
Set Theory Revisited

As easy as PIE

The Principle of Inclusion and Exclusion – Part 1

B SURY

Recall the old story of two frogs from Osaka and Kyoto which meet during their
travels. They want to share a pie. An opportunistic cat offers to help and divides the
pie into two pieces. On finding one piece to be larger, she breaks off a bit from the

larger one and gobbles it up. Now, she finds that the other piece is slightly larger; so,
she proceeds to break off a bit from that piece and gobbles that up, only to find that

the first piece is now bigger. And so on; you can guess the rest.The frogs are left flat!

We are going to discuss a simple but basic guiding principle which goes under the
nameprinciple of inclusion and exclusion, or PIE for short. Was it inspired by the
above tale? Who knows . . . . The principle is very useful indeed, because counting

precisely, contrary to intuition, can be very challenging!

AN OLD FORMULA RECALLED

Here is a formula which you surely would have seen many times:If A andB are two
finite, overlapping sets, then

|A∪B|= |A|+ |B|− |A∩B|. (1)

Here, of course, the vertical bars indicatecardinality: |A| is the cardinality of (or number of
elements in)A, and so on. The formula is rather obvious but may be justified by appealing
to the Venn diagram (see Figure 1).
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Figure 1

Once one has the basic idea, it is easy to generalize the formula to threeoverlapping finite
setsA, B, C. In order to find the cardinality ofA∪B∪C we start naturally enough with an
addition: |A|+ |B|+ |C|. But now several items have been counted twice, and some have
even been counted thrice (those that lie in all three sets). So we compensate by subtracting
the quantities|A∩B|, |B∩C| and|C∩A|. But now we have bitten off too much: the items
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originally in A∩B∩C have been left out entirely (see Figure 2). So we compensate by
putting these items back in, and now we have the correct formula:

|A∪B∪C|= |A|+ |B|+ |C|− |A∩B|− |B∩C|− |C∩A|+ |A∩B∩C|. (2)
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Figure 2

GENERALIZING THE FORMULA

How shall we generalize these formulas? We do so by considering the following problem.
Suppose there areN students in a class and a number of subjects which they all study.
Denote byN1 the number of students who like subject #1, byN2 the number of students
who like subject #2, and so on. Likewise, denote byN1,2 the number of students who
simultaneously like the subjects 1 and 2, byN2,3 the number of students who simultaneously
like subjects 2 and 3, and so on. Similarly, denote byN1,2,3 the number of students who
simultaneously like subjects 1,2,3; and so on. Now we ask: Can we express, in terms of
these symbols, the number of students who do not likeanyof the subjects? (There may well
be a few students in this category!) We shall show that this number is given by

N− (N1+N2+ · · ·)+ (N1,2+N2,3+ · · ·)− (N1,2,3+ · · ·)+ · · · . (3)

Note the minus-plus-minus pattern of signs: we alternatelysubtract to avoid over counting,
then add to compensate as we have taken away too much, then again subtract, and so on.
The formula follows from a reasoning known as theprinciple of inclusion and exclusion,
commonly abbreviated to ‘PIE’.

Here is how we justify the formula. We start, naturally, by subtractingN1 +N2 + · · ·
from N. Now study the expressionN− (N1+N2+ · · ·). The subtraction ofN1+N2 means
that we havetwicesubtracted the number of students who like the 1st and 2nd subjects. To
compensate for this, we must addN1,2. Similarly we must addN1,3, N2,3, and so on.

However, when we addN1,2+N2,3+N1,3+ · · · , we have included those who like the first
three subjects (numberingN1,2,3) twice. So we must subtractN1,2,3. Similarly for other such
terms. Proceeding this way, we get the right number by alternately adding and subtracting.
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DIVIDE AND CONQUER COUNTING

The PIE allows us to solve the following problem in whichN is any positive integer.
Among the numbers1,2,3, . . . ,N, how many are not divisible by either2 or by3?

Here’s how we solve this problem. Among the given numbers thenumber of multiples
of 2 is [N/2]. Here the square brackets indicate thegreatest integer function, also called the
floor function. The meaning is this: ifx is a real number, then[x] is the largest integer not
greater thanx. For example:[5] = 5, [2.3] = 2, [10.7] = 10,

√
10= 3, [−2.3] = −3, and so

on. (Note the way the definition applies to negative numbers.)

Similarly, the number of multiples of 3 in the set{1,2,3, . . . ,N} is [N/3]. So we subtract
both these quantities fromN. But the numbers divisible by both 2 and 3 (i.e., the numbers
divisible by 6) have been subtracted twice, so we add back thenumber of multiples of 6,
which is [N/6]. Hence the answer to the question is:

N−
[

N
2

]

−
[

N
3

]

+

[

N
6

]

.

We solve the following in the same way:Let N be any positive integer. Among the
numbers1,2,3, . . . ,N, how many are not divisible by any of the numbers2,3,5?

By alternately “biting away” too much, then compensating, we see that the answer is

N−
[

N
2

]

−
[

N
3

]

−
[

N
5

]

+

[

N
6

]

+

[

N
10

]

+

[

N
15

]

−
[

N
30

]

.

Here 30 is the LCM of 2,3,5 (if a number is divisible by 2, 3 and 5 then it must be divisible
by 30; and conversely).

The general formula. From this reasoning we arrive at the following general formula. If
N is a positive integer, and n1,n2, . . . are positive integers, any two of which are relatively
prime, then the number of elements of{1,2,3, . . . ,N} which are not divisible by any of the
numbers n1,n2, . . . is

N−
([

N
n1

]

+

[

N
n2

]

+ · · ·
)

+

([

N
n1n2

]

+

[

N
n1n3

]

+

[

N
n2n3

]

+ · · ·
)

−·· · . (4)

You should now be able to provide the formal justification forthe formula on your own.

EULER’ S TOTIENT FUNCTION

There is a special case of the above formula which is of great interest in number theory.
We consider the following problem.



4

For a given positive integer N, what is the number of positiveintegers not
exceeding N which are relatively prime to N?

The numbers which are relatively prime toN are exactly those which are not divisible by
any of the prime divisors ofN. Let us denote the primes dividingN by p,q, r, . . .. Now we
apply the idea described in the last section. We conclude that the required number is:

N−
(

N
p
+

N
q
+

N
r
+ · · ·

)

+

(

N
pq

+
N
qr

+
N
pr

+ · · ·
)

−·· · . (5)

By factoring outN we find that the resulting expression can be factorized in a convenient
manner; we get the following:

N

(

1− 1
p

)(

1− 1
q

)(

1− 1
r

)

· · · . (6)

For example, takeN = 30. Since 30= 2×3×5, we see that the number of positive integers
not exceeding 30 and relatively prime to 30 is

30

(

1− 1
2

)(

1− 1
3

)(

1− 1
5

)

= 30· 1
2
· 2
3
· 4
5
= 8.

This is easily checked. (The positive integers less than 30 and relatively prime to 30 are 1,
7, 11, 13, 17, 19, 23 and 29.)

Formula (6) defines the famoustotient functionwhich we associate with the name of
Euler. The symbol reserved for this function isϕ(N). So we may write:

ϕ(N) = N ∏
p|N

(

1− 1
p

)

, (7)

the product being taken over all the primesp that divideN; that is why we have written
‘ p | N’ below the product symbol. (The symbol∏ is used for products in the same way that
∑ is used for sums.)

Corollary: a multiplicative property. The formula forϕ(n) gives us another property as a
bonus — the property that Euler’s totient function ismultiplicative: if mandn are relatively
prime positive integers, thenϕ(mn) = ϕ(m)ϕ(n).

Example: Takem= 4, n= 5, mn= 20. We have:ϕ(4) = 2, ϕ(5) = 4; next, by applying
formula (6) we get:ϕ(20) = 20×1/2×4/5= 8. Hence we haveϕ(20) = ϕ(4) ·ϕ(5).

It is an interesting exercise to prove this multiplicative property without using formula
(6). (It canbe done, by looking closely at the definition of the function.)
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In closing: relation between GCD and LCM. To demonstrate how unexpectedly useful
the PIE formula can be, we mention here a nice application of the formula. However we
shall leave it as a question without stating the actual result, and discuss the problem in detail
in a sequel to this article.

Here is the context. We all know the pleasing formula that relates the GCD (“greatest
common divisor”, also known as “highest common factor”) andthe LCM (“lowest common
multiple”) of any two positive integersa andb:

GCD(a,b)×LCM (a,b) = ab. (8)

You may have wondered: The above formula relates the GCD and LCM of two integers
a,b. What would be the corresponding formula forthreeintegersa,b,c? Forfour integers
a,b,c,d? . . .

In Part II of this article we use the PIE to find a generalization of formula (8). Alongside
we discuss a problem about a seemingly absent-minded but actually mischievous secretary
who loves mixing up job offers sent to applicants so that every person gets a wrong job offer
(for which he had not even applied!), and another problem concerning placement of rooks
on a chessboard. And, venturing into deeper waters, we also mention a famous currently
unsolved problem concerning prime numbers.

Exercises.

(1) Show how the factorization in formula (6) follows from formula (5).

(2) Explain how formula (7) implies that the totient function ϕ(N) is multiplicative.

(3) Let N be an odd positive integer. Prove directly, using the definition of the totient
function (i.e., with invoking the property of multiplicativity), thatϕ(2N) = ϕ(N).

(4) What can you say about the family of positive integersN for which ϕ(N) = N/2?
For whichϕ(N) = N/3?

(5) Try to find a relation connecting LCM(a,b,c) and GCD(a,b,c).

Further reading.

• V Balakrishnan,Combinatorics: Including Concepts Of Graph Theory(Schaum
Series)

• Miklos Bona,Introduction to Enumerative Combinatorics(McGraw-Hill)



6

B. SURY got his Ph.D. in Mathematics from TIFR (Mumbai).
He has been with the Indian Statistical Institute (Bangalore)
since 1999. He has been interested in expository writing at
school and college level and in interacting with mathematically
talented students. He is the regional co-ordinator for the Math
Olympiad in Karnataka and a member of the editorial
committee of the newsletter of the Ramanujan Mathematical
Society. His research interests are in algebra and number
theory. Mathematical limericks are an abiding interest. Hemay
be contacted atsury@isibang.ac.in. His professional
webpage iswww.isibang.ac.in/~sury.

sury@isibang.ac.in
www.isibang.ac.in/~sury

	An old formula recalled
	Generalizing the formula
	Divide and conquer counting
	The general formula

	Euler's totient function
	Corollary: a multiplicative property
	In closing: relation between GCD and LCM
	Exercises
	Further reading


