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90 provides the right angle of approach
B. Sury!

1 Introduction

Arguably, when we hear the number 90 mentioned, it is very likely that the first thought
that may come to mind is that of a right angle. Perhaps, the next thing which comes
to the mind is Pythagoras” Theorem. A natural topic of discussion then is to find the
Pythagorean triplets of positive integers (a, b, ¢) so that a® + b* = ¢*. When we try to
characterize such integer triplets, the equation we solve is z* + y* = 1 for solutions in
rational numbers z,y. So, we are looking at a ‘rational point’ (x,y) on the unit circle.
Here, a novel method (or at least a method that is perhaps not well known among
high school or beginning college students) is to view any point on the unit circle as a
complex number e and write
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This somewhat strange rephrasing is a special case of something that goes by the name
of Hilbert’s Theorem 90. Without going to a general discussion of Hilbert’s Theorem
90, we discuss special cases which are completely elementary.

The purpose of our note is to use this point of view to not only recover the well-known
parametrisation of the sides of all integer-sided right-angled triangles but also to completely
parametrise the lengths of the sides of all integer-sided triangles with an angle having a rational
cosine value. So, one may say that Hilbert’s Theorem 90 gives the right angle of approach to
this problem!

Our discussion below yields some interesting tidbits. For instance, the integer-
sided triangles with an angle having cosine value 1/10 are precisely the triangles with
sides that are multiples of (21,200,199). We also mention how certain types of Dio-
phantine equations can be naturally dealt with by the same method.

Right-angled triangles or those with an angle of 60 or 120 degrees have been dis-
cussed in several places - too numerous to mention. A few of the comparatively ac-
cessible references are [1, 2, 3, 4, 5] and some mathematical blogs. Nevertheless, we
hope that our discussion is elementary, self-contained and, hopefully, is different and
has some novel features. Furthermore, the name ‘Hilbert’s Theorem 90" may sound
grandiose, but it is a statement with a completely elementary one-line proof in the
context that we discuss.
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2 Hilbert’s Theorem 90 - Baby Version

If AABC is a right-angled triangle with positive integer sides a, b, ¢, then Pythagoras’
Theorem states that a® + b*> = % If x = a/c and y = b/c, then these are rational
numbers satisfying 2% + y? = 1. In terms of the complex number z + iy, this is saying
that |z + iy|? = 1. If we think of = + iy as €” for some 6, then the equality
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actually gives us
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for some rational numbers u,v. By clearing denominators, we may assume that u, v are
integers which are relatively prime. Then, the right-hand side above becomes

(u+iw)* w?—0v? | 2w
= 1 .
w?+v? wr e u?+?

On equating the real and imaginary parts, we have

a uwr = 4 b 2w
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From this, it is easy to deduce that any primitive Pythagorean triple (that is, when a, b, ¢
are pairwise relatively prime) is of the form (u? — v?, 2uv, u? + v?).

More generally, consider any triangle AABC whose sides are integers a, b, c with
the usual convention of naming. One has the cosine law

A =a®>+b>—2abcos ZC.

We will show that an analogous characterization exists when cos ZC' = p/q, a rational
number. Note that p/¢ could be 0 or have any sign. We assume that when cos ZC' =
§ # 0, then § is in reduced form and ¢ > 0. For consistency of notation, we take ¢ = 1
when p = 0. Then, we have

x2+y2—21—)xy:1
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where z = a/cand y = b/c. The quadratic polynomial on the left is naturally factorized
into two linear polynomials (at least over the complex numbers) as
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The right hand side above is a kind of measure of the size (known as the norm) of the
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number z — ZY"—Ly. Observe that when ZC is a right angle, the factorization is the

q
familiar
2

2?4y = (v + iy)(x — iy)
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and the ‘norm’ of = +1y is > +y*. Further, we notice that being the cosine of an angle of
a triangle, |p/q| < 1 which means that \/p? — ¢? is a purely imaginary complex number.

We discuss Hilbert’s Theorem 90 in our set-up. Consider any square-free integer
d # 0,1, —1 (of any sign). Let z + yvd € Q(v/d) have ‘norm’ 1 as mentioned above;
that is, (z +Vdy)(z — Vdy) = 2> — dy? = 1. Hilbert’s Theorem 90 in this context simply
asserts the following.

Lemma 1. (Hilbert’s Theorem 90 for ‘quadratics’) There exist u,v € Q so that
u+vvd
u—vvd

Proof. We observe now that this indeed has a one-line proof. The proof is obtained by
simply solving the following for u, v:

x+y\/c_l=

1
z+1—yVd

when 22 — dy? = 1. 0

3 Parametrizing integer-sided triangles with rational co-
sine of angle

Returning to our triangles AABC with cos ZC' = £, we have 2? + y* — 22xy = 1 where
xz =a/cand y = b/c. Thus, Hilbert’s Theorem 90 above gives us

R pz—czzy_uw\/lﬂ—q2
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where we can assume, by clearing denominators, that «, v are relatively prime integers.
Further, we may assume that v > 0 (at the moment u could have any sign). The right-
hand side above can be rewritten as follows:

ut o=@ (uto/pP—¢?)? P+ 0 — @)+ 2un/p? — ¢
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Therefore, we obtain

a p—VPP—¢’b _ w0’ — ¢?) + 2uvy/p’ — ¢
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c u? — v (p* — ¢?)

Equating the real and imaginary parts, we have
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therefore,
b 2uv
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Note that cos ZC' = p/q means ¢* > p*. We have fixed notation so that ¢ > 0 (p may
have any sign) and v > 0 in the parametrization. Also, for the special case cos(C) = 0,
we take p = 0 and ¢ = 1 for convenience. So, we have now obtained the following
result.

Proposition 2. If AABC is a triangle with integer sides a, b, c and cos LC' = %’ with ¢ > 0,
then there exist relatively prime integers u,v with v > 0 so that

(a:b:c)= (u?—(¢* — p*)v* + 2puv : 2quuv : u* + (¢ — p*)v?).
Further, the right-hand side give the side lengths of a triangle when u > (¢ — p)v.

The last statement is simply a consequence of the constraint that the sum of two sides
is larger than the third one and the fact that the side-lengths are positive. Finally, we
also point out that ZC need not be the largest angle, as we can see in many examples
below.

4 Examples

Example 1. If ZC' = 90°, then note that p = 0, ¢ = 1 which gives the parametrization
(u? — v* : 2uv : u® + v?)
with v > v > 0 for the sides of any integer-sided right-angled triangle.
Example 2. If ZC' = 60°, then note that p = 1, ¢ = 2 which gives the parametrization
(u® — 3v® + 2uv : 4uv : u? + 3v?)

with v > v > 0. For instance, we have the following special cases:

(u,v) = (2,1) gives a triangle with sides (5, 8,7);

(u,v) = (3,1) gives sides proportional to (12,12,12) - i.e., equilateral triangles;
(u,v) = (3,2) gives sides proportional to (9,24, 21) - i.e., multiples of (3,8, 7);
(u,v) = (4,1) gives sides that are multiples of (21, 16, 19);

(u,v) = (4,3) gives sides that are multiples of (13,48, 43);

(u,v) = (5,1) gives sides proportional to (32, 20, 28) - i.e., multiples of (8,5, 7);
(u,v) = (5,2) gives sides that are multiples of (33, 40, 37);

(u,v) = (5,3) gives sides proportional to (28, 60, 52) - i.e., multiples of (7,15, 13);
(u,v) = (5,4) gives sides that are multiples of (17,80, 73).

By the examples (u,v) = (2,1), (5,1), note that different values of u,v can give the
same triangle. Note also that a right-angled triangle with one angle of 60 degrees
cannot occur here, as such a triangle is not integer-sided.
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Example 3. If ZC' = 120°, then note that p = —1, ¢ = 2 which gives the parametrization
(u* — 3v* — 2uv : duv : u® + 30?)

with v > 3v. For instance, we have the following special cases:

(u,v) = (4,1) gives sides that are multiples of (5, 16, 19);
(u,v) = (5,1) gives sides proportional to (12, 20, 28) - i.e., multiples of (3,5, 7);
(u,v) = (7,2) gives sides that are multiples of (9, 56, 61).

Example 4. If cos ZC' = 17/24, then we get the parametrization
(u? — Tv* + 3duv : 48uw : u® + Tv?)
with v > 7v. For instance,
(u,v) = (8,1) gives triangle sides that are multiples of (329, 384, 71).
Example 5. In general, let cos ZC' = p/q € (0, 1), and consider the parametrization
(u? — (¢* — p*)v* + 2puw, 2quv, u* + (¢* — p?)v?

where u > (¢ — p)v. Take (u,v) = (¢ — p + 1,1); we then obtain triangles with sides
proportional to

(2¢+1,29(q —p+1),2(¢+1)(g—p) +1).

In particular, if p = 1;i.e., if cos ZC = 1/gand u = ¢+ 1 and v = 1, then we get triangles
with side lengths which are multiples of

(2¢+1,2¢%2¢> — 1).

Just for fun, note that any integer-sided triangle with one angle, say C, such that
cos ZC' = 1/10 must have sides that are multiples of

(21,200, 199) .

Example 6. Here is a special integer-sided triangle formed as a union of two triangles
AABC and AACD with integer sides and ZACD = 60°.




5 Some Diophantine Equations

In the preceding discussions, one could say that Hilbert’s Theorem 90 gives the right
angle of approach to this parametrization problem. We dealt with Diophantine equa-
tions of the form a? — db* = ¢? for fixed square-free integers d using Hilbert’s Theo-
rem 90. Building on this theme, it is clear that we may consider more general Diophan-
tine equations. In fact, if = ¢**/? for an odd prime number p, then the corresponding
version of Hilbert’s Theorem 90 is as follows. First, we recall that the smallest-degree
polynomial ®,(x) with integer coefficients, and top coefficient 1, of which ( is a root, is
given by
Oy(z)=aP P+ 2P P4+ 1.

For any complex number z = S?2 (" with ¢; € Z, one has the ‘norm’ defined as

p—1 p—2

N(z) = HZCTCkT‘

k=1 r=0

Then Hilbert’s Theorem 90 in this situation is the following statement:
If N(32P22 ¢,C") = 1, then there exist integers a, (0 < r < p — 1) such that

where k is a ‘primitive root” modulo p; that is, k has order p — 1 modulo p.

Note that when p = 3, this is the norm above, N(cy + ¢;e¥™/3) = 2 — cye1 + &,
and Hilbert’s Theorem 90 is the statement that we have used earlier. Note that 2 is a
primitive root modulo 3.

In passing, we mention that this example generalizes to certain complex numbers
which generate what is called a Galois extension of Q with its Galois group being cyclic;
we have a version of Hilbert’s Theorem 90 and it allows us to deal with homogeneous
polynomial equations of the form Norm(z) = 1. In principle, Hilbert’s Theorem 90
shows that any such x is expressible as y/o(y) where ¢ is a so-called generator of the
Galois group.

Recently, I learnt about an article (see [2]) by Shin-Ichi Katayama where the author
considers numbers involving a primitive 7-th root of unity; the norm equation is a cubic
homogeneous equation whose solutions are parametrized by Hilbert’s Theorem 90.
Readers are referred to some references mentioned in Katayama’s paper which discuss
Pythagorean triples using Hilbert’s Theorem 90.



Let us look at one final example.

Example 7. Consider the discussion above for the case p = 5. Let ( = ¢*"/® and note

that 2 is a primitive root modulo 5 (the powers 2!, 22 23 2% of 2 modulo 5 are 2,4, 3,1,
respectively). Note that since 1 + ¢ + ¢* + (3 + (* = 0, we have

(=—1-¢-¢ =

Consider any number
r=a+bC+c?+d¢?

such that Norm(z) = 1. Using ¢° = 1 and simplifying etc., the expression for the norm
is

(a+b¢ + c¢® 4+ d¢®)(a+ bC* + et + d¢) (a + bC* + ¢ 4+ d¢?) (a + ¢ + ¢ + d¢Y) .

This is a homogeneous polynomial f(a,b, ¢, d) of degree 4 in a, b, ¢, d which vary in Q.
The equation Norm(z) = 1 has solutions = = % where we may assume that
p, q,, s are integers without a common factor greater than 1. The equation Norm(z) =

1 gives a Diophantine equation of the form
f(a,b,c,d) =r*

for integers a, b, ¢, d; hence, Hilbert’s Theorem 90 would give a parametrization of all
integer solutions. Indeed,

fla,b,c,d) = (a+bC+cC?+dC®) (a+bC% 4 ¢t +dC) (a+bC* 4 +dC?) (a+bC +cC +dC?) .
Therefore, when Norm(z) = 1, Hilbert’s Theorem 90 gives © = % where
we may assume without loss of generality that s, ¢, u, v are integers without a common
factor. Thus, one can multiply both the numerator and denominator above by the “con-
jugates” of the denominator and simplify to get an expression of the form W“+W
where w = Norm(s + t¢* + u¢* + v¢) € Z and k, ¢, m,n are polynomial expressions
in s,t,u,v. By comparing the coefficients of 1, (, (%, (*, we get the ratios (a : b : ¢ : d)
in terms of arbitrary integers s, t,u,v. Even though we obtain a parametrization of all
the integer solutions of f(a,b,¢,d) = r*, the fourth-degree homogeneous polynomial
f(a,b,c,d) itself is not of any particular interest. Off-hand, there is no reason to think
of studying such a complicated fourth-degree homogeneous polynomial. Suffice it to
say that Hilbert’s Theorem 90 gives solutions of many Diophantine equations that we
may not even think of solving!
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