the Brahmagupta-Pell equation.

Example 3. (Not easy to see)
Let p be an odd prime. The subgroup Gp of the symmetric group on R
generated by x 7→ x+ 1 and x 7→ xp is free of rank 2.

The most basic fact about free groups in abstract group theory is :

Proposition.
Every group is isomorphic to the quotient group of a free group.
Proof.
If G is any group and S is any subset generating it (G itself, for example), consider
a set X in bijection with S and consider the free group F (X) on X. If θ : X → S is
a bijection, then the universal property of F (X) gives a surjective homomorphism
from F (X) to G.

Remarks.
(i) In later lectures, a theory of groups acting on graphs would be developed.
In particular, they would yield a characterization of free groups as those
groups which act freely (that is, without fixed points for nontrivial elements)
on a tree.
(ii) In an exercise below, we see that free groups are torsion-free. Actually,
any group which is torsion-free and contains a free group of finite index, is
free. This is proved by Jean-Pierre Serre using methods from homological
algebra.
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Exercises.

Q 0. Prove that a group G is free on a subset X if and only if X generates
G and no reduced word in X ∪X−1 of positive length is the identity.
Q 1. Show that free groups F (X) do not have elements of finite order > 1.
In fact, if an = bn for a, b in a free group F , prove that a = b.
Q 2. Prove that each element of a free group has at the most finitely many
roots; that is, for each w ∈ F , show

√
w := {a ∈ F : an = w for some n} is

finite.
Q 3. Show that in a free group, two commuting elements a, b must satisfy
a = cu, b = cv for some element c and some integers u, v. In particular, a free
group has nontrivial center if and only if its rank is 1.
Q 4. If a, b are elements in a free group F , and satisfy apbq = bqap for some
non-zero integers p, q then prove a, b are integer powers of a common element.
Q 5. If w 6= 1 in a free group F , then prove that the centralizer C(w) is an
infinite cyclic group.
Q 6. If w 6= 1 in a free group, show that w cannot be conjugate to w−1.
Q 7. IfN is a normal subgroup of a groupG such thatG/N is free, then prove
that there exists a subgroup H of G satisfying G = HN and H ∩N = {1}.
Q 8. Let H be a subgroup of infinite index in a free group F . Show that for
each subgroup K 6= {1} of F , H ∩K 6= {1}.
Q 9. Let F (X) be free on a set X and fix x ∈ X. Let sx : F (X) → Z be
the function which takes any reduced word to the sum of the exponents of
the terms which are equal to x. Prove that sx(w) = 0 for some w ∈ F if and
only if, w ∈ [F, F ].
Q 10. (Prochronistically!) Assuming that subgroups of free groups are free,
show that the centralizer of a nontrivial element of a free group is infinite
cyclic.
Q 11. Prove that if F is free of rank n, then F/[F, F ] ∼= Zn.
Q 12. Compute the number of words of length n in a free group of rank d.
Q 13. Prove that if F = F0 ⊃ F1 ⊃ F2 · · · is a chain such that each Fi+1 is
a proper, characteristic subgroup of Fi, then ∩iFi = {1}. In particular, this
holds for the derived series.

Q 14. Show that the matrices Y :=
(

1 0
1 1

)
and X :=

(
1 e
0 1

)
generate a

group isomorphic to F2. Here e is the exponential and one may assume that
e is not a root of a nonzero integral polynomial.
Q 15. Prove that in the free group F (x, y) on two generators x, y, the
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subgroup H generated by ynxy−n;n ∈ Z is not finitely generated. Hence,
show that [F2, F2] is not finitely generated.

Solutions.
0.
Consider the unique homomorphism θ : F (X) → G extending the inclusion
map of X into G. The two conditions are equivalent to surjectivity and
injectivity of θ and, therefore, to the freeness of G. Conversely, if G is free on
X, then the unique homomorphism φ : G → F (X) extending the inclusion
of X into F (X) (which exists because G is free on X) is evidently the inverse
of θ since X generates G. Thus, φ is an isomorphism which means it is a
bijection and so the conditions hold.
1.
Let w = x1 · · · xn be any nontrivial reduced word where xi ∈ X ∪X−1. That
is, length of w is l(w) = n. Write w2 as a reduced word

w2 = x1 · · ·xnx1 · · · xn = x1x2 · · · xn−rxr+1xr+2 · · · xn.

Thus, l(w2) = l(w)− 2r where 0 ≤ r ≤ n. We claim that r < n/2. If n = 2k
and r ≥ k, then xk = x−1

k+1, a contradiction of the hypothesis. Thus, r < n/2
when n is even. If n = 2k + 1 and r > k, then x2

k+1 = 1, a contradiction
of the fact that no reduced words of positive length can be trivial. Thus,
r ≤ n/2 in either case. Therefore, w = u−1yu where u−1 = x1 · · · xr =
x1
n · · · x−1

n−r+1, y = xr+1xr+2 · · · xn−r is cyclically reduced (that is, first letter
xr+1 6= x−1

n−r, the inverse of the last letter. Note that y 6= 1 as w 6= 1. Also,
l(yd) = dl(y) for all d ≥ 1 (this is where the cyclically reducedness comes up).
Now l(w2) = 2l(w)− 2r = 2n− 2r > 2n− n = n = l(w). Further, for any d
also, wd = u−1ydy implies that l(wd) = dl(y)+2r > (d−1)l(y)+2r = l(wd−1).
Hence wd 6= 1 for all d ≥ 1. Thus, free groups are torsion-free.
Let an = bn. Write a = u−1xu, b = v−1yv as above with x, y cyclically
reduced. Let l(u) = r, l(v) = s. Then,

l(an) = nl(x) + 2r = nl(y) + 2s = l(bn)

l(a2n) = 2nl(x) + 2r = 2nl(y) + 2s = l(b2n)

Thus, we get l(x) = l(y) and so r = s. Hence there are no cancellations on
each side of u−1xu = v−1yv means u = v, x = y which gives a = b.
2.
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If w = 1, then
√
w = {1}. Assume w 6= 1. As before, w = an means

w = u−1xnu where x is cyclically reduced and l(an) = nl(x) + 2r ≥ n as
x 6= 1. Hence, the only n’s occurring are those finitely many ones which
must satisfy n ≤ l(w). For any such n, the previous question shows that
there can be at the most one a satisfying an = w.
3.
We may assume that a, b 6= 1. Write a = x1 · · ·xm, b = y1 · · · yn with
l(a) = m, l(b) = n with m ≤ n say. Let ab = x1 · · · xm−ryr+1 · · · yn be
the reduced expression (so l(ab) = m+n−2r and 0 ≤ r ≤ m). Now, ab = ba
implies that their lengths are same and so, the reduced expression of ba is
y1 · · · yn−rxr+1 · · · xm. Considering the three cases r = 0, r = m, 0 < r < m
and applying induction on l(a) + l(b) = m + n, we will easily get the result
(page 9 of Johnson). It is a nice exercise now to deduce from this that free
groups cannot have nontrivial centre unless they are cyclic.
4.
By manipulating the given equation, we may express it as apbq = bqap

for some natural numbers p, q. So, ap = bqapb−q = (bqab−q)p which gives
a = bqab−q by question 1. Once again, then bq = abqa−1 = (aba−1)q which
gives b = aba−1; that is, ab = ba. By question 2, we get the result.
5.
Let u, v ∈ C(w) be nontrivial elements. Then, by question 2, there exist
a, b ∈ F and non-zero integers p, q, r, s such that u = ap, w = aq, v = br, w =
bs. As aq, bs commute (they are equal !), question 2* shows that a = cl, b = cm

for some element c and some non-zero integers l,m. Evidently, u = clp com-
mutes with v = cmr. So C(w) is abelian. It is an infinite group as it contains
< w >. Let x be a nontrivial element of C(w) of smallest length possible.
Let y ∈ C(w) be arbitrary. As x, y commute as just proved, there exists
z ∈ F and integers u, v such that x = zu, y = zv. Now, y = zv ∈ C(w) means
both z, w are integral powers of same element by question 2* and so, they
commute; that is, z ∈ C(w). But l(x) = l(au) > l(a) unless u = ±1. By
minimality of choice of x, we must have u = ±1 and so y = zv = x±v. So
C(w) =< x >.
6.
As we saw, w = u−1xu where x is cyclically reduced (that is, reduced and
first and last symbols are not inverses of each other). So, w and w−1 are con-
jugate if and only if x and x−1 are. But, a cyclically reduced element y some
conjugate cyc−1 of which is also cyclically reduced must satisfy the property
that cyc−1 is a cyclic permutation of y (by induction on l(c)). Applying this

11



to the elements x and x−1, we get x = ab and x−1 = ba for some a, b. So,
a−1b−1 = x = ab which means that a = a−1, b = b−1 as the expressions are
reduced. But then a2 = 1 = b2 which means, by 1, that a = 1 = b. So x = 1
and so w = 1, a contradiction. Thus, w cannot be conjugate to w−1 if w 6= 1.
10.
If w 6= 1, a, b ∈ CF (w), then w = xr = ys where a ∈< x >, b ∈< y >.
We have used the fact that two commuting elements are powers of the same
element. As < x, y > is free (by assumption), while the relation xr = ys is
a nontrivial relation. Therefore, < x, y > has rank 1; that is, it is cyclic.
Hence there is z such that x = zu, y = zv. So, a, b ∈< z > which means
CF (w) is abelian. Thus, it is infinite cyclic.
14.
We need to show that any nontrivial reduced word in X, Y does not give the
identity matrix.
We shall show by induction that any matrix of the form

Xa1Y b1 · · ·XarY br

with ai, bi nonzero integers, has (1, 1)-th entry er
∏r
i=1 aibi + p(e) and (2, 1)-

th entry q(e) where p(e), q(e) are (possibly constant) polynomials in e with
integer coefficients and degrees strictly less than r.
As e does not satisfy any nonzero integer polynomial, the above inductive
assertion can easily be seen to prove that nontrivial reduced words in X and
Y do not give the identity matrix. Indeed, if a word of the form

Y b0Xa1Y b1 · · ·XarY br

with r > 0, is I, then

Xa1Y b1 · · ·XarY br = Y −b0

which is impossible since the left side does not have 1 at the (1, 1)-th place.
Similarly, the other words are also dealt with. Now, let us prove the inductive
assertion.

Clearly, XaY b =
(

1 + abe ae
b 1

)
which shows the assertion holds for r = 1.

Suppose n > 1 and that
Xa1Y b1 · · ·XanY bn

has (1, 1)-th entry en
∏n
i=1 aibi + p(e) and (2, 1)-th entry q(e) where p(e), q(e)

are (possibly constant) polynomials in e with integer coefficients and degrees
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strictly less than n. Then,

Xa0Y b0Xa1Y b1 · · ·XanY bn

=
(

1 + a0b0e a0e
b0 1

)(
en
∏n
i=1 aibi + p(e) ∗
q(e) ∗

)

=
(
en+1∏n

i=0 aibi + p1(e) ∗
q1(e) ∗

)

where p1, q1 are integral polynomials in e with degrees less than n+ 1. This
proves the inductive assertion.
15.
Clearly, each element of the subgroup H is uniquely expressible as a reduced
word in the elements ynxy−n;n ∈ Z. Thus, H is not finitely generated.

2 Free abelian groups

A free group F on a set X was defined by the universal property that an
abstract map from X to any group G can be extended uniquely as a homo-
morphism from F to G. If we do the same for abelian groups G, we would
arrive at free abelian groups. Equivalently, these groups can also be defined
more concretely as follows. An abelian group G is said to be free abelian on
a subset S if each element of G is a unique (finite) integer linear combination
of elements of S. One says that G has rank n if, and only if, |S| = n; as
before |S| is determined by G. Note that a group G is free abelian of rank n
if, and only if, it is isomorphic to Zn, the set of integral n-tuples under co-
ordinate-wise addition. The key theorem is that a subgroup of a free abelian
group is free abelian of rank not exceeding that of the bigger group. From
this, one deduces a structure theorem of finitely generated abelian groups.
But, a more refined version is as follows :

Theorem (Invariant factor theorem)
If H is a subgroup of a free abelian group G of rank n, then H is free abelian
of rank r ≤ n. Further, there are bases {e1, · · · , en} of G and {d1e1, · · · , drer}
of H respectively where di divides di+1 for i < r. The integers di are uniquely
determined up to sign and are called the invariant factors of H.
The proof is carried out by induction on n using the division algorithm as
follows. It is clear for n = 1. Assume n > 1 and that the theorem holds
for m < n. Corresponding to any basis of G, there is a positive integer
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with the property that it is the smallest positive integer that occurs as a
coefficient in the expression of elements of H in terms of this basis. This
positive integer can depend on the basis and let l1 be the smallest such
with respect to all bases of G. Let v1, · · · , vn be a corresponding basis for
G such that v = l1v1 +

∑n
i=2 aivi ∈ H. Dividing all the ai by l1, we have

ai = qil1 + ri with 0 ≤ ri < l1. Evidently, v = l1(v1 +
∑n
i=2 qivi) +

∑n
i=2 rivi

and v1 +
∑n
i=2 qivi, v2, · · · , vn is another basis of G. By the minimality of

l1, we must have ri = 0 for all i ≥ 2. Thus, writing w1 for v1 +
∑n
i=2 qivi,

v = l1w1 ∈ H. Look at the subset H0 of H which have coefficients of w1 to
be zero in terms of the basis w1, v2, · · · , vn of G. Clearly, H0 is a subgroup
of H such that H0 ∩ Zv = {0}. Also, if h ∈ H, write h = b1w1 +

∑n
i=2 bivi.

Once again, dividing the bi’s by l1, say, bi = mil1 + si with 0 ≤ si < l1,
we have h − m1v = s1w1 +

∑n
i=2 bivi ∈ H. Thus, by the minimality of l1

we get s1 = 0 i.e., h − m1v ∈ H0. Thus, H = H0 ⊕ Zv. Now, H0 is
contained in the subgroup G0 =

∑n
i=2 Zvi. By induction hypothesis, G0 has

a basis w2, · · · , wn and there exists r ≤ n such that H0 has a basis of the
form d2w2, · · · , drwr with d2|d3| · · · |dn. Clearly, therefore, H itself has rank
r ≤ n and l1w1, d2w2, · · · , dnwn is a basis for H. We have only to show
that l1|d2. Once again, writing d2 = cl1 + d with 0 ≤ d < l1, we notice
l1w1 + d2w2 = l1(w1 + cw2) + dw2 ∈ H where w1 + cw2, w2, · · · , wn is a basis
of G. Thus, minimality of l1 forces d = 0 i.e., l1|d2. The proof is complete.

Corollary.
(Structure theorem for finitely generated abelian groups)
A finitely generated abelian group is isomorphic to Zm ×Zd1 × · · · ×Zdr for
some m ≥ 0 and di dividing di+1. The integer m as well as all the di’s (up
to sign) are uniquely determined.

The existence of bases as in the invariant factor theorem is equivalent to the
following statement about matrices :
Lemma.
Given anyA ∈Mm,n(Z) of maximum possible rank, there exist P ∈ GL(m,Z)
and Q ∈ GL(n,Z) such that PAQ is a matrix whose‘diagonal’ entries are
d1, d2, · · · where di|di+1. Furthermore, GL(n,Z) is generated by elementary
matrices I + Eij.
Proof
Suppose the matrix statement holds. Let H be a subgroup of a free abelian group
G of rank n. Then, H is also free abelian of rank m ≤ n (this we are assuming
known through other arguments). Let α : Zm → H and β : G → Zn be isomor-
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phisms. If i : H ≤ G denotes the inclusion map, we have the composite map β◦i◦α
corresponds to a matrix A ∈Mn,m(Z) with respect to the canonical ordered bases
of Zm and Zn. The matrix statement gives us P ∈ GL(n,Z) and Q ∈ GL(m,Z)
such that

AQ = P .




d1 · · · 0
. . . . . . . . .
0 · · · dm
0 · · · 0
0 · · · 0




where di|di+1.
Hence, the bases

{v1, · · · , vn} = {Pe1, · · · , P en}
of Zn and

{w1, · · · , wm} = {Qe1, · · · , Qem}
of Zm are so that

{β−1(v1), · · · , β−1(vn)}
is a basis for G and {α(w1), · · · , α(wm)} is a basis for H.
Now, note that the matrix identity above implies that AQ(ei) = P (diei) where ei
on the left side are in Zm and those on the right side are in Zn.
That is, βα(Qei) = diP (ei).
So, we have βα(wi) = divi, which means that the bases {β−1(v1), · · · , β−1(vn)} of
G and {α(w1), · · · , α(wm)} of H are as asserted in the invariant factor theorem.
Conversely, let us assume that the invariant factor theorem holds. Consider any
A ∈Mn,m(Z) of rank max(m,n). Without loss of generality, we shall take m ≤ n
for, otherwise, we could take the transpose. Now, A defines a homomorphism

TA : Zm → Zn ; v 7→ Av.

Now the image of TA is a free abelian group generated by the n vectorsAe1, · · · , Aem.
Since the matrix A has rank m, the vectors Ae1, · · · , Aem are linearly independent
vectors over Q. Therefore, they are linearly independent over Z also. In other
words, Image TA is free abelian subgroup of Zn of rank m.
By the invariant factor theorem, let us choose bases {v1, · · · , vn} of Zn and {d1v1, · · · , dmvm}
of Image TA such that di|d+1. Call Awi = divi for all i ≤ m.
Let P ∈ GL(n,Z) denote the matrix effecting the change of basis from the canon-
ical basis to the vi’s. Similarly, let Q ∈ GL(m,Z) be the matrix effecting the
change of basis from the canonical basis to the wi’s.
Then, P−1AQ(ei) = divi for all i ≤ m. In other words, P−1AQ has the form
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asserted.
The above proof of the invariant factor theorem clearly shows the generation of
GL(n,Z) by the elementary matrices.

Exercise.
Prove that SL(n,Z) is perfect for n ≥ 3. Is this true for n = 2?

Lemma.
For any A ∈ Mm,n(Z) define hi(A) to be the GCD of all i × i minors of
A. If A has maximal rank, then for any P ∈ GL(m,Z) and Q ∈ GL(n,Z),
the numbers hi(A) = hi(PA) = hi(AQ) for all i. The invariant factors of a

matrix A ∈Mm,n(Z) are h1(A), h2(A)
h1(A)

, h3(A)
h2(A)

, · · · etc.

We know thatGL(n,Z) is generated by the matrices of the formXij = I+Eij ; i 6= j
and the matrices diag(±1, · · · ,±1). elsewhere. We shall check for each r that

hr(AXij) = hr(XijA)

for all i 6= j ≤ n.
By the previous lemma, we need to consider only A of the ‘diagonal’ form with
non-zero entries d1, · · · , dm with di|di+1.
Therefore, it is clear that hr(AD) = hr(DA) for D = diag(±1, · · · ,±1).
Now, for such A, we have, if i > m that AXij = A and, if i ≤ m, AXij = A+ A′

where A′ is a matrix whose only nonzero entry is di at the (i, j)-th place.
Clearly, hr(AXij) = hr(A).
Similarly, we see also that hr(XijA) = hi(A). Therefore, we have the first assertion.
For the second, we merely note that for ‘diagonal’ matrices A as above, with
di|di+1, the numbers hi(A) = d1 · · · di. Thus, the invariant factors are successive
quotients of the hi’s.

Proposition.

The matrices S =
(

0 −1
1 0

)
and X =

(
1 1
0 1

)
generate SL(2,Z).

Proof

Now S−1X−1S = Y :=
(

1 0
1 1

)
. Therefore, all the matrices in SL(2,Z)

which are of the form
(
a 0
c d

)
are in < S,X >.

If < S,X > 6= SL(2,Z), define

b0 = min{|b| :
(
a b
c d

)
∈ SL(2,Z)\ < S,X >}.
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Note that b0 6= 0 if < S,X > 6= SL(2,Z). If g0 :=
(
a b0

c d

)
∈ SL(2,Z)\ <

S,X >, then g0S
−1Xn has (1, 2)-th entry a−nb0. But, if n is so chosen that

|a − nb0| < b0 (possible when b0 6= 0), we have g0S
−1Xn ∈< S,X > by the

choice of b0. Thus g0 ∈< S,X >, a contradiction of the assumption that
< S,X > 6= SL(2,Z). Hence the proof.

A more transparent proof is given in the notes. This is :
We shall prove, equivalently, that S and A := S−1X−1 generate SL(2,Z). Note

that AS = Y :=
(

1 0
1 1

)
.

Now, start with any g =
(
a b
c d

)
∈ SL(2,Z). We shall show that left and right

multiplications by powers of X and Y lead to ±I by the usual Euclidean division
algorithm.

For any integer l, we have X lg =
(
a+ lc b+ ld
c d

)
. This shows us that one can

divide a by c and replace a by its residue mod c.
Similarly, one can see that by left multiplication by some Y l, one can reduce c
mod a. Repeating these finitely many times, the division algorithm implies that
one of a and c becomes zero; the other has to be ±1 as the determinant is always
1.
So, g becomes g1 =

(
0 ±1
∓1 d

)
or g2 =

(±1 b
0 ±1

)
.

Now,

g1X
±d =

(
0 ±1
∓1 0

)
= S∓1

and g2 = Xb or −X−b.
Since −I = S2, the assertion follows.

Lemma.
A free group of any finite rank is a subgroup of finite index in SL2(ZZ).
‘Proof’.
We use the following lemma which we already proved in § 1. It shows that F2

is of finite index in SL(2,ZZ). Now, F2 has ZZ2 as a quotient and ZZ2 clearly
quotients of any order. Thus, F2 contains subgroups of every finite index.
Finally, it is a fact called the Nielsen-Schreier Theorem (which we shall prove
two sections from now) that a subgroup of index d in F2 is a free group of
rank 1 + d.

Remark.
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If F (x, y)→ Z/nZ is the homomorphism x 7→ 0, y 7→ 1, then its kernel is of
index n,

Lemma.

The matrices g =
(

1 2
0 1

)
and h =

(
1 0
2 1

)
generate a free group.

As mentioned earlier, more generally
(

1 z
0 1

)
and h =

(
1 0
z 1

)
generate a

free group for any complex number z with |z| ≥ 2.
This, and other such results can be most conveniently proved using the notion
of free products and a trick due to Klein known as the ping-pong lemma. Al-
though the general notion of ‘free product’ will be discussed in detail by Professor
Anandavardhanan, we will also briefly introduce it because even for questions on
subgroups of free groups etc., this notion is useful. Firstly, we define it in the
special case of two groups.

If G1, G2 are subgroups of a group G, then G is said to be the free product of
G1 and G2 (written G = G1 ∗G2) if, for every group H and homomorphisms
θi : Gi → H, there is a unique homomorphism θ : G → H so that θ|Gi = θi
for i = 1, 2.

The universal property makes it clear what is meant by saying that a group
G is the free product of a certain family of subgroups. In section 4, we
will show how to construct it after defining presentations. A free group is a
free product of copies of cyclic subgroups corresponding to a basis. For the
moment, we state and accept without proof (prochronistically !) that

G = G1 ∗ G2 if and only if G is generated by G1 ∪ G2 and no word of the
form xu1

1 y
v1
1 x

u2
2 y

v2
2 · · · xurr yvrr with u1 ≥ 0, vr ≥ 0 and other ui, vi > 0 is trivial

for nontrivial elements xi ∈ G1 and yi ∈ G2.

The Ping-Pong lemma:
Suppose G is a group acting on a set S. Suppose there are two nonempty
subsets S1, S2 of S with S2 not included in S1 and subgroups G1 and G2 of
G such that G1 has at least 3 elements and satisfy g(S2) ⊂ S1 ∀ g ∈ G1 \ {1}
and h(S1) ⊂ S2 ∀ h ∈ G2 \{1}. Then, the subgroup G0 of G generated by G1

and G2 is isomorphic to the free product of G1 with G2.

In the case of g and h, note first that h = wgw where w =
(

0 1
1 0

)
. There-

fore, if G1 =< g > and G2 =< w > and take S1 = {z ∈ C : |Re(z)| > 1},
S2 = {z ∈ C : |z| < 1}, then the subgroup G0 of PSL2(C) generated by G1
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and G2 is their free product. But then since h = wgw, the group generated
by g and h is their free product which means it is the free group of rank 2.

Proof of the ping-pong lemma.
Let us note first that G1 ∩G2 = {1}. For, if 1 6= g1 = g2 ∈ G1 ∩G2, then look at
some s2 ∈ S2 \ S1. Then, for x1 ∈ G1, x1 6= 1, g−1

1 ,

s2 = x1g1g
−1
2 x−1

1 (s2) ∈ S1

since x−1
1 carries s2 into an element of S1 which is, in turn, taken by g−1

2 into an
element of S2 which is finally taken by x1g1 to an element of S1. Thus, s2 ∈ S1, a
contradiction. Thus, G1 ∩G2 = {1}.
Consider any reduced word of the form w = g1h1g2h2 · · · gr where gi ∈ G1\{1}
and hi ∈ G2 \ {1}. Note that w(S2) ⊆ S1. If w = 1, then for each s2 ∈ S2,
we have s2 = w(s2) ∈ S1. Thus, S2 ⊆ S1, a contradiction. So w 6= 1.

Now, if w = h1g1 · · ·hr is a reduced word, get x1 ∈ G1 such that x1 6= 1.
Then, the reduced word x1h1g1 · · ·hrx−1 6= 1 by the above argument. So,
w 6= 1.

If w = g1h1 · · · grhr is a reduced word, then get x1 ∈ G1, x1 6= 1, g−1
1 . So,

x1wx
−1
1 6= 1 by the above argument. Hence, w 6= 1.

Similarly, if w = h1g1 · · ·hrgr is a reduced word, then grwg
−1
r is a nontrivial

word by the last statement. Hence w 6= 1.

Recall the matrices S =
(

0 −1
1 0

)
and X =

(
1 1
0 1

)
which we showed to

be generators for SL(2,Z).
Lemma.
The images s, b of S and SX in PSL(2,ZZ) := SL(2,ZZ) have orders 2 and
3, respectively, and PSL(2,ZZ) is isomorphic to the free product
< s > ∗ < b >∼= ZZ/2 ∗ ZZ/3.
Remark. This will be useful in computing the abelianization of SL(2,ZZ).
Proof.
The images of the matrices S, SX correspond to the ‘linear fractional trans-
formations’ α : z 7→ −1

z
, β : z 7→ z−1

z
which have orders 2 and 3 respectively.

A simple computation shows that α(P ) ⊆ N, β±(N) ⊂ P, β±(N) 6= P where
P,N are, respectively, the sets of positive and negative irrational numbers.
By the ping-pong lemma, we conclude that α, β generate a free product of
ZZ/2ZZ and ZZ/3ZZ.
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In the distributed notes, a different (more traditional) proof is given. This goes as
follows.
Since S2 = −I also represents the identity element in PSL(2,Z), the image s of
S has order 2 in PSL(2,Z).

Also, the image b of B := SX =
(

0 −1
1 1

)
in PSL(2,Z) has order 3 as (SX)3 =

−I.
We know that the elements s, b generate the whole group; so, we need only show
that no matrix

SBa1SBa2 · · ·SBar

with each ai either 1 or 2, can be the matrices I,−I.
Since SB = −X and SB2 = Y , it follows that any word in the positive powers

of SB and SB2 is a matrix g =
(
a b
c d

)
in which a, b, c, d are of the same sign.

Therefore, if b 6= 0, then the corresponding entry −b − d of SBg and b of SB2g

are non-zero as well. Similarly, if c 6= 0, the corresponding entries of SBg and
SB2g are nonzero. Since SB and SB2 have the property that either the (1, 2)-th
entry or the (2, 1)-th entry is non-zero, any word g in their positive powers has
this property; hence g can not be the identity matrix. Therefore, PSL(2,ZZ) is
the free product < s > ∗ < b >.

A remark and an exercise.
The commutator subgroup [F2, F2] has infinite index in F2. We shall prove
later that :
(i) subgroups of free groups are free and,
(ii) the rank of a normal subgroup of infinite index in F2 is infinite.

Therefore, there is a subgroup of countably infinite index in SL(2,Z). But,
this can be seen explicitly similarly to how we viewed F2. Indeed, here it is
deduced explicitly using the ping-pong lemma.

Example.
Consider an infinite sequence of integers 2 ≤ r1 < r2 < · · · where ri+1− ri ≥
3. Then, the subgroup of SL(2,Z) generated by the matrices

(−ri −1 + r2
i

1 −ri
)

is free of countably infinite rank.

We prove that the matrices Ti =
(−ri −1 + r2

i

1 −ri
)

generate a free group of

infinite rank where 2 ≤ r1 < r2 < · · · with ro − ri−1 ≥ 3 for all i > 1. We
apply the ping-pong lemma.
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Consider the discs K(γ) = {z : |z + d| ≤ 1} where γ =
(
a b
c d

)
∈ SL(2,ZZ).

We note that γ maps the interior of K(γ) to the exterior of K(γ−1) and the
exterior of K(γ) to the interior of K(γ−1).
Put T−i = T−1

i for convenience. Note that the discs K(Ti) are pairwise dis-
joint and that (because of the choice of the sequence {ri}) there are points
P outside all the discs K(Ti) for i ∈ ZZ.
Let Sk · · ·S1 be a word in the Ti’s. It is easy to see that this word cannot fix
P (indeed, P 6∈ K(S1) implies S1(P ) is inside K(S−1

1 ) which implies S1(P )
is outside K(S2) etc.) By Ping-pong, this gives us a free group of countably
infinite rank as the matrices Ti generate an infinite cyclic group each.

3 Presentations of groups and Dehn’s deci-

sion problems

Definition.
A presentation of a group G with generators X and relations R is an iso-
morphism of G with F (X)/N where R is a subset of F (X) and N is the
smallest normal subgroup of F (X) containing R. One usually writes G =<
X|R >. One calls a group finitely presentable if one can choose a presenta-
tion < X|R > for G with both X,R finite. One often writes the relations as
equations r = 1 for all r ∈ R.

Remarks.
The structure theorem of finitely generated abelian groups implies that every
such group is automatically finitely presented. In fact, it shows even more - if
A is abelian and can be generated by n elements, then it has a presentation
of the form A =< X|R ∪ [X,X] > where |X| = n and |R| ≤ n. There
is a convenient way to write the relations as a relation matrix. Let X =
{x1, · · · , xn}, R = {r1, · · · , rk}, and write each ri as a word in the x’s. Gather
together the total power mij of xj occurring in the expression for ri, the
relation matrix is the k × n matrix with (i, j)-th entry mij. Note that the
invariant factor theorem gives the structure of the group in terms of the
invariant factors of the relation matrix. As a corollary, it follows that if
< X|R > is a finitely presentation of a group G such that |X| > |R|, then
already we have G/[G,G] (so, a fortiori G itself) to be infinite. The fact
that any finite group is finitely presentable is not completely obvious but is
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proved in the following result.

Lemma.
(i) If N is a normal subgroup of a group G and both N,G/N are finitely
generated, then G is finitely generated.
(ii) A subgroup of finite index in a finitely generated group is also finitely
generated. Hence, any finite group is finitely presentable.
Proof.
(i) If x1, · · · , xr ∈ N generate N and y1N, · · · , ysN generate G/N , then clearly
x1, · · · , xr, y1, · · · , ys generate G. Indeed, if g ∈ G, then gN = w(y±1 N, · · · , y±s N)
which means that g−1w(y±1 , · · · , y±s ) = w0(x±1 , · · · , x±r ) ∈ N for some words w,w0.
Thus, g is a word in the xi’s and the yj ’s and their inverses.
(ii) Let H ≤ G be of finite index and write G = tni=1Hgi where g1 = 1. Then,
for each g ∈ G, there is a corresponding permutation i 7→ ig of {1, 2, · · · , n}
such that Hgig = Hg(ig). Here, we have denoted by ig the action of g on i;
this is convenient because we have adopted the convention of applying g first
in a product gg1.
Now, we have gig = h(i, g)g(ig) for some h(i, g) ∈ H. Let X be a finite set of
generators for G. We claim that the elements h(i, x), x ∈ X ∪X−1 generate
H.
Let h ∈ H. Write h = x1 · · · xr with xi ∈ X ∪X−1. Now,

h = g1h = g1x1 · · · xr = h(1, x1)g(1x1)x2 · · · xr
= h(1, x1)h((1x1), x2)g(1x1x2)x3 · · · , xr

= h(1, x1)h((1x1), x2) · · ·h((1x1 · · · xr−1), xr)g(1x1···xr)

= h(1, x1)h((1x1), x2) · · ·h((1x1 · · ·xr−1), xr)g(1h).

Note that h = g1h ∈ Hg(1h) implies that Hg(1h) = H; that is, g(1h) = g1 = 1.
This proves the assertion that H is finitely generated.

To deduce the assertion that any finite group G is finitely presentable, we
write a surjective homomorphism θ : F → G from a free group F of finite
rank. Since F is finitely generated and Ker θ is of finite index |G| in F , what
we proved shows that Ker θ is finitely generated as well. Thus, if R is a finite
set of generators for Ker θ and X a finite basis of F , then G =< X|R >.

In a later section, we will prove the Nielsen-Schreier theorem asserting that a
subgroup of index m in a free group of rank n is also free, of rank 1+m(n−1).
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This also proves that a subgroup of index m in an n-generated group can be
generated by 1 +m(n− 1) elements.

Examples of presentations

1. Z = 〈x | φ〉; Zn = 〈x | xn〉.
2. Z⊕ Z = 〈x, y | [x, y]〉.
3. Zn = 〈x1, . . . , xn | {[xi, xj] : 1 ≤ i < j ≤ n}〉
4. SL(2,Z) =< x, y|x2y−3, x4 >.
Furthermore, this implies that the abelianisation of SL(2,Z) is the cyclic
group of order 12.
To see this, let us use the result from the previous section which asserts that
PSL(2,ZZ) is isomorphic to the free product < s > ∗ < b >∼= ZZ/2 ∗ ZZ/3
where s, b are the images in PSL(2,ZZ) of the matrices

S =
(

0 −1
1 0

)
, X =

(
1 1
0 1

)
.

The presentation for SL(2,ZZ) follows now by sending S to x and SX to y.
Thus,

SL(2,Z)ab =< x, y|x2y−3, x4, xyx−1y−1 >

=< e, f |2e− 3f, ef − fe, 4e >∼= (Ze⊕ Zf)/ < 2e− 3f, 4e > .

The invariant factors of the subgroup < 2e−3f, 4e > above are the invariant

factors of the matrix A =
(

2 −3
4 0

)
. The latter is computed by computing

h1(A) = 1 = d1 and h2(A) = 12 = d1d2. Clearly, d1 = 1 and d2 = 12.
Therefore, the abelianisation of SL(2,Z) is the cyclic group of order 12.
5. 〈x, y | x2y3, x3y4〉 is a presentation for the trivial group.
6. The symmetric group S3 of degree 3 has a presentation

S3 = 〈r, s | r3, s2, srsr〉.

7. Let Dn, n > 1 be the symmetry group of the regular n-gon Pn. This
group is generated by the rotation r with angle 2π/n and a reflection s in
the line through the centre and one of the vertices.

Dn = 〈r, s | rn, s2, (sr)2〉.
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8. Let D∞ be the infinite dihedral group consisting of the
motions of IR which map the integers to integers, i.e. the transformations
IR→ IR, x 7→ ±x+ k, with k ∈ Z.

D∞ = 〈s, t | s2, stst〉.
9. |Q = 〈{xn : n ≥ 1} | {xn = xknk : n, k ≥ 1}〉
(Think of xn = 1/n!).
10. Let n ≥ 2, X = {x1, . . . , xn−1} and R = {x2

i , (xixi+1)3for 1 ≤ i ≤
n− 2, [xi, xj] for |j − i| > 1}. Then, the symmetric group Sn = 〈X | R〉.
Idea of proof:
Consider ϕ : X −→ Sn, xi 7→ σi = (i, i+ 1), 1 ≤ i ≤ n− 1 and observe that Sn is
a homomorphic image of G = 〈X | R〉. Consider H = 〈x2, . . . , xn〉 and its cosets

K1 = H, K2 = K1x1, K3 = K2x2, . . . ,Kn = Kn−1xn−1

and verify that for each i (1 ≤ i ≤ n), j (1 ≤ j ≤ n − 1) we have Kixj = Kl for
some l (1 ≤ l ≤ n). Thus H has index at most n and by induction H has order at
most (n− 1)!.
11. The group

G = 〈x, y | x2, y3, (xy)5〉
is the alternating group A5.
Proof: The elements σ = (12)(34), τ = (135) of A5 satisfy σ2 = 1, τ3 =
1, (στ)5 = 1, and hence generate a subgroup of order 30 or 60; since A5 has
no subgroup of order 30 (being simple), therefore σ, τ generate A5.
12. The group with generators a1, a2, a3 and relations

a−1
1 a2a1 = a2

2;

a−1
2 a3a2 = a2

3,

a−1
3 a1a3 = a2

1

is the identity group.
13. (Higman) The group G generated by a1, a2, a3, a4 subject to

a−1
1 a2a1 = a2

2;

a−1
2 a3a2 = a2

3,

a−1
3 a4a3 = a2

4,
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a−1
4 a1a4 = a2

1

has no proper normal subgroup of finite index. Indeed, if there is one, say N ,
then at least one of the elements ai has nontrivial order ni in the finite group
G/N . Choose p to be the smallest prime dividing some ni. To fix notation,
suppose p|n1. Now a−1

4 a1a4 = a2
1 gives

a1 = a−n4
4 a1a

n4
n = a2n4

1 .

So 2n4 ≡ 1 mod n1 (and so mod p also) and so p is odd. Also n4 > 1 also.
But 1 < ordp(2) < p gives 1 < n4 < p which means a prime dividing n4

would be smaller than p, a contradiction. Thus, N = G.
One can also identify this group with a free product with amalgamation in
such a way that it is evident that the group is infinite. Since every finitely
generated group has at least one maximal normal subgroup, it follows that
there exists a finitely generated infinite simple group, namely the quotient
group G/N where N is any maximal normal subgroup of G.

Proposition (Philip Hall).
Let N be a normal subgroup of a group G such that both N and G/N are
finitely presentable. Then, G is finitely presentable. Moreover, the numbers
of generators and of relations for G can be bounded in terms of those for N
and those for G/N .
Proof.
Suppose N has generators x1, · · · , xm and relations r1 = · · · = rk = 1 where ri’s
are words in the xj ’s. Let y1N, · · · , ynN generate G/N and let s1 = · · · = sl =
1G/N be relations where si’s are words in the yj ’s. Clearly, G is generated by
x1, · · · , xm, y1, · · · , yn. Further, these generators obviously satisfy equalities of the
following kind :

r1(x) = · · · = rk(x) = 1, s1(y) = t1(x), · · · , sl(y) = tl(x),

y−1
j xiyj = uij(x), yjxiy−1

j = vij(x) ∀ i ≤ m, j ≤ n.
Consider the group G̃ which is presented by these generators and relations; to
distinguish G from G̃, we will denote the generators of G̃ by x̃i, ỹj and relations
similarly with r̃i’s etc. Now, there is a surjective homomorphism θ from G̃ to
G which carries the x̃i’s to xi’s etc. Look at the kernel Ker θ. Restricted to
the subgroup Ñ :=< x̃1, · · · , x̃m > of G̃, the homomorphism θ is an isomorphism
as all relations in N are consequences of the relations ri(x) = 1. Thus, Ñ ∩
Kerθ = {1}. Further, Ñ is a normal subgroup of G̃ as ỹj x̃iỹj−1, ỹj

−1x̃iỹj ∈ Ñ
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by construction. So θ induces a surjective homomorphism from G̃/Ñ to G/N

which is an isomorphism as all relations in G/N are consequences of the relations
yjN = 1G/N . Therefore, Ker θ = {1}. So, G ∼= G̃ and is finitely presented. Note
also there are bounds for numbers of generators and of relations for G in terms of
those for N and those for G/N .

Dehn’s famous decision problems from 1912 (still unsolved in gen-
eral). These are :

The word problem.
Given a presentation < X|R >, is there an algorithm which decides whether
two given element w1, w2 of F (X) give the same element of < X|R >?
There are examples of finitely presented groups with unsolvable word prob-
lem.

The conjugacy problem.
Given a presentation < X|R >, is there an algorithm to decide if given ele-
ments of F (X) are conjugate in < X|R >?
A solution of the conjugacy problem also gives a solution of the word problem.
The word problem is easier because there exist groups which have solvable
word problem but unsolvable conjugacy problem. For instance, every pre-
sentation with a single defining relation has a solvable word problem but it is
not known whether any such presentation has a solvable conjugacy problem.

The isomorphism problem.
Is there an algorithm to decide whether two given finite presentations give
isomorphic groups ?
This is the hardest of the three. Even special cases like an algorithm to
decide whether a given finite presentation gives a trivial group does not
exist. However, there are so-called Tietze transformations which allow one
to go from one finite presentation to any other finite presentation for the
same group !

4 Connections with topology - amalgams etc.

The notions of free groups, free products, and of free products with amalgamation
come naturally from topology. For instance, the fundamental group of the union
of two path-connected topological spaces joined at a single point is isomorphic to
the free product of the individual fundamental groups.
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The Seifert-van Kampen theorem asserts that if X = V ∪W is a union of path-
connected spaces with V ∩W non-empty and path-connected, and if the homo-
morphisms π1(V ∩W )→ π1(V ) and π1(V ∩W )→ π1(W ) induced by inclusions,
are injective, then π1(X) is isomorphic to the free product of π1(V ) and π1(W )
amalgamated along π1(V ∩W ).
These notions have found many group-theoretical applications. Recall that:
If Gi, i ∈ I are groups, then a group G along with injective homomorphisms
φi : Gi → G is said to be their free product if, for every group H and homo-
morphisms θi : Gi → H, there is a unique homomorphism φ : G → H so that
φ ◦ φi = θi for all i ∈ I.
In other words, G has the universal repelling property with respect to homomor-
phisms from Gi’s to groups.
To construct G, one starts with a presentation < Xi|Ri > of each Gi and takes
< X|R > as a presentation of G where X is the disjoint union of the Xi’s and R
is the union of the Ri’s. The homomorphisms φ : Gi → G are, therefore, simply
inclusions. The uniqueness of such a free product G up to isomorphism follows
from the uniqueness property of φ above.
One writes G = ∗i∈IGi. If I is a finite set, say, I = {1, 2, · · · , n}, then it is cus-
tomary to write G = G1 ∗G2 ∗ · · · ∗Gn.
For example,
The free group of rank r is the free product Z ∗ · · · ∗ Z of r copies of Z.
More generally, a free group F (X) on a set X is the free product ∗x∈X < x >.
The group PSL(2,Z) is the free product of a cyclic group of order 2 and a cyclic
group of order 3.
Recall that if A is a group, Gi, i ∈ I is a family of groups and αi : A→ Gi (i ∈ I)
are injective homomorphisms, then a group G is said to be the free product of
Gi’s amalgamated along A, if there are homomorphisms φi : Gi → G satisfying
φi ◦ αi = φj ◦ αj for all i, j ∈ I such that the following universal property holds:
for every group H and homomorphisms θi : Gi → H with θi ◦ αi = θj ◦ αj for all
i, j ∈ I, there is a unique homomorphism θ : G→ H with φ ◦ φi = θi.
One denotes G by ∗AGi if there is no confusion as to what the maps αi are. Some-
times, the maps αi are taken to be not necessarily injective and still the above
definition can be carried out. Note that, if αi are trivial, then ∗AGi = ∗Gi, the
free product.
The construction is as follows. If Gi =< Xi|Ri >, i ∈ I, then

G :=< ti∈IXi| ∪Ri ∪ ∪i,jRij >
where Rij = {αi(a)αj(a)−1; a ∈ A} > .

The uniqueness of G up to isomorphism is clear once again by the uniqueness of
θ.
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For instance, SL(2,Z) = Z/4 ∗Z/2 Z/6.
The fundamental group of the Klein bottle is isomorphic to Z∗2ZZ. A free product
with amalgamation could be the trivial group even if the groups αi(A) are not.
For example, let α1 : Z → PSL(2, |Q) be an injective homomorphism and let
α2 : Z→ Z/2 be the natural homomorphism. Then, G1 ∗Z G2 = {1}.
Finally, we recall the notion of HNN extensions named after G.Higman, B.H.Neumann
& H.Neumann. The construction is akin to adjoining elements to fields to get field
extensions.
Let G =< X|R > be a group and let A be a subgroup. For an injective homo-
morphism φ : A → G, the HNN extension of G with respect to φ is the group
G∗ =< X ∪ {t}|R ∪ {tat−1φ(a)−1} >.
It is a fact that G∗ is independent of the presentation of G chosen and that G
embeds naturally into G∗. It can be shown that, given two elements a, b of equal
order in a group G, this construction enables one to embed the group G into a
bigger group in which a, b are conjugate. The HNN construction also finds a nat-
ural topological interpretation.
For, suppose V and W are open, path-connected subspaces of a path-connected
space X and suppose that there is a homeomorphism between V and W inducing
isomorphic embeddings of π1(V ) and π1(W ) in π1(X). One constructs a space Y
by attaching the handle V × [0, 1] to X, identifying V × {0} with V and V × {1}
with W . Then, the fundamental group π1(Y ) of Y is the HNN extension of π1(V )
relative to the isomorphism between its subgroups π1(V ) and π1(W ).
In the lectures of Professor Anandavardhanan, more details about free products
with amalgamation and about HNN extensions will be proved.

5 Subgroups of free groups

We describe the methods of Nielsen and of Schreier (1901-1929) which tell us
that subgroups of free groups are free; they also give explicit generators. The
main aim of this section is to prove the following result which is a version of
the Riemann-Hurwitz formula for a covering space :

Nielsen-Schreier Theorem
If G is a subgroup of a free group F , then G is a free group. Moreover, if
G has finite index m in F , then m(rank F − 1) = rank G − 1 (that is, the
rank of G is precisely 1 + m(n− 1), where n is the rank of F which may be
infinite).
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Remark.
There is a direct proof of this theorem verifying the universality property.
This has recently been written down by Ribes and others using wreath prod-
ucts.

Corollary of the N-S theorem.
(i) If H ≤ G is a subgroup of index m in an n-generated group G, then H is
1−m+mn-generated.
(ii) Commuting elements a, b in a free group are powers of a common element.
Proof.
(i) Start with a surjection π : Fn → G and look at π−1(H).
(ii) The subgroup < a, b > is abelian and free and hence cyclic.

Definitions and remarks on Nielsen’s method.
Let F be free with a basis X. For w1, w2 ∈ F , there exist a, b, c such that
w1 = ab−1, w2 = bc and ac is a reduced expression for w1w2. So

l(w1w2) = l(w1) + l(w2)− 2l(b) ≤ l(w1) + l(w2).

For a product of more than two words, it becomes more complicated and
Nielsen’s idea is to isolate a subset of words where the numbers of cancel-
lations are limited and to show that simple transformations (akin to ele-
mentary transformations of integral matrices) reduce words to these special
words. Nielsen’s method is now vastly generalized and goes under the name
of ‘cancellation theory’.

For a finite subset U of G, define elementary Nielsen transformations on
U = {u1, · · · , un} as :

(T0) delete some ui when ui = 1,
(i’) replace some ui by u−1

i , and
(ij) replace some ui by uiuj for some i 6= j.
Of course, it is unsaid here but understood that the other uk’s are unchanged.

A Nielsen transformation is a finite sequence of the elementary Nielsen trans-
formations. For instance, for U = {u1, u2, 1}, the transformation (12)(2′)(T0)
(read from left to right) takes U to the set {u1u

−1
2 , u−1

2 }.
It is easy to see that the group generated by U is unchanged after we ap-
ply Nielsen transformations (as it is clearly so for each elementary Nielsen
transformation) and the Nielsen transformations form a group (as each has
an inverse).
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Define a subset U of F to be Nielsen-reduced if, ∀w1, w2, w3 ∈ U ∪ U−1 :

(N0) wi 6= 1,
(N1) either w1 = w−1

2 or l(w1w2) ≥ max(l(w1), l(w2)),
(N2) either w1 = w−1

2 or w3 = w−1
2 or l(w1w2w3) > l(w1)− l(w2) + l(w3).

For example, any set of the form {w,w−1} with w 6= 1 is reduced.
Another example is, if x, y ∈ X, then {y, x−1yx, x−2yx2, · · · , } is Nielsen-
reduced.

It is also convenient to fix a well-ordering on X ∪ X−1. This gives lexico-
graphic ordering ‘<’ on the reduced words.
For example, if X = {x, y} and the ordering of X∪X−1 is x < y < x−1 < y−1.
Then, the first few elements of F (X) are :

1 < x < y < x−1 < y−1 < x2 < xy < xy−1 < yx < y2 < yx−1

< x−1y < x−2 < x−1y−1 < yx < y2 < yx−1 < · · ·

Define the left half L(w) of a word w to be the initial (left) part of length

[ l(w)+1
2

]. Define a well-ordering of the pairs (w,w−1) (which we will simply
denote as w1 ≺ w2) if either min (L(w1), L(w−1

1 )) < min (L(w2), L(w−1
2 )) or

they are equal and max (L(w1), L(w−1
1 )) < max (L(w2), L(w−1

2 )).

The main property which we will need is :

Proposition.
Let U = {u1, · · · , un} be any finite subset of F . Then, there exists a Nielsen
transformation which changes U into a Nielsen-reduced set V . In fact, there
is a polynomial time algorithm to do this.
Proof.
If U does not satisfy (N1), then (after a permutation of U±1), l(uiuj) < l(ui)
for some uiuj 6= 1. Clearly, in a free group l(u2) ≥ l(u); thus, i 6= j. By using
the Nielsen transformation (ij), one may reduce the sum

∑
l(ui). Inductively,

assuming that this sum has been chosen to be the minimum possible, then
we can assume that U does satisfy (N1). Also, after the transformation (T0),
we may suppose (N0) holds. Finally, consider w1,= x,w2 = y, w3 = z with
xy 6= 1 6= yz. By (N1), l(xy) ≥ l(x), l(yz) ≥ l(z). Thus, the part of y which
cancels in the formation of xy is as well as the part of y that cancels while
forming yz are both of lengths at the most the half of l(y).
Thus, x = ap−1, y = pbq−1, z = qc are all reduced, and so are xy = abq−1
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and yz = pbc.
If b 6= 1, then xyz = abc is reduced and therefore,

l(xyz) = l(x)− l(y) + l(z) + l(b) > l(x)− l(y) + l(z)

which means (N2) already holds.
If b = 1, then x = ap−1, y = pq−1, z = qc and indeed (N2) does not hold as
l(p) = l(q) ≤ l(x)/2, l(z)/2 and p 6= q.

Example.
Look at F = F (x, y) with the order 1 < x < y < x−1 < y−1 < · · · etc. Con-
sider the subgroup H of all elements of even length. That is, it is the kernel
of the homomorphism from F to Z/2Z which sends a word to the sum of the
exponents mod 2. So, a set of generators is U = {x2, xy, xy−1, yx, y2, y−1x}.
At the first step, we apply (35)(6′)(46)(6′)(1′)(61)(1′) to U and arrive at

U1 = {x2, xy, xy, y2, y2, y−1x−1}

Applying (2′)(32)(2′)(4′)(54)(4′)(62) to U1 and arrive at

U2 = {x2, xy, 1, y2, 1, 1}

Applying T0 to 3, 5, 6 we arrive at U3 = {x2, xy, y2}. This satisfies (N0),(N1)
but not (N2) because l(w3w

−1
2 w1) = 2. So, we apply (2′)(32)(2′)(3′) to U3

and arrive finally at V = {x2, xy, xy−1} which is Nielsen-reduced. From the
following proposition, it follows that H is free.

Proposition.
Let U be any (could be infinite also) subset of F satisfying (N0),(N1) and
(N2). Then, for each u ∈ U−1, there exist words a(u),m(u) with the ‘middle
part’ m(u) 6= 1 such that u = a(u)m(u)a(u−1)−1 is a reduced expression and
such that if w = u1u2 · · ·un with n ≥ 0, ui ∈ U ∪ U−1, uiui+1 6= 1, then

l(w) = l(u1 · · ·ui−1a(ui)) + l(m(ui)) + l(a(u−1
i )−1ui+1 · · · un).

In particular, l(w) ≥ n. In even more particular, < U > is free.
Proof.
For u ∈ U±1, look at the longest initial part a(u) that cancels in some
product vu 6= 1 with v ∈ U±1. The hypothesis (N2) on U implies that the
initial part a(u) and the final part a(u−1)−1 do not exhaust u. Thus, we have
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u = a(u)m(u)a(u−1)−1, a reduced expression for some m(u) 6= 1.
Now, consider any w = u1u2 · · · un with n ≥ 0, ui ∈ U ∪ U−1, uiui+1 6= 1.
After cancellations between adjacent ui’s, the non-reduced word u1 · · ·un
leads to a word w′ = m′1m

′
2 · · ·m′n where m′i is a middle part of ui containing

m(ui). Thus, m′i 6= 1 and since there is no cancellation between m′i and
m′i+1, the word w′ is reduced. So, it is the reduced form of w and the
terms m(u1), · · · ,m(un) remain uncancelled in w′. Thus, the assertion l(w) =
l(u1 · · ·ui−1a(ui))+ l(m(ui))+ l(a(u−1

i )−1ui+1 · · · un) on length follows. Thus,
l(w) ≥ n and, therefore, < U > is free.

Remarks.
There is a small point to be made here. Nielsen reduced sets might contain
two words of the form w,w−1 and hence, may not be bases of < U >.
However, another set of Nielsen transformations would reduce such a set to
a basis.

Corollary (Nielsen subgroup theorem).
A finitely generated subgroup of a free group must be free.
Proof.
If U is any finite subset of F , the proposition previous to the one above shows
that one can change U to a Nielsen-reduced set V by Nielsen transformations;
thus < U >=< V > which last group is free with basis V , by the above
proposition.

Corollary.
A free group of finite rank n cannot be generated by fewer than n elements.
Further, any generating set of cardinality n is a basis.
Proof.
Note that when we Nielsen-transform a finite set, the cardinality never ex-
ceeds the earlier one. Let Y be a subset of F with ≤ n elements for which
< Y >= Fn. After a Nielsen transformation of Y , we get a basis V of F
with |V | ≤ |Y | ≤ n. Therefore, we must have |V | = |Y |.
Exercise. Let F be free on {x, y}. Put an = x−nyxn for all natural numbers n.
Prove that no reduced word in a1, · · · , an (for any n) is trivial. Deduce that the
subgroup F0 of F generated by an, n ∈ N is free of countably infinite rank.

Definitions and remarks - Schreier’s method.
Let F be free on a set X and denote by l(·), the usual length function of F
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with respect to X. For any subgroup G of F , a (right) transversal is a set
containing exactly one element from each right coset of G in F .
A Schreier transversal is a right transversal S which contains all the initial
parts of all its elements; that is, if x1 · · ·xn ∈ S with l(x1 · · ·xn) = n, then
x1 · · ·xr ∈ S for all 0 ≤ r ≤ n. Note that inclusion of the case r = 0 means
that the empty word (the identity element) always belongs to a Schreier
transversal. In order to construct Schreier transversals, let us introduce
a well-ordering on F (that is, so that each subset has a least element) as
follows. Choose any well-ordering of X±1 and order F (X) by length and
then lexicographically on words of equal length. That is, for different reduced
words, we have x1 · · · xr < y1 · · · ys if either r < s or if r = s and xk < yk
in X±1 where k = min{i : xi 6= yi}. Note that 1 is the least element of any
subset of F which contains 1.

Lemma.
Every subgroup G of F has a Schreier transversal. Indeed, the set S consist-
ing of the least elements in each right coset gives a Schreier transversal.
Proof.
Consider S as above. Suppose, if possible, that x1 · · · xn ∈ S but x1 · · · xn−1 6∈
S. Note that x1 · · · xn is a reduced word. Let y ∈ Gx1 · · ·xn−1 be such that
y < x1 · · · xn−1. Consider yxn. If l(y) < n − 1, then clearly l(yxn) < n =
l(x1 · · ·xn) and so yxn < x1 · · ·xn which contradicts the choice of x1 · · · xn as
an element of S. So, l(y) = n − 1 and let us write y = x1 · · · xr−1yr · · · yn−1

in reduced form where yr < xr. Here r could be 1. If yn−1 = x−1
n , then

l(yxn) = n− 2 which gives again yxn < x1 · · · xn, again an impossibility. So
yn−1 6= x−1

n , and the expression yxn = x1 · · · xr−1yr · · · yn−1xn is in reduced
form which again shows that yxn < x1 · · ·xn, a contradiction.

We should keep in mind that there could be other Schreier transversals too
which are different from the one constructed in the lemma.

Lemma.
Let G ≤ F (X) and consider the Schreier transversal constructed in the
above lemma. For w ∈ F , write w̄ for the element of Gw ∩ S. Then,
SG := {sxsx−1 : s ∈ S, x ∈ X±} generates G.
Proof.
Note that the map w 7→ w̄ from F to S satisfies :
(i) w̄ = w̄,
(ii) w̄ = w if and only if w ∈ S,
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(iii) s̄xx−1 = s for all s ∈ S, x ∈ X±.
The last property follows because Gsx = Gsx and so, Gs = Gsxx−1.
Evidently, SG ⊆ G as Gsx = Gsx. Conversely, consider any element g ∈ G
and write g = x1 · · · xn in reduced form. Look at the n elements of S; s1 =
1, s2 = s1x1, · · · , sn+1 = snxn. Then ti := sixis

−1
i+1 = sixisixi

−1 ∈ SG ⊆ G for
1 ≤ i ≥ n. Therefore,

t1 · · · tn = s1x1x2 · · · xns−1
n+1 = gs−1

n+1.

As all other terms are in G, we get sn+1 ∈ G. On the other hand, S∩G = {1}
which means sn+1 = 1; that is, g = t1 · · · tn ∈ SG. Hence G =< SG >.

From SG, to get a basis of G (and thereby show G is free), we proceed as
follows. Look at the subset T of the generating set SG defined as T :=
{sxsx−1 : s ∈ S, x ∈ X, sx 6∈ S}, and the sets T−1 := {t−1 : t ∈ T}, T ′ :=
{sxsx−1 : s ∈ S, x ∈ X−1, sx 6∈ S}.
Lemma. T ′ = T−1.
Proof.
For s ∈ S, x ∈ X±, we noticed that s = s̄xx−1.
Now, sx 6∈ S if and only if sx 6= s̄x if and only if s 6= s̄xx−1 if and only if
s̄xx−1 6= s̄xx−1 if and only if s̄xx−1 6∈ S.
Now, let x ∈ X. So, the above shows that T−1 ⊆ T ′.
If x ∈ X−1, the above discussion shows that (T ′)−1 ⊆ T . Therefore, we have
T−1 = T ′.

Key observation of Schreier :
Note that T ∪T ′ = S \ {1}. If w = sxsx−1, w′ = tyty

−1 ∈ T ∪T ′, then in the
reduced expression of ww′, neither x nor y can cancel unless ww′ = 1. This
is how the Schreier property arose. More precisely, :

Lemma.
Let w = sxsx−1, w′ = tyty

−1 ∈ T ∪ T ′(= SG \ {1}). Then, xs̄x−1ty has a
reduced expression of the form xzy for some z ∈ F unless t = s̄x, xy = 1, s =
t̄y.
Proof.
Write reduced expressions s̄x = x1 · · · xm and t = y1 · · · yn with xi, yj ∈ X±.
Note that if yny = 1, then ty = y1 · · · yn−1 ∈ S (as t ∈ S) and we would
have w′ = 1, a contradiction. Therefore, yn 6= y−1. In the same way, xm 6= x
for, otherwise s̄xx−1 = x1 · · · xmx−1 = x1 · · · xm−1 ∈ S which means s̄xx−1 =
s̄xx−1. But, we already observed in (iii) of an earlier lemma that the left
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hand side s̄xx−1 is always equal to s. Therefore, if xm = x, we would have
s̄xx−1 = s which would give w = 1, a contradiction. Hence, we have xm 6= x
as well as yny 6= 1. The upshot is that therefore, xs̄x−1 begins with x and
ty ends with y. Thus, the only thing left is to check for any cancellation in
the product s̄x−1t. Now, the reduced form of s̄x−1ty ends with y because,
if not, ty = y1 · · · yny would be an initial part of s̄x and would thus be in S
which contradicts the assumption that w′ ∈ T ∪ T ′. Similarly, the reduced
form of xs̄x−1t has x at the beginning for, if not, (xs̄x−1)−1 = s̄xx−1 would
be an initial part of t and would thus be in S - this is impossible because
then sx = s̄xx−1x = (s̄xx−1)x = s̄x would be in S, a contradiction to the
assumption that w ∈ T ∪ T ′. Therefore, nether x nor y can cancel while
obtaining the reduced form of xs̄x−1ty unless they come together to cancel
each other. This happens if and only if s̄x−1t = 1 = xy. Of course, these
two statements also imply t̄y = s̄xx−1 = s. This proves the lemma.

Proof of Nielsen-Schreier theorem.
As we know SG generates G and hence so does T because T ∪T−1 = SG\{1}.
We claim that T is a basis of G. Write w = w1 · · ·wn, wi = sixisixi

−1, a re-
duced word in T ∪T−1 = SG\{1}. So, elements of the form b = sxs̄x−1, b−1 =
tyt̄y−1 satisfying t = s̄x, xy = 1, s = t̄y cannot occur in adjacent places in
w. By the above lemma, we have that the reduced form of w as a word in
X± contains the middle letters xi’s as separate letters. Thus, l(w) ≥ n. As
n ≥ 1, we have w 6= 1; so G is free on T .

To compute the rank of the subgroup, we need to compute |T |; that is, the
number of nontrivial elements of the form sxsx−1. So, let us compute the
number of such elements which become trivial. Note that such an element
is trivial if sx = sx. Now, let Pl (respectively P ′l ) denote the number of s
of length l which end in some x ∈ X (respectively, x ∈ X−1). Put P0 =
1, P ′0 = 0. Now, if sx = sx and s has length l, then l(sx) = l ± 1. For
a given l, and arbitrary x ∈ X, there are P ′l of our elements s for which
l(sx) = l− 1 (because if s ends in x−1, then sx is an initial segment of s and
so sxsx−1 = 1).

Conversely, if some element of S has length l+1 and ends in x ∈ X, then it is
of the form s̄x where s is its initial segment of length l; and then sxsx−1 = 1.
The number of such elements is Pl+1. The total number of elements of the
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form sxsx−1 which reduce to the identity is, therefore,
∑

l≥0

(P ′l + Pl+1) =
∑

l≥0

(P ′l + Pl)− P0 = #S − 1 = m− 1.

Therefore, the rank of the subgroup G is mn−(m−1). The proof is complete.

Corollary. [Fn, Fn] has infinite rank.
Proof. Write {x1, · · · , xn} for a basis of Fn. Clearly every coset contains a
unique xα1

1 · · · xαnn where αi ∈ ZZ. The set S of these clearly form a Schreier
transversal. But, for k ≤ n, the elements g = xα1

1 · · ·xαkk satisfy gxigxi
−1 = 1

if and only if k ≤ i. Thus, S is infinite.

Aliter for rank computation.
Here is another way of proving the assertion about the rank. Note that the elements
of T indexed by the pairs (s, x) in S×X with sx 6∈ S are all distinct by the previous
lemma. Thus, rank G = |S| rank F −d where d = |{(s, x, t) ∈ S×X×S : sx = t}|.
If we show that d = m − 1, then we would have rank G = m rank F − (m − 1).
Note that the assertion on rank holds when rank F is infinite. Let us assume then
that rank F < ∞. Consider the (Cayley) graph T with m vertices labelled by
elements of S where there is a directed edge from s to sx for each x ∈ X. By
the Schreier property of S, each vertex is connected to 1 by a path; therefore,
the graph is connected. Moreover, there are no circuits because F is free on
X. Hence the graph is a tree on m − 1 edges (by Euler’s formula for the Euler
characteristic). Finally, since the edges of the graph are in bijection with the set
{(s, x, t) ∈ S ×X × S : sx = t}, we have m − 1 = |{(s, x, t) ∈ S ×X × S : sx =
t}| = d.

6 Rewriting process

A method of Reidemeister and Schreier allows us to show that the subgroup of
finite index in a finitely presented group is itself finitely presented. The process
allows us to find a presentation also ! Let us state the relevant theorem; the proof
is easy and we do not discuss it now (it is in the notes).

Reidemeister-Schreier Theorem
Let G =< X|R > be a finite presentation. Let H be a subgroup of finite
index m in G. Then, one has a presentation < T |S̃ > for H with |T | =
1−m+m|X|, |S̃| = m|R|.
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Remark. In fact, we will see in the next section an algorithm which starts with
a presentation < X|R > of G, and with a set of words in X± which generate H
and yields the index of H, a Schreier transversal for H in G and the permutation
representation of G on the right cosets of H - all in finitely many steps.

Proof of theorem.
We have already discussed how to get T . Let us recall this briefly. Let θ : F (X)→
G be the canonical homomorphism and let K := θ−1(H). Now, start with the
Schreier transversal S for K in F (X) and look at T = {sxs̄x−1 : s ∈ S, x ∈
X, sx 6∈ S}). Note that this way we got a basis for K and its image under θ yields
generators for H also thus. Consider the subset R̃ := {srs−1 : s ∈ S, r ∈ R} of K.
Essentially, the construction of relations for H consists in rewriting R̃ nicely as
follows. Consider the normal closure R̄ of R in F (X); it lies in K. It is generated
by the elements wrw−1 for w ∈ F (X), r ∈ R. Write w = ks with k ∈ K, s ∈ S.
Hence, R̄ is generated by ksrs−1k−1 which means that R̃ is generated by the
conjugates in K of the elements of R̃. That is, R̄ is the normal closure of R̃ in K.
Now, if we write the elements of R̃ as words in T ∪ T−1 and call the set of words
as S̃, the group K/R̄ has the presentation < T |S̃ >. But clearly K/R̄ ∼= H.

Example
Consider the free group F = 〈x, y | φ〉. The homomorphism ϕ : F −→ Zn =
{0, 1, 2, . . . , n − 1}, n ≥ 2 defined by x 7→ 0, y 7→ 1 and let U be the kernel
of ϕ. As coset representatives we take 1, y, y2, . . . , yn−1; clearly this system
satisfies the Schreier property. Then the Reidemeister-Schreier generators
for U are the non-trivial elements of the following set:

{yi.x.(yix)−1, yi.y(yi+1)−1 | i = 0, 1, 2, . . . , n− 1}

We obtain the non-trivial elements

yn, xi = yi.x.y−(i+1)

for i = 0, . . . , n− 2 and xn−1 = yn−1.x. The rank of this group is n+ 1. Note
that this shows that :
The free group of rank 2 contains a free group of rank n as a subgroup of
index n− 1.
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7 Coxeter-Todd-Moser algorithm

Let < X|R > be a finitely presentation of a group G. Given a subgroup
H of finite index in G, we will discuss an algorithm which yields in finitely
many steps : (i) the index, (ii) a Schreier transversal, (iii) the permutation
representation of G on the cosets. In order to explain the algorithm clearly,
we start with the case H = {1}; that is, we assume < X|R > is a finite
presentation of a finite group and determine : (i) the order of G, (ii) a
Schreier transversal of R̄ in F (X), (iii) a faithful permutation representation
of G.

Description of algorithm.
For each relation r = x1 · · ·xn as a reduced in xi ∈ X±, we draw a rectangular
table with n+ 1 columns and an unspecified number of rows. In fact, if the
procedure stops after r rows, then the order of G turns out to be r. In
the table with n + 1 columns, write the symbols x1, · · · , xn on top of the n
vertical lines separating the columns. Enter the symbol 1 in the first and
last places of the first row of each table. The other places are as yet empty.
In an adjacent place to one of these two 1’s, write a 2. For instance, if 2
is written in the place to the immediate right of the leftmost 1, then define
1x1 = 2. Record this on a list to be continued. If xn = x−1

1 , then it means
that 2xn = 2x−1

1 = 1 as defined; so, fill in a 2 to the left of the rightmost
1 in case xn = x−1

1 . Otherwise, leave that place empty. Having filled in 2’s
and 1’s in the first row according to the definition 1x1 = 2, there may or
may not be any empty place in that row. Since we introduced the symbol 2,
start a second row and put 2 in the leftmost and rightmost places. Continue
defining as “2x1 = 3 and 3 in the 2nd place of 2nd row” or as “3xn = 2 and 3
in the second-last place”. Record this definition. Continuing in this manner,
we stop when the rows are complete. What might happen is that we filled
a place with a symbol and that forces an identity. That is, suppose on a
row, there are three places with i, empty slot and k from left to right. If a
symbol j is entered in between because of a definition of the form ixr = j,
then we have the ‘bonus’ result that jxs = k where xs is on the vertical line
separating the columns with j and k. We record this also in the same list as
the definitions although we put the definitions on the first column of the list
and the bonuses on the second column of the list. Actually, we don’t draw
the vertical lines between columns because we wish to put some ‘dashes’ in
between the symbols 1, 2 etc. When we define something like 1x1 = 2, we
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put 1− 2 with a single ‘dash’. If we have a bonus, say jxs = k, we put j = k
with two ‘dashes’. If we fill a place with a symbol j to the right of a symbol
i because of some earlier bonus, we write i ≡ j with three ‘dashes’. If j has
been filled because of an earlier definition, we do not put any ‘dash’. The
monitor list will yield the permutation representation of G on the set of right
cosets. The Schreier transversal comes from the definition column.
We must bear in mind that we need to fill in all the tables simultaneously. Let
us illustrate this with a simple example first where there is only one relation
(and therefore, only one table).

Example : G =< x|x5 >
The only relation is x5 = 1 and so we make a table with 6 columns with x
written on the top of where each of the 5 vertical lines separating the columns
would be. Start with 1’s at the 1st and the 6th place of the first row. Let
us put 2 at the 2nd place; that is, we define 1x = 2 which we write as 1− 2.
So, the 3rd,4th and 5th places of the row are empty as yet. Start a second
row with 2 at the extremities. So, on the 5th place of this row, we must put
a 1 and write no ‘dash’ in between. Continuing in this manner, we have the
following table :

1 - 2 - 3 - 4 - 5 = 1
2 3 4 5 ≡ 1 2
3 4 5 ≡ 1 2 3
4 5 ≡ 1 2 3 4
5 ≡ 1 2 3 4 5

The list recorded is :
Definitions :
1x=2
2x=3
3x=4
4x=5
————-
Bonuses :
5x=1
———
The monitor list is :
1x=2,2x=3,3x=4,4x=5,5x=1.
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Thus O(G) = 5. The monitor list yields the permutation representation of
G given by x 7→ (12345). The Schreier transversal comes from the definition
column of the recorded list; the j-th element comes from the first one. In
our example, we get 1, 1x, 1x2, 1x3, 1x4.

Example : G =< a, b|baba−1, abab−1 >
This is the so-called Fibonacci group F (2, 3). Here, we have two tables as
follows.

Table corresponding to baba−1 :
1-2-3-4=1
2-6-8=3 2
3 4 6=7-3
45264
58125
67586
71457
83718
————–

Table corresponding to abab−1 :
14-5=21
234=62
37=143
467=54
5268=5
68376
75817
8=1238
—————–

Definitions :
1b=2,2a=3,3b=4,4b=5,2b=6,3a=7,6a=8
Bonuses :
1a=4,5a=2,4a=6,6b=7,7b=1,7a=5,8b=3,5b=8,8a=1
Note that |F (2, 3)| = 8 which was not easy to guess by inspection.
A schreier transversal is {1, b, ba, bab, bab2, b2, ba2, b2a} and the permutation
representation (right regular representation) G → S8 is described by a 7→
(1, 4, 6, 8)(2, 3, 7, 5) and b 7→ (1, 2, 6, 7)(3, 4, 5, 8).
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8 More properties of free groups

Lemma.
(i) A free group F is residually-p for any prime p.
(ii) If G is a finitely generated, residually finite group, then every surjective
homomorphism from G to itself is an isomorphism.
Proof.
(i) Let p be any prime. Let g ∈ F be a nontrivial element and suppose
g = xa1

1 · · · xann where xi are basis elements (not necessarily distinct), each
ai 6= 0 and xi 6= xi+1.
Let d be an integer bigger than the power of p dividing the product a1 · · · an.
We consider the (finite) p-group P consisting of all (n + 1) × (n + 1) upper
triangular matrices with entries from Z/pd and all diagonal entries 1.
Of course, the matrices I + Eij for i < j generate P where Eij has only the
one nonzero entry 1 at the (i, j)-th place.
Of course, to define a homomorphism from F to P , we need to specify only
the images of the basis elements but we also need for our purpose to ensure
that the element g maps to a nontrivial matrix.
Therefore, it is natural to gather together, for each basis element x of F , all
the i’s such that xi = x and define

θ : F → P ;

x 7→ I if xi 6= x ∀ i ≤ n ,

x 7→ ∏

i:xi=x

(I + Ei,i+1).

In the last expression, the factors on the right side commute since consecutive
xi and xi+1 are unequal and Ei,i+1Ej,j+1 = 0 unless i+ 1 = j.
Therefore, for a basis element x occurring in g,

θ(x) = I +
∑

i:xi=x

Ei,i+1.

Let us check whether θ(g) = I is possible. Note that

θ(g) = θ(x1)a1 · · · θ(xn)an

= (I + a1

∑

i:xi=x1

Ei,i+1) · · · (I + an
∑

i:xi=xn

Ei,i+1).
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We see that E1,2, E2,3, · · · , En,n+1 occur in that order and their coefficients
are precisely the integers a1, · · · , an.
Therefore, since Ei,jEj,k = Ei,k, the coefficient of E1,n+1 is the product
a1 · · · an which is not zero in Z/pd by the choice of d. Hence θ(g) 6= I
and so, F is residually p.
(ii) Let G be any finitely generated, residually finite group. Suppose θ : G→
G be a surjective homomorphism which has a nontrivial element g in the
kernel.
Let N be a normal subgroup of finite index in G such that g 6∈ N .
Since G is finitely generated, there are only finitely many different homomor-
phisms θ1, · · · , θn from G to G/N . Note that the composite map α = β ◦ π :
G→ G, where π : G→ G/Ker(θ) is the natural map and β : G/Ker(θ)→ G
is induced by θ, is such that α maps g maps to the identity.
Also, since θi ◦α : G→ G/N ; i ≤ n are distinct, these are just the θi in some
order. This means that every homomorphism from G to G/N maps g to the
identity. This contradicts the fact that the natural homomorphism maps g
to a nontrivial element. Therefore, θ must be an automorphism.

We have a very interesting fact about normal subgroups of free groups of
finite rank. We shall prove it using a theorem due to Burns and Marshall
Hall which we shall not prove.

Proposition.
If a finitely generated subgroup H of a free group F contains a non-trivial
normal subgroup of F , then H has finite index in F . In particular, a non-
trivial normal subgroup of a free group of finite rank is finitely generated if
and only if it is of finite index.

Theorem (Burns, M.Hall).
Let F be a free group, A a finite subset and H a finitely generated subgroup
disjoint from A. Then, H is a free factor of a group G which is of finite
index in F and disjoint from A.

Proof of proposition.
Let 1 6= N ⊆ H, N normal in F . By the above theorem, there exists a group
of the form G = H ∗K which is of finite index in F . Suppose H has infinite
index in F . Then K 6= 1 (because H 6= G because G has finite index in F ).
Write G = F (X) where X = XH tXK with H =< XH >,K =< XK >. If
1 6= x ∈ N, 1 6= y ∈ K, then y−1xy ∈ N ⊆ H. However, y−1xy is not a word
in the generators XH . Therefore, H must have finite index in F .
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Remarks on Aut F
We mention some interesting facts about the automorphism group of a free
group mostly without proofs (excepting the lemma below). The reader may
refer to [1] for proofs of these facts as well as for a proof of the proposition
above. In what follows, F is free of finite rank n ≥ 2.
1. The group Aut F is complete; that is, the center of Aut F has trivial
center and all its automorphisms are inner.
2. The natural homomorphism F → F/[F.F ] ∼= Zn induces an epimorphism
Aut F → GLn(Z). If n = 2, the kernel is precisely the subgroup of inner
automorphisms of F (which is, of course, isomorphic to F ).
3. The group Aut F is finitely presented; a nice presentation due to Mc-
Cool has generators similar to the elemenrary matrices (so-called Whitehead
transformations).
4. The finite subgroups of Aut F map isomorphically onto a subgroup of
GLn(Z).

Lemma.
(i) Let G be a finitely generated, residually finite group. Then Aut G is also
residually finite.
(ii) Let G be a finitely generated and virtually, a residually p-group for some
prime p. Then Aut G is also virtually a residually p-group.
Proof.
(i) Let θ ∈ Aut(G) be a nontrivial element; suppose θ(g) 6= g for some g ∈ G.
Then, the element x := θ(g)g−1 6= 1.
Since G is residually finite, there exists H ≤ G of finite index such that
x 6∈ H.
As G is finitely generated, it has only finitely many subgroups of any given
finite index. In particular, the set of subgroups {σ(H) : σ ∈ Aut(G)} is a
finite set since each of them has index [G : H]. Letting

C :=
⋂

σ∈Aut(G)

σ(H)

it follows that C is a characteristic subgroup of finite index in G such that
x 6∈ C.
Consider the homomorphism Aut(G)→ Aut(G/C).
We claim that the finite quotient group Aut (G/C) of Aut (G), is such that
θ maps to a nontrivial element of it. This would prove that Aut (G) is
residually finite.
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Now, if θ were to map to the identity, this precisely means that θ(h)h−1 ∈ C
for every h ∈ G. As this does not hold for h = x, we have the assertion.
(ii) As G is virtually residually-p, there is a subgroup G′ of finite index in
G which is residually-p. By taking the intersection of all the finitely many
subgroups σ(G′) as σ runs through Aut G, we get a characteristic subgroup
G0 of finite index in G which is residually-p. If Aut(G0) is virtually residually-
p, so is Aut(G) as seen by pulling back via the restriction homomorphism
from Aut(G) to Aut(G0). Without loss of generality, we, therefore, assume
that G itself is residually-p. Let H be any characteristic subgroup of p-power
index in G. Consider the p-group P = G/H. Now, P/Φ(P ) ∼= ⊕r1Z/p where
Φ(P ) denotes the Frattini subgroup of P . Moreover, by problem 58, the
number r of copies of Z/p is bounded independently of H; indeed, r ≤ n,
where n is the minimal number of generators of G. Now, by the previous
problem,

Ker Aut(P )→ Aut(P/Φ(P )))

is a p-group. Note that Aut(P/Φ(P )) ∼= GL(r,Z/p), and that there are only
finitely many homomorphisms from Aut(G) to GL(n,Z/p), since there are
only finitely many subgroups of index bounded by the order of GL(n,Z/p)
in the finitely generated group Aut G. Call A to be the intersection of the
kernels of all the homomorphisms from Aut(G) to GL(n,Z/p). We claim that
A is residually-p. Let σ ∈ A, σ 6= id. So, there is g such that σ(g)g−1 6= id.
Let H be a characteristic subgroup of p-power index in G such that σ(g)g−1 /∈
H; then σ /∈ Ker(Aut(G) → Aut(G/H)). Call P = G/H. Consider, now,
the composite

A ↪→ Aut(G)→ Aut(P )→ Aut(P/Φ(P )) ↪→ GL(n,Z/p)

By the choice of A, the image goes into N := Ker(Aut(P )→ Aut(P/Φ(P ))),
a p-group. Since the image of σ is nontrivial in Aut(P ), Ker(A → N) is
normal, of p-power index in A, and does not contain σ. This completes the
proof.

Remarks.
For any group G, one defines the stable commutator length of any element
g ∈ [G,G] to be limn→∞ l(gn)/n (if it exists) where l(x) for any element
x ∈ [G,G] is the smallest number r such that x can be written as a product
of r commutators. Note that l(gn) ≤ nl(g) for any g ∈ [G,G]. Very recently
(Journal of the AMS), it has been proved that in a free group F , the stable
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commutator length of any element of the commutator subgroup is a rational
number.

9 Examples of free products and amalgams

Example 1.
The free product of Z/2Z and and Z/2Z is isomorphic to the infinite dihedral
group D∞.

Z/2Z ∗ Z/2Z ' D∞ := {x, y|x2 = 1, xyx−1 = y−1}.

Example 2.
With respect to the canonical maps from Z to Z/2Z and Z/3Z we get

Z/2Z ∗Z Z/3Z = (0).

Example 3.
Consider any injective map from Z to PSL2(Q) and the canonical map from
Z to Z/2Z then we have

PSL2(Q) ∗Z Z/2Z = (0).

Example 3.
This example realizes PSL2(Z) and SL2(Z) as amalgams. In fact, amalga-
mated groups are characterized as groups acting on trees with certain special
properties.

Z/2Z ∗ Z/3Z ' PSL2(Z)

Z/4Z ∗Z/2 Z/6Z ' SL2(Z)

Example [Nagao].
Let K be a field and let K[X] be the polynomial ring in one variable X with
coefficients in K. Let G = GL2 and let B be the standard Borel subgroup
consisting of upper triangular matrices in G. Then

G(K[X]) = G(K) ∗B(K) B(K[X]).
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Example (Ihara).
Let F be a non-Archimedean local field. Let P be the maximal ideal of the
ring of integers O of F. Let G = SL2(F ). Let K = SL2(O) and let I be the
subgroup of elements of K which are upper triangular modulo P. Then

G = K ∗I K.

Rational version of Ihara’s example.
For a prime number p let Γ0(p) be the subgroup of elements of SL2(Z) which
are upper triangular modulo p. Let Z[1/p] be the subring of Q containing all
rational numbers whose denominators is some power of p. Then

SL2(Z[1/p]) = SL2(Z) ∗Γ0(p) SL2(Z).

Theorem (Margulis-Tits).
The group SL3(Z) is not an amalgam of the form G1 ∗A G2 for any three
groups G1, G2 and A such that G1 6= A 6= G2.
This is actually true in a very general setting. Let F be a number field and
let S be a finite set of primes of F. Let O(S) denote the ring of S-integers
of F. If G is a simple Chevalley group of F -rank at least 2 then the group
G(O(S)) is not an amalgam.

Exercises on amalgams

Exercise 1.
Show that

Z/2Z ∗ Z/2Z ' D∞ := {x, y : x2 = 1, xy = y−1x}.

Exercise 2.
Let (m,n) = 1. Then, with respect to the canonical homomorphisms from Z
to Z/nZ and Z/mZ show that

Z/nZ ∗Z Z/mZ = (0).
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Exercise 3.
Let G be a simple group which admits Z as a subgroup. Then with respect
to the canonical homomorphism from Z to Z/nZ show that

G ∗Z Z/nZ = (0).

Exercise 4.
Determine all finite order elements of PSL(2,Z). Give an example of a sub-
group of PSL(2,Z) of index 6. Is it free?
Exercise 5.
Let H be a subgroup of G = G1∗AG2. Assume that A·H = G. Let B = A∩H
and let Hi = Gi ∩ H for i = 1, 2. Show that H is generated by H1 and H2

and can be identified with H1∗BH2. Use this to deduce from Ihara’s example
the rational version.

10 Some applications to abstract group the-

ory

Proposition.
Every countable group can be embedded as a subgroup of a group which can
be generated by two elements of infinite order.
Proof.
ConsiderG =< X|R > whereX is countable and the group F = G∗ < a, b >.
The subgroup of< a, b > generated by {b−nabn : n ≥ 0} is free as it is Nielsen-
reduced. Writing X = {x1, x2, · · · , · · · , }, we claim that the subgroup of F
generated by {xna−nban : n ≥ 0} is free (here x0 = 1). Indeed, the projection
of F onto < a, b > which sends xi’s to 1 sends the elements xna

−nban to a
basis; hence the original is a basis too. Now, G can be embedded in the HNN
extension < F, t|t−1at = b, t−1b−nabnt = xna

−nban;n ≥ 1 > of F . Note that
this HNN extension is generated by the two elements t, a.

Proposition.
Let G = ∗AGi. Then, any element of G of finite order can be conjugated
inside one of the Gi. In particular, if all the Gi’s are torsion-free then so is
G.
Proof.
Let g ∈ G = ∗AGi; write g = g1 . . . gn. Let l(g) = n be the length of g. If
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l(g) ≤ 1 then g ∈ Gi for some i. If l(g) ≥ 2 we say g is cyclically reduced if
i1 6= in.
We now show inductively that that any g is conjugate to either an element
of some Gi or to a cyclically reduced element. Assume that l(g) = n ≥ 2 and
that we have shown this for all elements of length at most n− 1. Suppose g
is not cyclically reduced then i1 = in and so conjugating by g by g−1

1 we get
g = g1 . . . gn ∼ g2 . . . gn−1(gng1) and the length of g2 . . . gn−1(gng1) is at most
n− 1.
Now take any g ∈ G which is of finite order. Since all the Gi are torsion free,
we get that no conjugate of g is in any Gi. We may replace g by a conjugate
and assume that it is cyclically reduced. We leave it to the reader to the
check that in this case, for any r ≥ 1 we have that the length of gr is rn and
so g cannot have been an element of finite order unless n = 0, i.e., g = 1.
Proposition.
If G1 and G2 are two finite groups then their free product G1 ∗ G2 contains
a free subgroup of index o(G1)o(G2). In particular, the free product of two
finite groups admits a faithful finite-dimensional representation.
Proof.
Consider the direct product G1×G2 of G1 and G2. The inclusion maps from
the Gi into G1 ×G2 gives a canonical homomorphism from the free product
G1 ∗ G2 to G1 × G2. Clearly this map is surjective. Let K be the kernel of
this homomorphism.
Let S be the set of commutators in G1 ∗G2 given by

S = {xyx−1y−1 : x ∈ G1, y ∈ G2}.

Let N be the subgroup of G1 ∗G2 generated by S. Note that N is normal in
G1 ∗G2 because, if x ∈ G1, y ∈ G2 and g1 ∈ G1, then

g1[x, y]g−1
1 = [g1x, y][g1, y]−1 ∈ N.

Using the universal definitions of direct product and free product it is easy
to see that N = K. It suffices now to prove that S is a free subset of G1 ∗G2.
To this end, it suffices to show that for any sequence s1, . . . , sn ∈ S with
si = aibia

−1
i b−1

i and any sequence ε1, . . . , εn ∈ {±1} (with the condition that
if εk = −εk+1 then sk 6= sk+1, ) the element g = sε11 · · · sεnn is not the identity
element. In fact we will show that

l(sε11 · · · sεnn ) ≥ n+ 3.
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If εn = 1 (resp. εn = −1) then g ends with a−1
n b−1

n (resp. b−1
n a−1

n ).
This can be seen using induction. Without loss of generality assume that
εn−1 = 1 (the argument for the case εn−1 = −1 is similar.)
If n = 1 then there is nothing to prove. Let n ≥ 2.
If εn = 1 then we may write g as

g = t1 . . . tpa
−1
n−1b

−1
n−1anbna

−1
n b−1

n

with p ≥ n by induction hypothesis (because p+2 ≥ (n−1)+3 by induction
hypothesis. Hence l(g) = (p+2)+4 ≥ n+6 > n+3 and g ends with a−1

n b−1
n .

If εn = −1 then we may write g as

g = t1 . . . tpa
−1
n−1(b−1

n−1bn)anb
−1
n a−1

n

with p ≥ n by induction hypothesis. Now if bn−1 6= bn then l(g) = p + 5 ≥
n+ 5 > n+ 3. If bn−1 = bn then an−1 6= an since sn−1 6= sn. Now, then

g = t1 . . . tp(a
−1
n−1an)b−1

n a−1
n

which gives l(g) = p+ 3 ≥ n+ 3 and in either of these two cases g ends with
a−1
n b−1

n .

Proposition.
Every countable group G can be embedded in a group K which has the
property that all the elements of the same order are conjugate.
Proof.
Consider the set {(ai, bi) : i ≥ 1} of all ordered pairs of elements of G
which have the same order. Then, the HNN extension G1 :=< G, tn(n ≥
1)|tnant−1

n = bn(n ≥ 1) > has the property that all elements of the same
order in G are conjugate in G1. In this manner, we get G2 from G1, G3 from
G2 etc. and then the group G0 := ∪n≥1Gi satisfies the assertion made.
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