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Introduction

Consider the unit circle T in the Euclidean plane. If it
is rotated like a stationary wheel, in an anti-clockwise
direction by 45 degrees, then the “spoke of the whedl'
joining the centre (0;0) to the point (1;0) (call it v)
gets mapped to the spoke joining the centre to the point
(Cos 45, Sin 45). We shall think of points on the plane
as complex numbers when convenient.

Clearly after seven more rotations v returns to its orig-
inal position at (1;0). Notice that 45 degrees is ¥4
radians, which is a rational multiple of ¥4 A moment's
thought tellsusthat, if instead of ¥#4 radians, werotate
by any angle pwhich isarational multiple of Y“radians,
say, Ya=b, then again v returns to its original position
after a nite number (at most 2b) of repetitions of this
rotation. On the other hand, a rotation by an angle ®
which isan irrational multiple of Yaradians never returns
v toitsoriginal position. In fact, it getsarbitrarily close
to any radial position and, what is more, the positions
of v after a large number of repetitions of this rotation,
seem to be “uniformly scattered'. Thisis a theorem of
Hermann Weyl and will be proved in this article. Note
that for °, an irrational real number, a simple applica-
tion of the pigeon-hole principle showsthat the sequence
of fractional parts of integral multiples of © is densein
(0;1). This fact seems to have been known from early
14th century itself. N Oresme (1320-1382) considerstwo
bodies moving on a circle with uniform but incommen-
surable velocities and writes, "No sector of a circleis so
small that two such mobiles could not conjunct in it at
some future time and could not have conjuncted in the
past."
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Weyl, a doyen of early twentieth century mathematics,
presented in 1909 aresult, which later cameto be known
as Wey!'s equidistribution theorem. Weyl worked in di-
verse spheres of mathematics, among them, continuous
groups and matrix representations. It wasduring hisre-
search into representation theory that Weyl discovered
his theorem on equidistribution. Subsequently a vast
amount of literature was devoted to the review of his
proof. However, there remain to this day, several unan-
swered questions which arosein the aftermath of Weyl's
discovery.

Equidistribution
What is Equidistribution?

Let (un)i., be a sequence of dements from the interval
[0,1]. Let a;b such that [a;b] 2 [0;1]. For each n 2
N, we de ne sy(a;b) to be number of integers k, 1 -
k - n for which ux 2 [a;b. Then (u,) is said to be
equidistributed in [0,1] if 8 a;b: [a;b] ¥2[0; 1]

lim Sn(ab) = bj a

n'1 n
Denote the fractional part of any x 2 R by hxi; notice
that hxi 2 [0;1] and x| hxi 2 Z.

If we begin with any sequence (un) of real numbers, then
we say that (up) is equidistributed modulo 1 if the se-
guence (huni) of itsfractional partsisequidistributed in
[0,1]. Equidistribution is also known as uniform distrib-
ution.

A natural question is:

IsH i euidistributed?

The answer is 'yes as we shall shortly show.

For a sequence (uy) in (0; 1), de ne its discrepancy as

.Sn(a; b .
DN:Supr%i (bi &));0- a- b- 10

N Oresme (1320-
1382) considers two
bodies moving on a
circle with uniform
butincommen-
surable velocities
and writes, “No
sector of a circle is
so small that two
such mobiles could
not conjunct in it at
some future time
and could not have
conjuncted in the
past.”
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The sequence Jn
of square roots of
natural numbers is
equidistributed
modulo 1.

The property of equidistribution of (u,) can also be ex-
pressed in terms of the discrepancy as follows. First, let
us de ne another variant of Dy as

Dy = Sup fj

wi a;0- a- 1g

Let us compare Dy and Dy,. It isevident Dy, - Dn.

On the other hand, let 2> 0 and (a;b) ¥2(0; 1). Then,
sn(ab) - sn(Oib) i sn(Gaj 2):
Therefore, as2! 0, weget Dy - 2Dy . In other words,
Dy - Dn - 2Dg:

Therefore, Dy ! 0, Dy! OasN! 1 .I1fDy! O,
then (un) is equidistributed in (0; 1) by de nition. The
converse is also true but we do not need it. Thus we
may use sn(0;®) instead of sn(a;b) as we have proved
the equivalence of the two de nitions.

L&t_us get back to the problem of equidistribution of
h ni.

If®2 (0;1), let us now evaluate the number of integers

n such that p_

h ni 2 [0;®):

For any n, Ilszt_d = [p nj, the‘pg_reatest integer less than

Br_equal to' n. Now,0- h ni - ®impliesthat d -
n- d+®. So,d®- n- (d+ ®?2= d?+ 2d®+ ®?. For

agiven d, there are 1+ [2d®+ ®?] such n. Moreover, for

any other d, these are digoint since (d+ ®)? < (d+ 1).

In other words, B)r_any d, the ca]gdinality Sq42(0; ®) of
fk:0- k- d%4h ki - ®gequals, g1+ [2i®+ &7]).
Therefore, for any n and for d= [ n], we have

jsn(0;®) i N® = jsn(0;®) i Sw2(0;®) + s2(0;®) i NG

- Jsn(0;®) j S¢2(0;®)] + jSa2(0;®) | N®
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The sequence log
n;n32is
equidistributed

¥ 1
ni d+j (1+[20+ &) n@ < 2d+ 1+
i=0
& 1
I (2®+ 2)i n@; modulo 1.
i=0
which gives easly that

p

isi(0;® j N®<7d+2- 7 n+ 2

In other words, j*©%® ; @ ! Oasn! 1. V}\?;Dave
shown that Dy ! OasN ! 1. Theefore h ni is
equidistributed in (0;1) by the remark below.

A similar argument with (log 1(n + 1))n2z+ tells us that
sn(0; 1) for n of the form [€* 2],k 2 Z fails to converge
to 1=2. So (log (n+ 1)), is not equidistributed modulo 1.

Weyl's Criterion

A sequence (un) of real numbersis equlgdistributed mod-
ulo 1if, and only if, for all k 2 N, & f-oe#™ 1 0
asN! 1.

A special case of thisis already very interesting:

Let ° be an irrational, real number. Then
N e e
nI!|rr11 ijk.l- k- n:h°i 2[a;bjg = bj a

for each pair a; b such that [a; b %2[0; 1].

In other words, the sequence (n°) is equidistributed mod-
ulo 1.

The proof is constructive and one can chgck how the
techniques work, using a particular °, say, 2.

Proof of Weyl's Criterion

The crux of the proof liesin nding a Stly'table upper
bound for the discrepancy. Set %(N) = o\ €270,
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We claim that 8R , 1, and (a;b) ¥2(0; 1),

v
_ X AN X 3N
jsv(@b)i N(bi @) <2 j#%N)+ - (2N

r<R r>R

Let us rst show that the claim proves the criterion.
1. Ri g _ 1.

(N P
Now, dearly j2Mj . 1: Also, ™ .g 5+ 5 %= 2

P 94 (N): .
So,Dn -+ 2 1. ri%HYj+ ;#=: By the hypothesis, for
alr,the rst termtendstozeroasN ! 1 . Therefore,
limit superior limSupDy - ;#=: Since R is arhitrary,

Dn ! Oi.e, (un) is equidistributed modulo 1.
Let us now prove the claim made.

Let (a;b) 2 (0;1) and 2 > 0. If bj a+ 2 < 1, we
de ne a function F as a periodic function with period
1, which is linear on each of theintervals[ai 2;a] and
[b; b+ 2] and is the constant 1 on [a; b] and vanishes on
[b+ 2;a+ 1 2]. Such aBeriodicfu_nction has a Fourier
series expansion F(x) = =,z €& %,

Recall that wehavede ned F abovein casebj at+ 22 < 1.
When bj a+ 22, 1, wede nea function G just like F
but with a;breplaced by a+ 2 and bj 2, respectively.

Let us consider thecasebj a+ 22< 1 r.

P P
Note that sy (a;l?) = nen F(un) = oz &%(N) -
(bi a+2)N+2 | 1jcjj%(N)j sinceco = bj a+ 2.

Thus su(ab) i (bi aN - 2N + 2", 1icii%N)].

Now, if bj a+ 22, 1, then N - (bj a+ 22)N; s
svn(@b) - N- (bj a+ 22)N.

Hence, in ether case,

X
ss(@b)i (bi N - 2N +2  jcjj%(N)i:
r, 1
Op the other hand, smilarly, sy (a;b) , (bj a+ 22)N j
2 ¢ 1)G]i%(N)j.
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Therefore, for any 2 > 0 and agy N, 1, weget by our
assumption, that Dy - 2+ 2, jcjjZidj.

It is easy to see from the expression

R + .2 - -
o= o e(i kx)F(x)dx o for k 6 Othat joj - 770%:
q 3 N
Using this, and taking 2 = £ "< R‘/i(%)‘—'\”, the
claim follows. This completes the proof of Weyl's cri-

terion.

Application to Prime Number Theory

Most of the deep, exciting applications of Weyl's theo-
rem require a knowledge of abstract measure theory (see
[1]) or of number theory. We discuss one application to
number theory.

Let pn denote the nth prime number. We investigate
the behaviour of the sequence (Iog pn)n2n .
s .

The formula ljim —— = 1 js equivalent to the so-

nlog n

called prime number theorem (see [2]).

Suppose now that the sequence (log p,) has equidistri-
bution modulo 1.

De ne N and My as follows:

Nk = inffn:p,> g
M = inffn:p, > & g

Let A be the periodic function with period one, de ned
by

A 18x2[0;2)

AlX) 08x2[%1)

~ X
A(log pn) = A(log pn):

n< My n<Nyg

By our hypothesis,

1 X 1 X
o= Adlog py) and == A(log p)

IVIkn-Mk Kno N

The fractional parts
of log p as p runs
over prime
numbers, is not
equidistributed
modulo 1.
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For almost all >1
(in the sense of the
Lebesgue
measure), the
sequence (a") is
equidistributed
modulo 1.

have the same limit, say |, ask ! 1 . If thislimit is
not zero, then

Ny

— | lask! 1:

M
Let ¥{x) be the member of prime numbers less than or
equal to x. The famous prime number theorem asserts
(see [2)) that

YEX) » asx! 1:

log x
Therefore, ask! 1,
K

Ny = V(ek) » %» Ki %» Mkpé:

Thus gives a contradiction to the assumption of equidis-
tributivity qg‘, (log pn) modulo 1 if we can show that the
limit of 5= n<m Allogpn) ask ! 1, if it exists, is
non-zero.

P ~ .
Now v, Alogpn) , jfp ki 1- logp < ki
1=29) = (€1 17?) i e ).
P - s
So, limg 1 7= nemAllogpn), 1i €2> 0.
An Unsolved Question

Here, we present one of the simpler problems from [1].
The problem of characterisingthose® with m°i equidis-
tributed was solved completely by the condition that °
is irrational. However, we have still not succeeded in
characterising those ® for which h®i is equidistributed.

A result due to Koksma asserts:

For aimost all ®> 1 (in the sense of the Lebesgue mea-
sure), the sequence (®") is equidistributed modulo 1.

+p_ - -
For example let ® = 52, By solving the di®erence
equation uU;+1 = Ur + Ur; 1 With initial conditions ug =
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2 u; = 1or, smply by induction, we see that
A —I A —I
1+ 757 M PE
+
2 2

Ur =

isa solution and that u, is always an integer. But

Al' p-!y
' < Oforr odd
2
., Oforr even:
s ,
P
Moreover, 12 "1 Oasr! 1.
Therefore
* A —! g+
1+p5 o ' OQasr! 1
~ 2 .
* K —! o
1+p ! ! lasr! 1
2 ) '
Hence
- * A o+ -
:1(1- r-n 1+p5f 2 1'2”):' Qasn! 1 ;
n 2 4'4 ) '

p_
which shows that the sequence ((¥52)") is not equidis-
tributed modulo 1.
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