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I nt roduct ion

Consider the unit circle T in the Euclidean plane. If it
is rotated like a stat ionary wheel, in an ant i-clockwise
direct ion by 45 degrees, then the `spoke of the wheel'
joining the centre (0; 0) to the point (1; 0) (call it v)
gets mapped to the spoke joining the centre to the point
(Cos 45, Sin 45). We shall think of points on the plane
as complex numbers when convenient .

Clearly after seven more rotat ions v returns to its orig-
inal posit ion at (1; 0). Not ice that 45 degrees is ¼=4
radians, which is a rat ional mult iple of ¼. A moment 's
thought tells us that , if instead of ¼=4 radians, we rotate
by any angle µ which is a rat ional mult iple of ¼radians,
say, ¼a=b, then again v returns to its original posit ion
after a ¯nite number (at most 2b) of repet it ions of this
rotat ion. On the other hand, a rotat ion by an angle ®
which is an irrat ional mult ipleof ¼radians never returns
v to its original posit ion. In fact , it gets arbit rarily close
to any radial posit ion and, what is more, the posit ions
of v after a large number of repet it ions of this rotation,
seem to be `uniformly scat tered'. This is a theorem of
Hermann Weyl and will be proved in this art icle. Note
that for ° , an irrat ional real number, a simple applica-
t ion of thepigeon-holeprincipleshows that thesequence
of fract ional parts of integral mult iples of º is dense in
(0; 1). This fact seems to have been known from early
14th century itself. N Oresme(1320-1382) considers two
bodies moving on a circle with uniform but incommen-
surable velocit ies and writes, "No sector of a circle is so
small that two such mobiles could not conjunct in it at
some future time and could not have conjuncted in the
past ."
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Weyl, a doyen of early twent ieth century mathemat ics,
presented in 1909 a result , which later cameto beknown
as Weyl's equidistribut ion theorem. Weyl worked in di-
verse spheres of mathemat ics, among them, cont inuous
groups and matrix representat ions. It was during his re-
search into representat ion theory that Weyl discovered
his theorem on equidistribut ion. Subsequent ly a vast
amount of literature was devoted to the review of his
proof. However, there remain to this day, several unan-
swered quest ions which arose in the aftermath of Weyl's
discovery.

Equidist r ibut ion

What is Equidistribut ion?

Let (un)1
n> 0 be a sequence of elements from the interval

[0,1]. Let a; b such that [a; b] ½ [0; 1]. For each n 2
N , we dē ne sn(a; b) to be number of integers k, 1 ·
k · n for which uk 2 [a; b]. Then (un) is said to be
equidistr ibuted in [0,1] if 8 a; b : [a; b] ½ [0; 1]

lim
n! 1

sn (a; b)
n

= b¡ a:

Denote the fract ional part of any x 2 IR by hxi ; not ice
that hxi 2 [0; 1] and x ¡ hxi 2 Z .

If webegin with any sequence (un ) of real numbers, then
we say that (un ) is equidistr ibuted modulo 1 if the se-
quence (hun i ) of its fract ional parts is equidistributed in
[0,1]. Equidistribut ion is also known as uniform distrib-
ut ion.

A natural quest ion is:

Is h
p

ni equidistr ibuted?

The answer is `yes' as we shall short ly show.

For a sequence (un) in (0; 1), dē ne its discrepancy as

DN = Sup f j
sN (a; b)

N
¡ (b¡ a)j; 0 · a · b · 1g:

N Oresme (1320-
1382) considers two
bodies moving on a
circle with  uniform
but incommen-
surable velocities
and writes, ‘’No
sector of a circle  is
so small that two
such mobiles could
not conjunct in it at
some future time
and could not have
conjuncted in the
past.”
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The sequence n

of square roots of
natural numbers is

equidistributed
modulo 1.

The property of equidistribut ion of (un) can also be ex-
pressed in terms of the discrepancy as follows. First , let
us dē ne another variant of DN as

D ¤
N = Sup f j

sN (0; a)
N

¡ aj; 0 · a · 1g:

Let us compare DN and D ¤
N . It is evident D ¤

N · DN .

On the other hand, let ² > 0 and (a; b) ½ (0; 1). Then,

sN (a; b) · sN (0; b) ¡ sN (0; a ¡ ²):

Therefore, as ² ! 0, we get DN · 2D ¤
N . In other words,

D ¤
N · DN · 2D ¤

N :

Therefore, DN ! 0 , D ¤
N ! 0 as N ! 1 . If DN ! 0,

then (un) is equidistributed in (0; 1) by dē nit ion. The
converse is also true but we do not need it . Thus we
may use sn (0; ®) instead of sn(a; b) as we have proved
the equivalence of the two dē nit ions.

Let us get back to the problem of equidistribution of
h
p

ni .

If ® 2 (0; 1), let us now evaluate the number of integers
n such that

h
p

ni 2 [0; ®]:

For any n, let d = [
p

n], the greatest integer less than
or equal to

p
n. Now, 0 · h

p
ni · ® implies that d ·p

n · d+ ®. So, d2 · n · (d+ ®)2 = d2 + 2d®+ ®2. For
a given d, there are 1+ [2d®+ ®2] such n. Moreover, for
any other d, these are disjoint since (d+ ®)2 < (d+ 1)2.

In other words, for any d, the cardinality sd2 (0; ®) of
f k : 0 · k · d2; h

p
ki · ®g equals

P d¡ 1
i = 0 (1+ [2i®+ ®2]).

Therefore, for any n and for d = [
p

n], we have

jsn (0; ®) ¡ n®j = jsn(0; ®) ¡ sd2 (0; ®) + sd2 (0; ®) ¡ n®j

· jsn(0; ®) ¡ sd2 (0; ®)j + jsd2 (0; ®) ¡ n®j
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The sequence log
n; n ≥ 2 is
equidistributed
modulo 1.

· n ¡ d2 + j
d¡ 1X

i = 0
(1 + [2i®+ ®2]) ¡ n®j < 2d + 1+

j
d¡ 1X

i = 0
(2i®+ 2]) ¡ n®j;

which gives easily that

jsn (0; ®) ¡ n®j < 7d + 2 · 7
p

n + 2:

In other words, j sn (0;®)
n ¡ ®j ! 0 as n ! 1 . We have

shown that D ¤
N ! 0 as N ! 1 . Therefore, h

p
ni is

equidistributed in (0; 1) by the remark below.

A similar argument with (log (n + 1))n2 Z + tells us that
sn(0; 1

2) for n of the form [ek+ 1
2 ]; k 2 Z fails to converge

to 1=2. So (log (n+ 1))n is not equidistr ibuted modulo 1.

Weyl 's Cr it er ion

A sequence (un ) of real numbers is equidistributed mod-
ulo 1 if, and only if, for all k 2 N , 1

N
P N

n= 0 e2i ¼kun ! 0
as N ! 1 .

A special case of this is already very interest ing:

Let ° be an irrational, real number. Then

lim
n! 1

1
n

jf k : 1 · k · n : hk° i 2 [a; b]gj = b¡ a

for each pair a; b such that [a; b] ½ [0; 1].

In other words, the sequence (n° ) is equidistr ibuted mod-
ulo 1.

The proof is construct ive and one can check how the
techniques work, using a part icular ° , say,

p
2.

Proof of Weyl' s Cr i t er ion

The crux of the proof lies in ¯nding a suitable upper
bound for the discrepancy. Set ¾r (N ) =

P
n< N e2i ¼r un .
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We claim that 8R ¸ 1, and (a; b) ½ (0; 1),

jsN (a; b) ¡ N (b¡ a)j < 2
X

r < R

j¾r (N )j +
4N
¼

vuut
X

r > R

j¾r (N )j
r 2N

:

Let us ¯rst show that the claim proves the criterion.

Now, clearly j ¾r (N )
N j · 1: Also,

P
r > R

1
r 2 ·

R1
R

dx
x2 = 1

R :

So, DN · 2
P

1· r · R j ¾r (N )
N j + 4

¼
p

R : By the hypothesis, for
all r , the ¯rst term tends to zero as N ! 1 . Therefore,
limit superior limSupDN · 4

¼
p

R
: Since R is arbit rary,

DN ! 0 i.e., (un ) is equidistributed modulo 1.

Let us now prove the claim made.

Let (a; b) ½ (0; 1) and ² > 0. If b ¡ a + 2² < 1, we
dē ne a funct ion F as a periodic funct ion with period
1, which is linear on each of the intervals [a ¡ ²; a] and
[b; b+ ²] and is the constant 1 on [a; b] and vanishes on
[b+ ²; a + 1¡ ²]. Such a periodic function has a Fourier
series expansion F (x) =

P
k2ZZ cke2i ¼kx .

Recall that wehavedē ned F abovein caseb¡ a+ 2² < 1.
When b¡ a + 2² ¸ 1, we dē ne a funct ion G just like F
but with a; b replaced by a + ² and b¡ ², respect ively.

Let us consider the case b¡ a + 2² < 1 ¯rst .

Note that sN (a; b) =
P

n< N F(un) =
P

k2ZZ ck¾k(N ) ·
(b¡ a + ²)N + 2

P
r ¸ 1 jcr jj¾r (N )j since c0 = b¡ a + ².

Thus, sN (a; b) ¡ (b¡ a)N · ²N + 2
P

r ¸ 1 jcr jj¾r (N )j.

Now, if b ¡ a + 2² ¸ 1, then N · (b ¡ a + 2²)N ; so
sN (a; b) · N · (b¡ a + 2²)N .

Hence, in either case,

sN (a; b) ¡ (b¡ a)N · 2²N + 2
X

r ¸ 1
jcr jj¾r (N )j:

On the other hand, similarly, sN (a; b) ¸ (b¡ a+ 2²)N ¡
2

P
r ¸ 1 jcr jj¾r (N )j.
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The fractional parts
of log p as p runs
over prime
numbers, is not
equidistributed
modulo 1.

Therefore, for any ² > 0 and any N ¸ 1, we get by our
assumpt ion, that DN · 2² + 2

P
r ¸ 1 jcr jj

¾r (N )
N j.

I t is easy to see from the expression

ck =
Ra+ 1¡ ²

a¡ ² e(¡ kx)F (x)dx ck for k 6= 0 that jck j · 1
¼2 k2² :

Using this, and taking ² = 1
¼

q P
r < R j¾r (N )=N j

r 2 , the
claim follows. This completes the proof of Weyl's cri-
terion.

A pplicat ion t o Pr ime N umber T heory

Most of the deep, excit ing applicat ions of Weyl's theo-
rem require a knowledgeof abstract measure theory (see
[1]) or of number theory. We discuss one applicat ion to
number theory.

Let pn denote the nth prime number. We invest igate
the behaviour of the sequence (log pn)n2 N .

The formula lim
n! 1

³
pn

nlog n

´
= 1 is equivalent to the so-

called prime number theorem (see [2]).

Suppose now that the sequence (log pn ) has equidistri-
but ion modulo 1.

Dē ne Nk and M k as follows:

Nk = inff n : pn > ekg
M k = inff n : pn > ek¡ 1=2g:

Let Â be the periodic funct ion with period one, dē ned
by

Â(x) =
(

1 8 x 2 [0; 1
2)

0 8 x 2 [1
2 ; 1)

X

n< M k

Â(log pn ) =
X

n< N k

Â(log pn):

By our hypothesis,

1
M k

X

n· M k

Â(log pn) and
1

Nk

X

n· N k

Â(log pn )
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have the same limit , say l, as k ! 1 . If this limit is
not zero, then

Nk

M k
! 1 as k ! 1 :

Let ¼(x) be the member of prime numbers less than or
equal to x. The famous prime number theorem asserts
(see [2]) that

¼(x) »
x

log x
as x ! 1 :

Therefore, as k ! 1 ,

Nk = ¼(ek ) »
ek

k
»

ek

k ¡ 1
2

» M k
p

e:

Thus gives a contradict ion to the assumpt ion of equidis-
t ribut ivity of (log pn) modulo 1 if we can show that the
limit of 1

M k

P
n< M k Â(log pn ) as k ! 1 , if it exists, is

non-zero.

Now
P

n< M k Â(log pn) ¸ jf p : k ¡ 1 · log p < k ¡
1=2gj = ¼(ek¡ 1=2) ¡ ¼(ek¡ 1).

So, lim1
k! 1

1
M k

P
n< M k Â(log pn ) ¸ 1 ¡ e¡ 1=2 > 0.

A n Unsolved Quest ion

Here, we present one of the simpler problems from [1].
Theproblem of characterising those° with hn° i equidis-
t ributed was solved completely by the condit ion that °
is irrat ional. However, we have st ill not succeeded in
characterising those ® for which h®n i is equidistributed.

A result due to Koksma asserts:

For almost all ® > 1 (in the sense of the Lebesgue mea-
sure), the sequence (®n) is equidistributed modulo 1.

For example let ® = 1+
p

5
2 . By solving the di®erence

equat ion ur + 1 = ur + ur ¡ 1 with init ial condit ions u0 =

For almost all α>1
(in the sense of the

Lebesgue
measure), the

sequence (αn) is
equidistributed

modulo 1.



37RESONANCE  May  2003

GENERAL    ARTICLE

Suggested Reading

[1]  D Parent, Exercises in Number Theory, Springer-Verlag, 1978.
[2]  B Sury, Bertrand’s postulate, Resonance, Vol.7, No.6, p.77-87, 2002.

Address for Correspondence
Aditi Kar

18/4 Northern Avenue
Kolkata 700 037, India.

2 u1 = 1 or, simply by induct ion, we see that

ur =
Ã

1 +
p

5
2

! r

+
Ã

1 ¡
p

5
2

! r

is a solut ion and that ur is always an integer. But
Ã

1 ¡
p

5
2

! r

< 0 for r odd

¸ 0 for r even:

Moreover,
³

1¡
p

5
2

´ r
! 0 as r ! 1 .

Therefore
* Ã

1 +
p

5
2

! 2r + 1+

! 0 as r ! 1

* Ã
1 +

p
5

2

! 2r +

! 1 as r ! 1 ;

Hence
¯̄
¯̄
¯
1
n

(

1 · r · n :
* Ã

1 +
p

5
2

! r +

2
· 1
4

;
3
4

¸ ) ¯̄
¯̄
¯ ! 0 asn ! 1 ;

which shows that the sequence (( 1+
p

5
2 )n ) is not equidis-

t ributed modulo 1.


