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Abstract. Let K/F be a cyclic extension of odd prime degree l over a
number field F . If F has class number coprime to l , we study the structure
of the l-Sylow subgroup of the class group of K . In particular, when F
contains the l-th roots of unity, we obtain bounds for the Fl-rank of the
l-Sylow subgroup of K using genus theory. We obtain some results valid
for general l . Following that, we obtain more complete, explicit results for

l = 5 and F = Q(e
2iπ

5 ). The rank of the 5-class group of K is expressed
in terms of power residue symbols. We compare our results with tables
obtained using SAGE (the latter is under GRH). We obtain explicit results
in several cases. These results have a number of potential applications.
For instance, some of them like Theorem 5.16 could be useful in the
arithmetic of elliptic curves over towers of the form Q(e

2iπ
5n , x1/5). Using

the results on the class groups of the fields of the form Q(e
2iπ

5 , x1/5), and
using Kummer duality theory, we deduce results on the 5-class numbers
of fields of the form Q(x1/5).

Mathematics Subject Classification: 11R29, 13C20.

1. Introduction

We study the l-class group of K , where K is a cyclic extension of degree l
over a number field F which contains the l-th roots of unity and has trivial

413



414 Manisha Kulkarni, et al.

l-class group, where l is an odd prime. Denote by τ a generator of Gal (K/F).
The l-class group SK is a Zl[ζl]-module since

Zl[ζl] ∼= Zl[Gal(K/F)]/(1 + τ + · · · + τ l−1)

where ζ corresponds to τ . As a module over the discrete valuation ring Zl[ζ ]
whose maximal ideal is generated by λ = 1 − ζ , the l-class group SK of K
decomposes as

SK
∼= Zl[ζl]/(λe1)⊕ Zl[ζl ]/(λe2)⊕ · · · ⊕ Zl[ζl]/(λet )

for some 1 ≤ e1 ≤ e2 ≤ · · · ≤ et . Our goal is to compute the rank of SK

which is the dimension of the Fl-vector space SK ⊗Zl Fl . To find the ei ’s, one
looks at

si = |{e j : e j = i}|.
Then, the rank of the Zl[ζl]-module λi−1SK/λ

i SK is t − s1 − · · ·− si−1 - this
is also called the λi -rank of SK . To compute these numbers, we consider the
decreasing filtration

SK ⊃ λSK ⊃ λ2SK ⊃ · · ·
and construct ideal classes generating the pieces λi−1SK/λ

i SK and construct
genus fields corresponding to them. This is difficult to carry out explicitly in
general. However, the general analysis does lead to expressions and bounds
for the rank of SK such as the following proposition:

SK is isomorphic to the direct product of an elementary abelian �-group of
rank s1 and an abelian � group of rank

(�− 1)(t − s1)− (�− 3)s2 − (�− 4)s3 − · · · − s�−2.

In particular,

rankSK = (�− 1)t − (�− 2)s1 − (�− 3)s2 − · · · − s�−2

satisfies the bounds

2t − s1 ≤ rankSK ≤ (l − 1)t − (l − 2)s1

both of which are attainable.
This is proved in section 3; the expression for the rank is almost immediate

but some components of proof of the proposition are used while constructing
the genus fields explicitly later.

In section 4, we assume that F contains the l-th roots of unity and construct
genus fields corresponding to the pieces of the class group as above. These
fields are of the form K (x1/l

1 , x1/l
2 , . . . , x1/l

t ). For a basis {Pj} of ideal
classes for a piece, using Kummer theory to map the Galois group of the



l-Class groups of cyclic extensions of prime degree l 415

corresponding genus field to F
t
l , one writes down a matrix with entries in Fl

from that part of the class group. This allows us to express the rank of that
piece of the class group in terms of the rank of a matrix of Artin symbols of

the form
( K (x1/ l

i )/K
Pj

)
(see theorems 4.1, 4.2).

In section 5, we specialize to l = 5 and F = Q(ζ ) which allows us
to precisely work out the previous results. The major part of the paper is
contained in sections 5 and 6. In section 5, we use ideles to rewrite the earlier
computations of the si ’s in terms of Artin symbols in a more explicit form in
terms of local Hilbert symbols. One of the results in section 5 is:

Let K = F(x
1
5 ), x = uλeλπ

e1
1 · · ·π eg

g and F = Q(ζ ) where each πi is
a prime element congruent to a rational integer modulo 5Z[ζ ] and u is a

unit in F. Let M1 = K (x
1
5
1 , . . . , x

1
5
t ) denote the genus field of K/F, where

[M1 : K ] = 5t , xi ∈ F for 1 ≤ i ≤ t , and xi ≡ ±1,±7 (mod λ5). For
1 ≤ i ≤ t, 1 ≤ j ≤ g, let νi j denote the degree 5 Hilbert symbol

( xi ,x
(π j )

)
in the

local field Kπ j . Further, suppose

νi,g+1 =
(

xi , λ

(λ)

)
for 1 ≤ i ≤ t, if the ideal(λ)of F ramifies in K .

If γi j ∈ F� are defined by the power symbol ζ γi j = (x
1
�
i )
νi j −1, and C1 is the

matrix (γi j ), 1 ≤ i ≤ t, 1 ≤ j ≤ u = g or g + 1, we have

s1 = rankC1.

The above result is under the assumption that ambiguous ideals are strongly
ambiguous; in the contrary case, we have a very similar statement with a
slightly bigger matrix (see Theorem 5.9).

A similar result is proved for computing si ’s for i > 1 (see Theorem 5.10).
Thus, we have some results on the λi -rank of the 5-class group for general i
and the results on λ2-rank are easily computable in many situations.

We give tables of class groups obtained by using the SAGE program and
compare our results in its light. Interestingly, after a close inspection of the
tables, we were able to guess the following general results which we prove
(Theorems 5.12, 5.13, 5.14, 5.15, 5.16, 5.18).

Theorem. Let p be a prime number congruent to −1 (mod 5). Let

F = Q(ζ5) and K = F(p
1
5 ). Assuming that each ambiguous ideal class is

strongly ambiguous, we have that 25 divides the class number of K . More
precisely, the λ2-rank (to be defined below) of the 5-class group SK is 1 and,
2 ≤ rankSK ≤ 4.

The following theorem may be useful in studying the arithmetic of elliptic

curves over towers of the form Q(e
2iπ
5n , x1/5). It is motivated by a comment of
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John Coates that Iwasawa theory implies the triviality of 5-class group of the
above fields for all n in the cases of x considered in the theorem.

Theorem. Let F = Q(ζ5) and let K = Q(ζ5, x
1
5 ) where x is a positive

integer which is not divisible by the 5th power of any prime in F. Suppose
that the prime λ = 1 − ζ5 over 5 in F, ramifies in K . Then SK = {1} if, and
only if, x = pa, where p is a prime number such that p ≡ ±2 (mod 5), but
p 	≡ ±7 (mod 25) and 1 ≤ a ≤ 4. Further, for all x as above, the prime 5
ramifies totally in Q(ζ25, x1/5).

If we remove the assumption that λ ramifies in K/F , then the 5-class group
is trivial if, and only if, x = pa with p ≡ ±2 (mod 5) or x = paqb, where
p, q ≡ ±2 (mod 5) but p, q 	≡ ±7 (mod 25) and x ≡ ±1,±7 (mod 25).
All these results are exemplified in Table 1.

Theorem. Let p be a prime number congruent to ±7 (mod 25) and
q be a prime number congruent to −1 (mod 5). Let F = Q(ζ5) and

K = F((pq)
1
5 ). [Assuming that each ambiguous ideal class is strongly

ambiguous,] we have that 125 divides the class number of K . More precisely,
λ2-rank of SK is 1 and we have, 3 ≤ rankSK ≤ 5.

Theorem. Let pi ≡ ±7 (mod 25) for 1 ≤ i ≤ r be primes and r ≥ 2. Let
n = pa1

1 · · · par
r , where 1 ≤ ai ≤ 4 for 1 ≤ i ≤ r . Let F = Q(ζ5) and

K = F(n
1
5 ).

(i) If all ambiguous ideal classes of K/F are strongly ambiguous, then the
λ2-rank of SK is r − 1 and 2r − 2 ≤ rankSK ≤ 4r − 4.

(ii) If there are ambiguous ideal classes which are not strongly ambiguous,
then s1 ≤ 2, λ2-rank of SK is greater than or equal to r − 3 and
max(2r − 4, r − 1) ≤ rankSK ≤ 4r − 4.

Theorem. Let pi ≡ ±7 (mod 25) for 1 ≤ i ≤ r be primes and let q j be
primes such that q j ≡ ±2 (mod 5) but q j 	≡ ±7 (mod 25) for 1 ≤ j ≤ s.

Let n = pa1
1 · · · par

r qb1
1 · · · qbs

s , where 1 ≤ ai , b j ≤ 4 for 1 ≤ i ≤ r and

1 ≤ j ≤ s. Let n 	≡ ±1,±7 (mod 25). Let F = Q(ζ5) and K = F(n
1
5 ).

(i) If all ambiguous ideal classes of K/F are strongly ambiguous, then the
λ2-rank of SK is r + s − 1 and 2r + 2s − 2 ≤ rankSK ≤ 4r + 4s − 4.

(ii) If there are ambiguous ideal classes which are not strongly ambiguous,
then s1 ≤ 1, λ2-rank of SK is greater than or equal to r + s − 2 and
max(2r + 2s − 3, r + s − 1) ≤ rankSK ≤ 4r + 4s − 4.

Theorem. Let pi ≡ ±7 (mod 25) for 1 ≤ i ≤ r be primes and let q j

be primes such that q j ≡ ±2 (mod 5) but q j 	≡ ±7 (mod 25) for 1≤ j ≤s

with s ≥ 2. Let n = pa1
1 · · · par

r qb1
1 · · · qbs

s , where 1 ≤ ai , b j ≤ 4 for
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1 ≤ i ≤ r and 1 ≤ j ≤ s. Let n ≡ ±1 or ≡ ±7 (mod 25). Let F = Q(ζ5)

and K = F(n
1
5 ).

(i) If all ambiguous ideal classes of K/F are strongly ambiguous, then the
λ2-rank of SK is r + s − 2 and 2r + 2s − 4 ≤ rankSK ≤ 4r + 4s − 8.

(ii) If there are ambiguous ideal classes which are not strongly ambiguous,
then s1 ≤ 1, λ2-rank of SK is greater than or equal to r + s − 3 and
max(2r + 2s − 5, r + s − 2) ≤ rankSK ≤ 4r + 4s − 8.

From the last three theorems, one may deduce information about certain
5-class groups of purely quintic extensions of Q such as Corollary 6.7:

Corollary. Let N be a positive integer of one of the following forms. Then,

the 5-class group of L = Q(N
1
5 ) is either trivial or cyclic:

• Let N = pa, where p ≡ ±2 (mod 5) is a prime, 1 ≤ a ≤ 4.
• Let N = qa1

1 qa2
2 where qi ≡ ±2 (mod 5) but qi 	≡ ±7 (mod 25), 1 ≤

ai ≤ 4 for i = 1, 2 such that N ≡ ±1,±7 (mod 25).
• Let N = pa, where p ≡ −1 (mod 5) is a prime, 1 ≤ a ≤ 4.
• Let N = pa1

1 pa2
2 where pi ≡ ±7 (mod 25), 1 ≤ ai ≤ 4 for i = 1, 2 such

that N ≡ ±1,±7 (mod 25).
• N = paqb where p ≡ ±7 (mod 25) , q ≡ ±2 (mod 5) but q 	≡ ±7
(mod 25) and 1 ≤ a, b ≤ 4 such that N 	≡ ±1,±7 (mod 25).

• N = qa1
1 qa2

2 where qi ≡ ±2 (mod 5) but qi 	≡ ±7 (mod 25), 1 ≤ ai ≤ 4
for i = 1, 2 such that N 	≡ ±1,±7 (mod 25).

• N = pa1
1 pa2

2 qb where pi ≡ ±7 (mod 25), q ≡ ±2 (mod 5) but q 	≡ ±7
(mod 25) 1 ≤ ai , b ≤ 4 for i = 1, 2 such that N ≡ ±1,±7 (mod 25).

• N = paqa1
1 qa2

2 where p ≡ ±7 (mod 25), qi ≡ ±2 (mod 5) but qi 	≡ ±7
(mod 25), 1 ≤ a, ai ≤ 4 for i = 1, 2 such that N ≡ ±1,±7 (mod 25).

• N = qa1
1 qa2

2 qa3
3 where qi ≡ ±2 (mod 5) but qi 	≡ ±7 (mod 25), 1 ≤ ai ≤

4 for i = 1, 2, 3, such that N ≡ ±1,±7 (mod 25).
• Let N = paqb, where p ≡ −1 (mod 5) and q ≡ ±7 (mod 25) are primes,

1 ≤ a, b ≤ 4.

The above corollary is proved in section 6 where we consider quintic fields
L = Q(n1/5). If F = Q(ζ ) as before, then K = L(ζ5) = Q(n1/5, ζ5) has
Galois group over L to be cyclic of order 4, generated by σ : ζ �→ ζ 3. If
τ : n1/5 �→ ζn1/5 in Gal (K/F), then Gal(K/Q) is the affine group on F5;
viz., < σ > � < τ > where στσ−1 = τ 3. The group SK is a Z5[G]-module
where G = Gal(K/L). Denoting by ω : G → Z

∗
5 the character sending σ

to 3 modulo 5, we have for any Z5[G]-module C, one has a decomposition
C = ⊕3

i=0C(ωi) where C(ωi) = {a ∈ C : σa = ω(σ)i a}. Using this module
structure and Kummer theory, we prove in section 6 the following theorem
whose corollary is stated above.



418 Manisha Kulkarni, et al.

Theorem. If L = Q(n1/5) where n is 5-th power free, then

rankSL ≤ min(t, t − s1 + rank(SK/(1 − ζ )SK )(ω
0)).

Further, if n = pα1
1 · · · pαm

m where the primes pi ≡ ±2 or ≡ −1 modulo 5,
then rank (SK/(1 − ζ )SK )(ω

0).
Our results along with computation using SAGE, sometimes allows

us to deduce the existence of ambiguous ideal classes which are not
strongly ambiguous. For example, let K = Q(ζ5,

5
√

301), L = Q( 5
√

301).
By Theorem 5.12, if all ambiguous ideal classes are strongly ambiguous, then,
2 ≤ rankSK ≤ 4. The same theorem tells us that if there are ambiguous ideal
classes which are not strongly ambiguous, then 1 ≤ rankSK ≤ 4. But, SAGE
shows SK = C5. Thus, it is likely that we have ambiguous ideal classes which
are not strongly ambiguous in this case and that t = s1 = 1. By Corollary 6.4
and Theorem 6.6, we see that SL = {1}, which is confirmed by SAGE.

Historically, when K = Q(
√

D) is a quadratic field of discriminant D,
Gauss’s genus theory of quadratic forms determines the rank of the 2-Sylow
subgroup of the ideal class group of K . C. S. Herz ([12]) proved that this rank
is d − 1 or d − 2 where d = ω(D), the number of distinct prime divisors
of D. In a series of papers (see [3], [4], [5]), Frank Gerth III proved several
results on pure cubic extensions of Q and on cyclic cubic extensions of Q and
also obtained a generalization of Herz’s result for the 3-Sylow subgroup of the
ideal class group of a cyclic extension of Q(ω)whereω is a primitive 3-rd root
of unity. In two papers, G. Gras ([6], [7]) introduced and studied an increasing
filtration to obtain results on the narrow ideal class group. Our results are
proved using a decreasing filtration and generalize some of Gerth’s results to
the case of an odd prime l; they are more complete and explicit when l = 5.

In the 1930’s, Rédei and Reichardt proved certain results on class groups
of some abelian extensions of Q ([18]). Curiously, the series of papers by
Gerth do not refer to the old work of Rédei and Reichardt. Conversely,
the newer papers which refer to Rédei-Reichardt while addressing similar
questions (see, for instance, Greither-Kučera’s paper on the lifted root number
conjecture [9]), do not seem to be aware of Gerth’s work.

Rédei matrices are square matrices which appeared classically (see [17])
and have been studied by others (see [21],[13],[15]) since then. In our
discussion, we construct similar matrices which are rectangular in general.

Our results have some potential applications. One possible application
of our results on the l-class group of certain number fields is towards the
existence of p-descent for certain elliptic curves.

Indeed, assuming that the F2-rank of the 4-class group of K = Q(
√−2n) -

where n = p0 p1 · · · pk is a product of distinct odd primes with pi ≡ 1
(mod 8) for 1 ≤ i ≤ k - is 0 if n ≡ ±3 (mod 8) and 1 otherwise, Ye Tian
showed ([20]) that the elliptic curves E(m)/Q defined by my2 = x3−x , where
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m = n or 2n such that m ≡ 5, 6, or 7 modulo 8, have first 2-descent and
deduced the BSD conjecture holds for these elliptic curves.

From our results on 5-class numbers of fields of the form Q(ζ5, n1/5),
we use duality theory to deduce results on the 5-class number of the fields
Q(n1/5) for some n. These have potential applications to the following
work of Calegari-Emerton on modular forms. Calegari and Emerton showed

([1]) that if the class group of Q(N
1
5 ) is cyclic for a prime N , certain local

extensions of Q5 coming from normalized cuspidal Hecke eigenforms are
trivial. More precisely:

Let f be a normalized cuspidal Hecke eigenform of level N . Let K f denote
the extension of Q5 generated by the q-expansion coefficients an( f ) of f .
It is known that K f is a finite extension of Q5. When N is a prime and
5‖(N − 1), it is known due to Mazur that there exists a unique (upto
conjugation) weight 2 normalized cuspidal Hecke eigenform defined over
Q5, satisfying the congruence

al( f ) ≡ 1 + l (mod p)

where p is the maximal ideal of the ring of integer of K f . It is known that K f

is a totally ramified extension of Q5. Calegari and Emerton showed that if the

class group of Q(N
1
5 ) is cyclic, then K f = Q5.

2. Notations

Let � be an odd prime number. Let F be a number field and K/F be a
cyclic extension of degree � over F . Let CK and CF denote the ideal class
groups of K and F respectively. Let SK and SF denote their respective Sylow
l-subgroups which we sometimes refer to as the l-class groups. The rank of
SK is defined to be the F�-dimension of SK ⊗Z� F�.

We have a natural action of Gal(K/F) on CK and on SK .
We assume throughout that SF is trivial. It is convenient to use additive

notation. Denote by τ a generator of Gal (K/F). Let ζl be a fixed primitive
l-th root of unity. The l-class group SK is a Zl[ζl]-module since

Zl[ζl] ∼= Zl[Gal(K/F)]/(1 + τ + · · · + τ l−1)

as the norm 1 + τ + · · · + τ l−1 acts trivially on SK . Denote the discrete
valuation ring Zl[ζ ] by R; its maximal ideal is generated by λ = 1 − ζ . As an
R-module, the l-class group SK of K decomposes as

SK
∼= Zl[ζl]/(λe1)⊕ Zl[ζl ]/(λe2)⊕ · · · ⊕ Zl[ζl]/(λet )

for some 1 ≤ e1 ≤ e2 ≤ · · · ≤ et . Let

si := |{e j : e j = i}|



420 Manisha Kulkarni, et al.

so that t = s1 + s2 + · · · + sl−2 and sk = 0 for k > l − 2 since (λl−1) = (l).
We have a decreasing filtration

SK ⊃ λSK ⊃ λ2SK ⊃ · · ·
Denote by SK [λ], the kernel of multiplication by λ on SK ; note that t =
rankSK [λ]. Similarly, it is easy to see that

si = rank((SK [λ] ∩ λi−1SK )+ λi SK )/λ
i SK .

Also, the rank of the Zl[ζl]-module λi−1SK/λ
i SK is t − s1 −· · ·− si−1 which

is called the λi -rank of SK .
By class field theory, the maximal abelian unramified extension M0 of

K satisfies CK
∼= Gal(M0/K ). The genus field of K/F is the maximal

abelian extension M of F which is contained in M0; then Gal(M/F) is the
abelianization of Gal(M0/F). Moreover, CK/λCK ∼= Gal(M/K ) and is
called the group of genera.

An ideal class c in CK is said to be ambiguous if τc = c; that is, if
c ∈ CK [λ]. Thus, the subgroup SK [λ] of ambiguous ideal l-classes is an
elementary abelian l-group whose rank is that of SK/λSK (which we have
denoted by t above). The rank t is computed using Hasse’s famous formula
([10] and [14]):

t = d + q∗ − (r + 1 + o)

where

d= number of ramified primes in K/F ,
r = rank of the free abelian part of the group of units EF of F ,
o = 1 or 0 according as to whether F contains primitive �th root of unity or

not,
q∗ is defined by [NK/F (K ∗) ∩ EF : NK/F (EF )] = �q∗

.

More generally, let us define for each i ≤ �, Si
K to be the subgroup of

ambiguous ideal classes in λi−1SK . Thus, rank Si
K = rank λi−1SK/λ

i SK

which is the λi -rank of SK (which we observed above to be t −s1−· · ·−si−1).
There is a subtler notion of strongly ambiguous ideals. An ambiguous ideal

I is said to be strongly ambiguous if the principal ideal (1 − τ )I is actually
(1). There is also a related notion for ideal classes. An ideal class a ∈ CK

is said to be a strongly ambiguous ideal class if there exist a representative
a ∈ IK for a such that (1 − τ )a = (1).

The subgroup SK ,s of strongly ambiguous ideal classes in SK has rank
given by a similar formula as above:

rankSK ,s = d + q − (r + 1 + o)

where q is given by [NK/F (EK ) ∩ EF : NK/F (EF )] = �q .
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3. Cyclic extensions of degree �

In this section we give a formula for the rank of SK , where K/F is a Galois
extension of odd prime degree �.

Throughout, we assume SF = {1}.
The proof is an easy generalization of Theorems 3.1 and 4.1 of [3].

Proposition 3.1. Let K be a cyclic extension of degree � of a number field F
for which the l-class group SF = {1}. Let us denote by t the rank of the group
of ambiguous ideal classes SK [λ] in SK , and by si , the rank of (λi−1SK [λ] +
λi SK )/λ

i S. Then

rankSK = (�− 1)t − (�− 2)s1 − (�− 3)s2 − · · · − s�−2.

Further, SK is isomorphic to the direct product of an elementary abelian
�-groups of rank s1 and an abelian � group of rank

(�− 1)(t − s1)− (�− 3)s2 − (�− 4)s3 − · · · − s�−2.

Proof. For R = Zl[ζ ], the R-module decomposition

SK =
t⊕

i=1

R/λei R = ⊕i (R/λ
i R)si

where 1 ≤ e1 ≤ · · · ≤ et and

si = |{ j : e j = i}|,
it follows that

rankSK =
∑

i

|{ j : e j ≥ i}|

= t + (t − s1)+ (t − s1 − s2)+ · · · + (t − s1 − s2 − · · · − sl−2)

= (l − 1)t − (l − 2)s1 − (l − 3)s2 · · · − sl−2.

In order to get the direct sum decomposition, we consider the filtration

SK ⊃ λSK ⊃ · · · ⊃ λl−1SK = lSK

and the homomorphism

λ∗
i : λi−1SK/λ

i SK � λi SK/λ
i+1SK

induced by multiplication by λ.
As λi−1SK/λ

i SK are elementary abelian �-groups, they can be viewed as
vector spaces over Fl . Then λ∗

i is a surjective, vector space homomorphism.
Hence there exists groups Ri ,Wi such that

λi SK ⊂ Ri ,Wi ⊂ λi−1SK
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and so that λ∗
i gives an isomorphism between Ri/λ

i SK and λi SK/λ
i+1SK and

kerλ∗
i = Wi/λ

i SK .

Therefore,
Ri + Wi = λi−1SK and Ri ∩ Wi = λi SK .

Clearly Wi = (λi−1SK )[λ] + λi SK from the definition of λ∗
i .

So, there exists a subgroup Hi ⊂ (λi−1SK )[λ], such that

Wi = Hi ⊕ λi SK ,

with Hi ∼= (λi−1SK [λ] + λi SK )/λ
i SK . Then

λi−1SK = Ri + Wi = Ri + (Hi ⊕ λi SK ) ∼= Ri ⊕ Hi

since Ri ∩ Wi = λi SK . In particular, for i = 1, we get,

SK
∼= R1 ⊕ H1.

Recall that si = rank(λi−1SK [λ] + λi SK )/λ
i SK ; thus

si = rankHi = rankWi/λ
i SK .

Thus, the proposition will follow if we can prove:

rankR1 = (�− 1)(t − s1)− (�− 3)s2 − (�− 4)s3 − · · · − s�−2.

Since �Hi = {1} and �SK = λ�−1SK , we have:

rankR1 = rankR1/�R1 = rankR1/�SK = rankR1/λ
�−1SK

= rankR1/λSK + rankλSK/λ
2SK + · · · + rankλ�−2SK/λ

�−1SK

= 2 · rankR1/λSK + rankR2/λ
2SK + · · · + rankR�−2/λ

�−2SK ,

since Ri/λ
i SK

∼= λi SK /λ
i+1SK .

Now,

rankR1/λSK = rankSK/λSK − rankW1/λSK = t − s1.

Similarly,

rankRi/λ
i SK = rankλi−1SK/λ

i SK − rankWi/λ
i SK

= rankRi−1/λ
i−1SK − si = t − s1 − s2 − · · · − si .

Putting all of these together, we get

rankR1 = (�− 1)(t − s1)− (�− 3)s2 − (�− 4)s3 − · · · − s�−2

and
rankSK = (�− 1)t − (�− 2)s1 − (�− 3)s2 − · · · − s�−2.

�
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Remark. We saw in the beginning of the proof above that from the
decomposition SK ∼= R/λe1 R × · · · × R/λet R, where R = Zl[ζl] and
λ = 1 − ζl , one can easily find the formula of the rank by simple counting.
We have given the above proof as some ingredients of the proof like the
subgroups Ri and Wi will be used later in the construction of genus fields.

We point out the following special cases of interest; the first corollary below
is immediate:

Corollary 3.2. If t = s1, then SK is an elementary abelian � group of rank t .

Corollary 3.3. For i ≥ 1, we have

rankλi SK/λ
i+1SK = t − s1 − · · · − si .

In particular, t − s1 − · · · − si ≥ 0 for all i and so, we observe

0 ≤ si ≤ t − s1 − · · · − si−1.

Proof. The proof of this corollary is contained in the proof of the
Proposition 3.1. �

Corollary 3.4. For some 1 ≤ i ≤ (� − 2), if we have λi SK = lSK , then
s j = 0 for j ≥ i + 1 and t = s1 + · · · + si .

Proof. Since λi S�
i

K = lSK , we see that

λi SK = λi+1SK = · · · = λl−1SK = lSK .

So, the quotients λ j SK/λ
j+1SK are trivial for all j ≥ i . The previous

corollary implies the assertion now. �

Corollary 3.5. The rank of SK satisfies the bounds

2t − s1 ≤ rankSK ≤ (�− 1)t − (�− 2)s1.

Moreover, if s2 = t − s1, then the lower bound is achieved; that is, rank of SK

equals 2t − s1. Further, if s2 = s3 = · · · = s�−2 = 0, then the upper bound is
achieved, that is,rank of SK is (�− 1)t − (�− 2)s1.

Proof. The upper bound of rank SK is immediate from the proposition
because rankSK = (l − 1)t − (l − 2)s1 − · · · − sl−2. The lower bound
follows since rankSK = t + ∑�−2

i=1 (t − s1 − · · · − si ) ≥ 2t − s1 (since
t − s1 − · · · − si ≥ 0). Combining these two facts we obtain the bound for
rank of SK .

Since t − s1 − s2 = 0, we see that s3 = s4 = · · · = s�−2 = 0 (follows from
Corollary 3.3). Substituting these values of si in the formula for the rank of
SK in Theorem 3.1, we obtain that, rankSK = 2t − s1. �
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Remark. The above bounds constitute an improvement of the bounds
obtained in Gerth’s paper [3][Corollary 2.5]; he obtains t ≤ rankSK ≤
(�− 1)t .

4. When F contains ζ� and has class number coprime to �

We recall the earlier notations:
K is a cyclic extension of degree l (an odd prime) over a number field

F with trivial l-class group which, we now assume, contains a primitive
l-th roots of unity ζ . By class field theory, the maximal abelian unramified
extension M0 of K satisfies CK

∼= Gal(M0/K ). The genus field of K/F
is the maximal abelian extension M of F which is contained in M0;
then Gal(M/F) is the abelianization of Gal(M0/F) (see [8]). Moreover,
CK /λCK

∼= Gal(M/K ) and is called the group of genera. By Kummer
theory, K = F(x1/l) for some x ∈ F∗ − (F∗)l . Being the l-Sylow subgroup
of the group CK /λCK , the group SK/λSK is a direct summand of it.
Thus, there is a unique subfield M1 of M which contains K and satisfies
SK/λSK ∼= Gal(M1/K ); thus, note that Gal (M1/K ) is elementary abelian
of rank t .

Recall also from the proof of 3.1 that for i ≥ 1, there is a subgroup
Hi ⊂ (λi−1SK )[λ] such that Hi ∩ λi SK = (0) and Hi ∼= ((λi−1SK )[λ] +
λi SK )/λ

i SK . Note that si = rankHi for i ≥ 1.
The first theorem below computes the rank s1 of H1 in terms of the rank of

a certain matrix with entries in Fl .
Firstly, by Kummer theory, there exist x1, . . . , xt ∈ K ∗ − (K ∗)l such that

M1 = K (x
1
�
1 , . . . , x

1
�
t ). In the following theorem, we obtain a t × t matrix over

F� whose rank equals s1. The entries of this matrix involve the Artin symbols
of the generators xi ’s.

Note that the Artin symbols
( K (x

1
�

i )/K
I

)
are defined for any ideal I of K

since the conductor of the field M1 is trivial.

Theorem 4.1. Let F, K ,M,M1 be as above. Fix representative ideals
a1, . . . , at whose ideal classes form a basis for the group SK [λ]. Denote by

μi j , the Artin symbol
( K (x

1
�

i )/K
aj

)
. Write αi j ∈ Fl for which ζαi j is the power

residue symbol (x
1
�
i )
μi j −1. If A1 is the matrix (αi j ) ∈ Mt (Fl), then

rankA1 = rankH1 = s1.

Proof. As noted above, since M is an unramified extension of K and K ⊂
M1 ⊂ M , the conductor of M1/K is trivial and hence, the Artin symbol( M1/K

a

) ∈ Gal(M1/K ) is well defined for all ideals a of K . We define a map
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ψ1 : SK [λ] → SK → SK/λSK
∼= Gal(M1/K )

which is the composite of the natural inclusion, the natural surjection and the
canonical isomorphism. If cl(a) denotes the ideal class of an ideal a, and if
cl(a) ∈ SK [λ], then we see by Artin reciprocity that ψ1(cl(a)) = ( M1/K

a

)
and

that the kernel of ψ1 is SK [λ] ∩ λSK .

Now M1 = K (x
1
�
1 , . . . , x

1
�
t ) and [M1 : K ] = �t imply that there exists an

isomorphism

δ1 : Gal(M1/K ) ∼= Gal(K (x
1
�
1 )/K )× · · · × Gal(K (x

1
�
t )/K ).

For each i = 1, . . . , t , Kummer theory provides an isomorphism

θi : Gal(K (x
1
�
i )/K ) → F�

μ �→ αμ

where ζαμ = (x
1
�
i )
μ−1.

Define

φ1 :=
(

t∏

i=1

θi

)

◦ δ1 ◦ ψ1 : SK [λ] → F
t
�.

Now, SK [λ] is a vector space over F� (as it is an elementary abelian �-group)
and φ1 is a vector space homomorphism; also kerφ1 = kerψ1 = SK [λ]∩λSK .

Now A1 is precisely the matrix of φ1 with respect to basis {cl(a1), . . . ,

cl(at)} of SK [λ]. Then

rank(SK [λ] ∩ λSK ) = rank(ker(φ1)) = t − rankA1.

Equivalently, rankA1 = t − rank(SK [λ]∩λSK ). Since SK [λ] is an elementary
abelian �-group of rank t and

H1 ∼= (SK [λ] + λSK )/λSK
∼= SK [λ]/(SK [λ] ∩ λSK ),

then s1 = rankH1 = t − rank(SK [λ] ∩ λSK ) = rankA1. �

The above result for the rank s1 of H1 can be generalized to a general si in
the following manner.

Recall from the proof of Proposition 3.1 that there exists a subgroup Ri

satisfying λi ⊂ Ri ⊂ λi−1SK and

Ri/λ
i SK

∼= λi−1SK /Wi
∼= λi SK/λ

i+1SK

where the last isomorphism is induced by the multiplication-by-λ map.
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Now, for 1 ≤ i ≤ � − 3, if we have chosen a genus field Mi ⊂ M
with Gal(Mi/K ) ∼= λi−1SK /λ

i SK , there exists - corresponding to the direct
summand Ri/λ

i S�
i

K - a unique field Mi+1 such that

K ⊂ Mi+1 ⊂ Mi ⊂ M1 ⊂ M and

Gal(Mi+1/K ) ∼= Ri/λ
i SK

∼= λi SK/λ
i+1SK .

From the above isomorphism, we see that Gal(Mi+1/K ) is an elementary
abelian �-group. We have

t − s1 − · · · − si = rank Gal(Mi+1/K ) = rankλi SK /λ
i+1SK .

Once again, Kummer theory assures us elements y1, . . . , yt−s1−···−si ∈ K ∗ −
(K ∗)l such that

Mi+1 = K

(
y

1
�
1 , . . . , y

1
�
t−s1−···−si

)
.

Fix representative ideals b1, . . . , bt−s1−···−si whose ideal classes form a
basis for the group (λi SK )[λ]. With these notations, we prove the following
theorem:

Theorem 4.2. Let μ j k denote the Artin symbol
( K (y

1
�
j )/K

bk

)
, and let β j k ∈ Fl

for which ζβ j k is the power residue symbol (y
1
�
j )
μ j k−1. For 1 ≤ i ≤ l − 3, if

Ai+1 is the matrix (β j k), 1 ≤ j, k ≤ t − s1 − · · · − si with entries in Fl , then

si+1 = rankAi+1.

Proof. Since M is an unramified extension of K and K ⊂ Mi+1 ⊂ M ,
the conductor of Mi+1/K is (1) and hence the Artin symbol

( Mi+1/K
a

) ∈
Gal(Mi+1/K ) is well defined for all ideals a of K . We define a map

ψi+1 : (λi SK )[λ] → λi SK → λi SK/λ
i+1SK

∼= Ri/λ
i SK

∼= Gal(Mi+1/K )

which is the composite of the natural inclusion, the natural surjection and the
canonical isomorphisms. If cl(a) ∈ (λi SK )[λ], then by Artin reciprocity, we
see that ψi+1(cl(a)) = ( Mi+1/K

a

)
and that the kernel of ψi+1 is (λi SK )[λ] ∩

λi+1SK .

Now Mi+1 = K (y
1
�
1 , . . . , y

1
�
t−s1−···−si

) and [Mi+1 : K ] = �t−s1−···−si imply
that there exists an isomorphism

δi+1 : Gal(Mi+1/K ) ∼= Gal(K (y
1
�
1 )/K )× · · · × Gal(K (y

1
�
t−s1−···−si

)/K ).

Once again, Kummer theory provides for each j ≤ t − s1 − · · · − si , an
isomorphism
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θ j : Gal

(
K (y

1
�
j )/K

)
→ F�

μ �→ αμ

where ζαμ = (y
1
�
j )
μ−1.

Define

φi+1 :=
⎛

⎝
t−s1−···−si∏

j=1

θ j

⎞

⎠ ◦ δi+1 ◦ ψi+1 : (λi SK )[λ] → F
t−s1−···−si
� .

Since (λi SK )[λ] is an elementary abelian �-group, it may be viewed as a
vector space over F�, and φi+1 is a vector space homomorphism. Since

kerφi+1 = kerψi+1 = (λi SK )[λ] ∩ λi+1SK

and since Ai+1 is precisely the matrix of φi+1 with respect to the basis
{cl(b1), . . . , cl(bt−s1−···−si )}, we have

rank((λi SK )[λ]∩λi+1SK ) = rank(ker(φi+1)) = (t −s1−· · ·−si )−rankAi+1

Equivalently, rankAi+1 = (t − s1 − · · · − si )− rank((λi SK )[λ] ∩ λi+1SK ).
Since (λi SK )[λ] is an elementary abelian �-group of rank (t − s1 −· · ·− si )

and

((λi SK )[λ] + λi+1SK )/λ
i+1SK ∼= (λi SK )[λ]/(λi SK )[λ] ∩ λi+1SK ∼= Hi+1,

we obtain

si+1 = rankHi+1 = (t − s1 − · · · − si )− rank((λi SK )[λ] ∩ λi+1SK )

= rankAi+1. �

5. F = Q(ζ5) and K = F(x1/5)

In the last section, we showed that the rank of SK can be expressed in terms
of the ranks of certain matrices over F�. The explicit determination of these
matrices seems very difficult in general. Gerth had carried this out in the case
of � = 3. In this section, we look at the case of � = 5. We assume in this
section that F is the cyclotomic field Q(ζ ) generated by the 5-th roots of
unity; note that F has class number 1. We analyze what the earlier theorems
give for several examples and compare them with computations obtained by
the program SAGE (the latter uses GRH) - a detailed table is given at the end
of the paper. After that, we exploit the theorems of the previous section to
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prove a number of general results which were guessed at by a close inspection
of the tables.

Consider any cyclic extension K = F(x
1
5 ) of degree 5 over F . We may

assume that x is an integer in F which is not divisible by the 5th power of any
prime element of F .

The ring of integer Z[ζ ] of F is a principal ideal domain. Consider those
nonzero elements x which can be written as

x = uλeλπ
e1
1 · · ·π eg

g ,

where u is a unit in Z[ζ ], λ = 1− ζ is the unique prime over 5 (so, λ4‖5), and
π1, . . . , πg are prime elements in F not associated to λ, where ei ∈ {1, . . . , 4}
for 1 ≤ i ≤ g, and eλ ∈ {0, 1, . . . , 4}.

5.1 Unwinding Hasse’s formula for Q(ζ, x1/5)

Let us see how the rank t of the group of ambiguous ideal classes in the 5-class
group SK is computed using Hasse’s famous formula ([10]) in our case:

t = d + q∗ − (r + 1 + o).

For our fields F and K , we have

r = �− 3

2
= 1,

o = 1,

d =
{

g if (λ) does not ramify in K/F,

g + 1 if (λ) ramifies in K/F,

q∗ ≤ �− 1

2
= 2, (since the order of [EF : E�F ] = �

�−1
2 = 52)

In F , the group of units is generated by ζ and 1 + ζ where ζ is a primitive
5-th root of unity. We see from the definition of q∗ that

q∗ =

⎧
⎪⎨

⎪⎩

2 if ζ, 1 + ζ ∈ NK/F (K ∗),
1 if some, but not all ζ i (1 + ζ ) j ∈ NK/F (K ∗),
0 if ζ i (1 + ζ ) j /∈ NK/F (K ∗), for 0 ≤ i, j ≤ 4, i + j 	= 0.

We have t = d − 3 + q∗ with d , q∗ determined as above.
Since q∗ depends on whether ζ i (1 + ζ ) j is a norm from K or not, its value

can be determined in terms of the local Hilbert symbols in completions of F
as in the following lemma.
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Lemma 5.1. Let F =Q(ζ ) and let K = F(x1/5) where x =uλeλπ
e1
1 · · ·π eg

g ,

with u a unit in Z[ζ ], λ = 1 − ζ is the unique prime over � (so, λ4||5), and
π1, . . . , πg prime elements in Z[ζ ]. Then

(a) ζ ∈ NK/F (K ∗) ⇐⇒ NF/Q((πi)) ≡ 1 (mod 25) for all i ;
(b) if ζ i (1 + ζ ) j ∈ NK/F (K ∗), if and only if, every πk |x above has the

property that ζ i (1 + ζ ) j is a 5-th power modulo (πk) in Z[ζ ] for all i, j ;
(c) (λ) ramifies in K/F ⇐⇒ x 	≡ ±1,±7 (mod λ5).

Proof. Now ζ i (1 + ζ ) j ∈ NK/F (K ∗) ⇐⇒ ( x,ζ i (1+ζ ) j

p

) = 1 for all prime
ideals p of F .

Since ζ i (1 + ζ ) j is a unit,
( x,ζ i (1+ζ ) j

p

) = 1 if p does not ramify in K/F .
We will now look at the prime ideals (λ) and the (πk)’s.

Firstly, look at p = (πk), where πk|x . Then

(
x, ζ i (1 + ζ ) j

(πk)

)
=

(
uλeλπ

e1
1 · · ·π eg

g , ζ
i(1 + ζ ) j

(πk)

)

=
(

uλeλ, ζ i (1 + ζ ) j

(πk)

) (
π

e1
1 , ζ

i (1 + ζ ) j

(πk)

)

· · ·

×
(
π

eg
g , ζ

i (1 + ζ ) j

(πk)

)

=
(
πk, ζ

i (1 + ζ ) j

(πk)

)ek

= 1

⇐⇒
(
πk, ζ

i (1 + ζ ) j

(πk)

)
= 1

⇐⇒
(
ζ i (1 + ζ ) j , πk

(πk)

)
= 1.

The last equality is equivalent to the conditions

πk splits completely in F((ζ i(1 + ζ ) j )
1
5 )/F.

Since the last condition holds if and only if ζ i (1 + ζ ) j ≡ a5 (mod (πk))

for some a ∈ Z[ζ ] ([11][Theorem 118]), the necessity assertion in (b) for
ζ i (1 + ζ ) j to be a norm follows.

The converse assertion follows by the product law since
( x,ζ i (1+ζ ) j

(πk )

) = 1

for all πk|x implies
( x,ζ i (1+ζ ) j

(λ)

) = 1 and hence, ζ i (1 + ζ ) j ∈ NK/F (K ∗).
To deduce (a) from (b), we note that, in particular, ζ ∈ NK/F (K ∗) if

and only if, all πi splits completely in F(ζ
1
5 )/F , which is equivalent to the

condition, NF/Q((πi)) ≡ 1 (mod 25), for all i .



430 Manisha Kulkarni, et al.

Finally (c) follows from ([11][Theorem 119]) which shows that (λ) ramifies
in K/F iff x 	≡ ±1,±7 (mod λ5). �

From the above lemma, we may immediately formulate the following
proposition.

Proposition 5.2. Let F = Q(ζ ) and K = F(x
1
5 ) of degree 5 as above.

Write x = uλeλπ
e1
1 · · ·π eg

g , λ = 1 − ζ , each πi ∈ F is a prime element,
ei ∈ {1, 2, 3, 4} for 1 ≤ i ≤ g, eλ ∈ {0, 1, 2, 3, 4} as before. Let d denote
the number of primes that ramify in K/F. Then the rank t of the group of
ambiguous ideal classes in SK is given by:

t = d − 1, d − 2 or d − 3 respectively as to the following three situations
I,II,III:

I: each πk|x has the property that both ζ and 1+ ζ are 5-th powers modulo
(πk) in Z[ζ ];

II: each πk |x has the property that some, but not all ζ i (1 + ζ ) j is a 5-th
power modulo (πk) in Z[ζ ];

III: some πk |x has the property that none of the ζ i (1 + ζ ) j is a 5-th power
modulo (πk) in Z[ζ ].

These are further simplified to the expressions t = g, g − 1, g − 2 or g − 3
according as to the respective conditions A,B,C,D:

A: x 	≡ ±1,±7 modulo (λ5) and each πk |x has the property that both ζ and
1 + ζ are 5-th powers modulo (πk)) in Z[ζ ];

B: x ≡ ±1,±7 modulo (λ5) and each πk|x has the property that both ζ and
1 + ζ are 5-th powers modulo (πk)) in Z[ζ ];
OR
x 	≡ ±1,±7 modulo (λ5) and each πk |x has the property that some, but
not all ζ i (1 + ζ ) j are 5-th powers modulo (πk) in Z[ζ ];

C: x 	≡ ±1,±7 modulo (λ5) and some πk |x has the property that none of
the ζ i (1 + ζ ) j is a 5-th power modulo (πk) in Z[ζ ];
OR
x ≡ ±1,±7 modulo (λ5) and each πk |x has the property that some, but
not all ζ i (1 + ζ ) j are 5-th powers modulo (πk) in Z[ζ ];

D: x ≡ ±1,±7 modulo (λ5) and some πk |x has the property that none of
the ζ i (1 + ζ ) j is a 5-th power modulo (πk) in Z[ζ ].

5.2 Examples

We demonstrate the above results by means of some examples. In each case,
the conclusion is confirmed by a SAGE program (which is known to be valid
under GRH); see table 1 compiled in section 5.5.
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Example 5.3. We consider K = Q(ζ, 7
1
5 ). We observe that ζ ∈ NK/F (K ∗),

and (1 + ζ ) ≡ (2 + 4ζ 3)5 (mod 7). Hence q∗ = 2, and t = g − 1 = 0. Thus,
SK must be trivial by our result.

Example 5.4. Let K = Q(ζ, 18
1
5 ). Notice that in this case ζ /∈ NK/F (K ∗).

We observe that,

ζ 2(1 + ζ ) ≡ (1 + ζ 2)5 (mod 2),

ζ 2(1 + ζ ) ≡ (−1 − ζ )5 (mod 3).

Hence q∗ = 1 and t = g − 2 = 0. Thus, SK = {1} from our result.

Example 5.5. Let K = Q(ζ, 11
1
5 ). Note that in F = Q(ζ5), 11 =

π1π2π3π4, with π1 = (ζ 3 + 2ζ 2 + ζ + 2) = (ζ + 2), π2 = (−ζ 2 + ζ + 1),
π3 = (ζ 3 − ζ + 1), π4 = (−2ζ 3 − ζ 2 − ζ ) = (2ζ 2 + ζ + 1). Thus in this
case, g = 4.

Next, we note that ζ ≡ −2 (mod (ζ + 2)) is not a 5th power in Z[ζ ],
because if it is a 5th power modulo (ζ +2), then 11|(n5 +2), for some integer
n ∈ Z, which is not true.

We also notice that ζ 	≡ x5 (mod (−ζ 2 + ζ + 1)), because if so, then we
have modulo −ζ 2 + ζ + 1,

ζ ≡ (a + bζ )5 ≡ (a5 + b5 + 10a3b2 + 10a2b3 + 10ab4)

+ 5ab(a3 + 2a2b + 4ab2 + 3b3)ζ.

Next we note that, for 1 ≤ i ≤ 4, we have,

(1 + ζ )i ≡ ζ 2i (mod (−ζ 2 + ζ + 1)).

Hence (1 + ζ )i is not a 5th power modulo (−ζ 2 + ζ + 1).
Next for 1 ≤ i ≤ 4, 0 ≤ j ≤ 4, we see that,

ζ i (1 + ζ ) j ≡ (−1) jζ i (mod (ζ + 2)).

Hence, ζ i (1 + ζ ) j is not a 5th power modulo (ζ + 2).
So in this case we have q∗ = 0 and t = g − 2 = 2. So rank SK ≥ 2 by our
result.

Example 5.6. Let K = Q(ζ, 19
1
5 ). Note that in F = Q(ζ5), 19 = π1π2,

with π1 = (3 + 4ζ 2 + 4ζ 3), π2 = (−1 − 4ζ 2 − 4ζ 3). Notice that in this case,
ζ /∈ NK/F (K ∗). We observe that,

−ζ 2(1 + ζ ) ≡ 35 (mod π1),

−ζ 2(1 + ζ ) ≡ 65 (mod π2).

Hence q∗ = 1 and t = g − 1 = 1. So 1 ≤ rank SK ≤ 4 by our result.



432 Manisha Kulkarni, et al.

Example 5.7. Let K = Q(ζ, 42
1
5 ). Notice that in this case ζ /∈ NK/F (K ∗).

From Examples 5.2 and 5.3, we see that ζ 2(1 + ζ ) ∈ NK/F (K ∗).
Hence q∗ = 1 and t = g − 1 = 2. Thus, 2 ≤ rankSK ≤ 8 from our result.

5.3 Constructing genus fields

We want to find elements x1, . . . , xt ∈ K such that the genus field M1 =
K (x

1
5
1 , . . . , x

1
5
t ).

In the following proposition, we restrict our attention only to those elements
x for which each π that divides x is of the form, π ≡ a (mod 5Z[ζ ]) for some
a ∈ {1, 2, 3, 4}.

Proposition 5.8. Let F = Q(ζ ), and let K = F(x
1
5 ) be cyclic of degree 5

as above. Writing

x = uλeλπ
e1
1 · · ·π e f

f π
e f +1
f +1 · · ·π eg

g ,

where each πi ≡ ±1,±7 (mod λ5), for 1 ≤ i ≤ f and π j 	≡ ±1,±7
(mod λ5), for f + 1 ≤ j ≤ g.

Then, we have:

(i) there exist hi ∈ {1, 2, 3, 4} such that π f +1π
hi
i ≡ ±1,±7 (mod λ5), for

f + 2 ≤ i ≤ g;
(ii) if (λ) ramifies in K/F and each πk|x has the property that some, but not

all ζ i (1 + ζ ) j are 5-th powers modulo (πk)) in Z[ζ ], then the genus field
M1 is given as

M1 = K (π
1
5

1 , . . . , π
1
5
f , (π f +1π

h f +2
f +2 )

1
5 , . . . , (π f +1π

hg
g )

1
5 ) (1)

where hi ∈ {1, 2, 3, 4} is chosen as in (i);
(iii) in the other cases, the the genus field M1 is given similarly by deleting

an appropriate number of 5th roots from the right-hand side of the
equation (1).

Proof. The proof of (i) is straightforward and we proceed to prove (ii).
Suppose first that (λ) ramifies in K/F and that for each πk|x , some (but

not all) ζ i (1 + ζ ) j are 5-th powers modulo (πk)) in Z[ζ ]. Let M ′
1 denote the

field given on the right-hand side of equation (1); we shall prove that M ′
1 is

the genus field M1 of degree 5t over K which corresponds to SK/λSK . Note
that, by the previous proposition, the number of 5th roots in this expression

is t . Next, we note that only πi ramifies in F(π
1
5

i )/F for 1 ≤ i ≤ f , and that
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only the primes πi and π f +1 ramify in F((π f +1π
hi
i )

1
5 )/F for f +2 ≤ i ≤ g.

Hence, each of the fields

F(π
1
5

1 ), . . . , F(π
1
5
f ), F((π f +1π

h f +2
f +2 )

1
5 ), . . . , F((π f +1π

hg
g )

1
5 ), F(x

1
5 )

is linearly disjoint from the composite of the other fields. Thus,

[F(π
1
5

1 , . . . , π
1
5
f , (π f +1π

h f +2
f +2 )

1
5 , . . . , (π f +1π

hg
g )

1
5 , x

1
5 ) : F] = 5t+1.

This implies [M ′
1 : K ] = 5t . As [M1 : K ] = 5t , we will have M ′

1 = M1

if we can show that M ′
1 ⊂ M1. Now, by definition, M1 is the maximal

abelian extension of F contained in the Hilbert class field of K . Since M ′
1 is

a composite of linearly disjoint abelian extensions, it is an abelian extension
of F . Therefore, to show M ′

1 = M1, it suffices to show that M ′
1 is unramified

over K . But, this is true because each (πi ) is 5th power of an ideal in K ,
πi ≡ ±1,±7 (mod λ5) for 1 ≤ i ≤ f and π f +1π

hi
i ≡ ±1,±7 (mod λ5)

for f + 2 ≤ i ≤ g.
Thus, we have proved (ii).
The remaining case (iii) is handled completely similarly; we just need to

delete an appropriate number of any 5th roots from the right-hand side of the
equation (1). �

Corollary 5.9. Let F, K , x be as in the proposition. Further, suppose the
genus field M1 of K/F is described as in the proposition. Then, for i = 1, 2,
the genus fields Mi+1 are obtained recursively by deleting si generators of the
field Mi .

Proof. We have [Mi : K ] = 5t−s1−···−si−1 and [Mi+1 : K ] = 5t−s1−···−si .

Since each of the fields F(π
1
5

1 ), . . . , F(π
1
5
f ), F((π f +1π

h f +2
f +2 )

1
5 ), . . . ,

F((π f +1π
hg
g )

1
5 ), F(x

1
5 ) is linearly disjoint from the composite of the other

fields, the result follows. �

Now, we look for representative ideals a1, . . . , at whose classes form a
basis of the ambiguous ideal class group SK [λ]. Similarly, we also look
for representative ideals b1, . . . , bt−s1−···−si whose classes form a basis of
(λi SK )[λ] for i = 1, 2. For this purpose, we find ideals whose classes
generate S(τ ),iK for i = 1, 2, 3.

We observe that the ambiguous ideal class group SK [λ] may be identified
with the group SK ,s of strongly ambiguous ideal classes, excepting the case
when at least one of ζ i (1 + ζ ) j ∈ NK/F (K ∗), and ζ 	∈ NK/F (EK ), where
EK is the group of units of K .

We note that a necessary condition for the exceptional case to occur is that
for any πk |x , one has ζ i (1 + ζ ) j ≡ a5 (mod (πk)) for some a ∈ Z[ζ ] and
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some i, j . There are two possible situations when the exceptional case occurs.
Namely, if both ζ, 1 + ζ are norms of elements from K ∗, but neither of them
is a norm from EK , then SK [λ] is the direct product of SK ,s and two cyclic
groups of order 5. In other exceptional cases, SK [λ] is the direct product of
SK ,s and a cyclic group of order 5.

5.4 Using ideles to express in terms of Hilbert symbols

We saw in section 4 how to obtain matrices with entries in Fl whose ranks are
equal to the si ’s. In this section, where l = 5 and the genus fields are chosen
as above, we explain what these matrices simplify to.

Using the notation of Proposition 5.8, we choose prime ideals Bi in K
such that B5

i = (πi) for 1 ≤ i ≤ g. If (λ) ramifies in K/F , we let I denote
the prime ideal in K such that 5I = (λ). If there exists ambiguous ideal
classes of K/F which are not strongly-ambiguous, we let B be a prime ideal
which is contained in one such class and is relatively prime to x1, . . . , xt ,

where M1 = K (x
1
5
1 , . . . , x

1
5
t ) and x1, . . . , xt ∈ F . If q∗ = 2 and q = 0, we

choose B′ to be a prime ideal contained in another class (from B) of ideal
which is ambiguous but not strongly-ambiguous, and is relatively prime to
B,x1, . . . , xt .

Let I (τ )K denote the free abelian group generated by these prime ideals.

In other words, I (τ )K is generated by B1, . . . ,Bg, and I (in case (λ)

ramifies in K/F), and B (in the case when there exist ambiguous ideal
classes which are not strong-ambiguous), and also B′ (in case q∗ = 2 and
q = 0).

Let D(τ )
K = I (τ )K /5I (τ )K . Viewed as a vector space over F5, let D(τ )

K have
dimension u. Then u = g, g + 1, g + 2 or g + 3 in the four possibilities
mentioned above respectively. Now, the map I (τ )K → SK [λ] sending each
ideal to its ideal class induces surjective homomorphisms

ω1 : D(τ )
K = I (τ )K /5I (τ )K → SK [λ].

Recall the map φ1 : SK [λ] → F
t
5 constructed in the proof of Theorem 4.1.

Define η1 := φ1 ◦ ω1 : D(τ )
K → F

t
5.

For 1 ≤ i ≤ t, 1 ≤ j ≤ g, let μi j denote the Artin symbol
( K (x

1
5

i )/K

B
e j
j

)
.

Further, suppose

μi(g+1) =
⎛

⎝ K (x
1
5
i )/K

I

⎞

⎠ for 1 ≤ i ≤ t, if (λ) ramifies in K/F,
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and

μi(g+2) =
⎛

⎝ K (x
1
5
i )/K

B

⎞

⎠ for 1 ≤ i ≤ t, if SK [λ]\SK ,s 	= ∅,

and

μiu =
⎛

⎝ K (x
1
5
i )/K

B′

⎞

⎠ for 1 ≤ i ≤ t, if |SK [λ]/SK ,s| > 5.

If γi j ∈ F� are defined by the power symbol ζ γi j = (x
1
�
i )
μi j −1, let C1 be the

matrix (γi j ), 1 ≤ i ≤ t, 1 ≤ j ≤ u. It is clear that C1 is the matrix of η1 with
respect to the ordered basis {Be1

1 , . . . ,B
eg
g ,I (if included),B (if included),

and B′ (if included)}. Since ω1 is surjective, rankC1 = rankA1 = s1 (see
Theorem 4.1).

We next construct ideles aB1 , . . . , aBg , aI, aB, aB′ ∈ JK , the idele group
of K , such that

(aBj , K (x
1
5
i )/K ) =

⎛

⎝ K (x
1
5
i )/K

B
e j
j

⎞

⎠ for 1 ≤ i ≤ t, 1 ≤ j ≤ g,

(aI, K (x
1
5
i )/K ) =

⎛

⎝ K (x
1
5
i )/K

I

⎞

⎠ for 1 ≤ i ≤ t, (aB, K (x
1
5
i )/K )

=
⎛

⎝ K (x
1
5
i )/K

B

⎞

⎠ for 1 ≤ i ≤ t,

(aB′, K (x
1
5
i )/K ) =

⎛

⎝ K (x
1
5
i )/K

B′

⎞

⎠ for 1 ≤ i ≤ t.

This is done as follows. Let

aBj = (· · · , 1, x
1
5 , 1, . . . ) for 1 ≤ j ≤ g,

the idele which is 1 at all places except at the place corresponding to Bj,

where it is x
1
5 . Let

aI = (· · · , 1, xI, 1, . . . ),

the idele which is 1 at all places except at the place corresponding to I, where
we insert an element xI ∈ K , such that I|xI, but I2

� xI. Let

aB = (· · · , 1, xB, 1, . . . ),
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the idele which is 1 at all places except at the place corresponding to B, where
we insert an element xB ∈ K , such that B|xB, but B2

� xB. Let

aB′ = (· · · , 1, xB′, 1, . . . ),

the idele which is 1 at all places except at the place corresponding to B′,
where we insert an element xB′ ∈ K , such that B′|xB′ , but B′2

� xB′ .
Now

(aBj , K (x
1
5
i )/K )|F(x

1
5
i ) = (NK/F (aBj ), F(x

1
5
i )/F),

where NK/F (aBj ) is the idele (. . . , 1, x, 1, . . . ) of F which is 1 at all places
except at the place corresponding to (π j ), where it is x . We denote NK/F (aBj )

by aπ j . Similarly,

(aI, K (x
1
5
i )/K )|F(x

1
5
i ) = (aλ, F(x

1
5
i )/F),

where aλ = NK/F (aI) = (. . . , 1, xλ, 1, . . . ) with xλ = NK/F (xI). Also,

(aB, K (x
1
5
i )/K )|F(x

1
5
i ) = (aπ , F(x

1
5
i )/F),

where aπ = NK/F (aB) = (. . . , 1, xπ , 1, . . . ), where π = NK/F (B), with
xπ = NK/F (xB). And finally,

(aB′, K (x
1
5
i )/K )|F(x

1
5
i ) = (aπ ′, F(x

1
5
i )/F),

where aπ ′ = NK/F (aB′) = (. . . , 1, xπ ′, 1, . . . ), where π ′ = NK/F (B
′), with

xπ ′ = NK/F (xB′).

We now consider ζ γi j = (x
1
5
i )
μi j −1. From our calculation we can replace

μi j by νi j = (aπ j , F(x
1
5
i )/F) for 1 ≤ i ≤ t, 1 ≤ j ≤ g,

μi(g+1) by νi(g+1) = (aλ, F(x
1
5
i )/F) for 1 ≤ i ≤ t,

μi(g+2) by νi(g+2) = (aπ , F(x
1
5
i )/F) for 1 ≤ i ≤ t,

μi(g+3) by νi(g+3) = (aπ ′, F(x
1
5
i )/F) for 1 ≤ i ≤ t.

So we have,

ζ γi j = (x
1
5
i )
νi j −1 for all i, j.

Since the ideles aπ j (1 ≤ j ≤ g), aλ, aπ , aπ ′ are local ideles, we may

identify the expressions (x
1
5
i )
νi j −1 with the degree 5 Hilbert symbols
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( xi ,x
(π j )

)
,
( xi ,xλ
(λ)

)
,
( xi ,xπ
(π)

)
,
( xi ,xπ ′
(π ′)

)
for the local fields Fπ j (x

1
5
i )/Fπ j , Fλ(x

1
5
i )/

Fλ, Fπ(x
1
5
i )/Fπ, Fπ ′(x

1
5
i )/Fπ ′ respectively.

Finally we want to simplify,
( xi ,xλ
(λ)

)
,
( xi ,xπ
(π)

)
and

( xi ,xπ ′
(π ′)

)
.

We may write xλ = λyλz−1
λ , where yλ, zλ are integers in F , congruent

to ±1,±2 (mod λ). Since xi ≡ ±1,±7 (mod λ5), let α5 = xi , and write
α = ±1+λy or α = ±2+λy (respectively). Since y is a root of a polynomial
f (Y ) ∈ OFλ [Y ], such that f (Y ) ≡ Y 5 − Y − c (mod λ), we have f ′(y) ≡
−1 	= 0 (mod λ). Thus Fλ(y) = Fλ(x

1
5
i ) is unramified over Fλ. Thus we

have,
( xi ,yλ
(λ)

) = ( xi ,zλ
(λ)

) = 1 (See, [19][page 209, Exercise 5]). So,

(
xi , xλ
(λ)

)
=

(
xi , λ

(λ)

)(
xi , yλ
(λ)

)(
xi , zλ
(λ)

)−1

=
(

xi , λ

(λ)

)
, for 1 ≤ i ≤ t.

Now, we write xπ = πyπ , where yπ is relatively prime to π . Since B was
chosen relatively prime to x1, . . . , xt , then π is relatively prime to xi for all i .
Hence

(
xi , xπ
(π)

)
=

(
xi , π

(π)

)(
xi , yπ
(π)

)
=

(
xi , π

(π)

)
, for 1 ≤ i ≤ t.

Finally, let us write xπ ′ = π ′yπ ′ , where yπ ′ is relatively prime to π ′. Since B′
was chosen relatively prime to x1, . . . , xt , then π ′ is relatively prime to xi for
all i . Hence

(
xi , xπ ′

(π ′)

)
=

(
xi , π

′

(π ′)

)(
xi , yπ ′

(π ′)

)
=

(
xi , π

′

(π ′)

)
, for 1 ≤ i ≤ t.

With these notations, we may describe the matrix whose entries are power
residue symbols and, whose rank gives us the rank of the piece H1 (see 3.1)
of the l-class group.

Theorem 5.10. Let F = Q(ζ ), K = F(x
1
5 ), x = uλeλπ e1

1 · · ·π eg
g as above.

Let M1 = K (x
1
5
1 , . . . , x

1
5
t ) denote the genus field of K/F, where [M1 : K ] =

5t , xi ∈ F for 1 ≤ i ≤ t , and xi ≡ ±1,±7 (mod λ5). Let B,B′ be ideals
as above defined respectively when there exist ambiguous ideal classes which
are not strongly-ambiguous, and when q∗ = 2, q = 0. Let (π) = NK/F (B)
and (π ′) = NK/F (B

′), where NK/F is the norm map from K to F. For
1 ≤ i ≤ t, 1 ≤ j ≤ g, let νi j denote the degree 5 Hilbert symbol

( xi ,x
(π j )

)
.

Further, suppose

νi(g+1) =
(

xi , λ

(λ)

)
for 1 ≤ i ≤ t, if (λ) ramifies in K/F,
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and

νi(g+2) =
(

xi , π

(π)

)
for 1 ≤ i ≤ t, if S(τ )K \S(τ )K ,s 	= ∅,

and

νiu =
(

xi , π
′

(π ′)

)
for 1 ≤ i ≤ t, if |S(τ )K /S(τ )K ,s| > 5.

If γi j ∈ F� are defined by the power symbol ζ γi j = (x
1
�
i )
νi j −1, and C1 is the

matrix (γi j ), 1 ≤ i ≤ t, 1 ≤ j ≤ u, we have

s1 = rankH1 = rankC1.

Finally, we discuss how the above theorem can be generalized to determine
the ranks si ’s for i > 1. Observe that

SK [λ] ⊃ (λSK )[λ] ⊃ (λ2SK )[λ].

Since cl(B1), . . . , cl(Bg), cl(I) (if included), cl(B) (if included), and
B′ (if included) generate SK [λ], there exists a basis of (λi−1SK )[λ],
{cl(�i,1), . . . , cl(�i,t−s1−···−si−1)} consisting of elements which are F5-linear
combinations of cl(B1), . . . , cl(Bg), cl(I), cl(B), cl(B′), for i = 2, 3.

Let�i,1, . . . , �i,t−s1−···−si−1 be some representative ideals for the respective
classes. With these choices, we have the following theorem expressing the
ranks si in terms of matrices over F�:

Theorem 5.11. Let F = Q(ζ ), K = F(x
1
5 ), where x = uλeλπ

e1
1 · · ·π eg

g

as above. Let M1 be the genus field of K/F and, for i = 1, 2, let Mi+1 =
K (y

1
5
1 , . . . , y

1
5
t−s1−···−si

), as in Theorem4.2. Let �i+1,1, . . . , �i+1,t−s1−···−si be
as in the previous paragraph. Denote

μ j k =
⎛

⎜
⎝

K (y
1
5
j )/K

�i+1,k

⎞

⎟
⎠ for 1 ≤ j, k ≤ t − s1 − · · · − si .

If γ j k are defined by ζ γ j k = (y
1
�
j )
μ j k−1, and Ci+1 = (γ j k), 1 ≤ j, k ≤

t − s1 − · · · − si , then

si+1 = rankHi+1 = rankCi+1.

Proof. We have the map

φi+1 : (λi SK )[λ] → F
t−s1−···−si
5
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constructed in the proof of Theorem 4.2. Clearly, Ci+1 is the matrix of φi+1

with respect to the ordered basis

{�i+1,1, . . . , �i+1,t−s1−···−si }.
Thus, from Theorem 4.2,

si+1 = rankCi+1. �

Remarks. In conclusion, the above theorems show in principle how to
compute t, s1, s2, s3. We can use them to find the rank of SK using the formula
obtained from Proposition 3.1; namely,

rankSK = 4t − 3s1 − 2s2 − s3.

However, concrete determination of s2, s3 seems to be difficult. In particular,
it would be useful to find explicit generators for the groups (λi SK )[λ] for
i ≥ 1. We also obtain a bound for the rank of SK in terms of t and s1 as
follows,

2t − s1 ≤ rankSK ≤ 4t − 3s1.

5.5 Applications – explicit results

We apply our result in various situations to give sharp bounds for the rank of
the 5-class group.

Theorem 5.12. Let pi ≡ ±7 (mod 25) for 1 ≤ i ≤ r be primes and r ≥ 2.
Let n = pa1

1 · · · par
r , where 1 ≤ ai ≤ 4 for 1 ≤ i ≤ r . Let F = Q(ζ5) and

K = F(n
1
5 ). Assume that all ambiguous ideal classes of K/F are strongly

ambiguous. Then, the λ2-rank of SK is r − 1 and 2r − 2 ≤ rankSK ≤ 4r − 4.
If there are ambiguous ideal classes which are not strongly ambiguous,

then s1 ≤ 2, and the λ2-rank of SK is greater than or equal to r − 3 and
max(2r − 4, r − 1) ≤ rankSK ≤ 4r − 4.

Proof. Firstly we notice that n ≡ ±1,±7 (mod 25). So λ does not ramify

in K/F . Looking at the fields Ki = F(p
1
5
i ), one can easily see that ζ and

1 + ζ are fifth powers modulo pi for all i = 1, . . . , r . Thus q∗ = q = 2 and
t = d − 3 + q∗ = r − 1.

To compute s1, let xi = pi where 1 ≤ i ≤ r − 1. Using [19][Chapter
14, Section 3] one can easily check that

( xi ,n
p j

) = 1 for 1 ≤ i ≤ r − 1 and
1 ≤ j ≤ r . That is the (r − 1)× r matrix C1 is the zero matrix. So, s1 = 0.

Thus, we get λ2-rank of SK is t − s1 = r − 1. Since 2t − s1 ≤ rankSK ≤
4t − 3s1, we obtain that 2r − 2 ≤ rankSK ≤ 4r − 4.
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The second part of the statement follows from the fact that 0 ≤ q ≤ 1, and
then the matrix C1 is of size (r − 1) × (r + q∗ − q), which can have rank at
most 2. �

Theorem 5.13. Let pi ≡ ±7 (mod 25) for 1 ≤ i ≤ r be primes and let q j

be primes such that q j ≡ ±2 (mod 5) but q j 	≡ ±7 (mod 25) for 1 ≤ j ≤ s.

Let n = pa1
1 · · · par

r qb1
1 · · · qbs

s , where 1 ≤ ai , b j ≤ 4 for 1 ≤ i ≤ r and

1 ≤ j ≤ s. Let n 	≡ ±1,±7 (mod 25). Let F = Q(ζ5) and K = F(n
1
5 ).

Assume that all ambiguous ideal classes of K/F are strongly ambiguous.
Then, the λ2-rank of SK is r + s −1 and 2r +2s −2 ≤ rankSK ≤ 4r +4s −4.

If there are ambiguous ideal classes which are not strongly ambiguous,
then s1 ≤ 1, and the λ2-rank of SK is greater than or equal to r + s − 2 and
max(2r + 2s − 3, r + s − 1) ≤ rankSK ≤ 4r + 4s − 4.

Proof. Firstly we notice that λ ramifies in K/F . Since N(q) 	≡ 1 (mod 25),

ζ /∈ NK/F (K ∗). Looking at the fields Ki = F(p
1
5
i ) and L1 = F(q

1
5
1 ),

L j = F((q1q
h j
j )

1
5 , where 1 ≤ h j ≤ 4 are chosen such that q1q

h j
j ≡ ±1,±7

(mod 25), j 	= 1, one can easily see that some ζ i (1 + ζ ) j is fifth power
modulo pi for all i = 1, . . . , r and q j for 1 ≤ j ≤ s. Thus q∗ = q = 1 and
t = d − 3 + q∗ = r + s − 1.

To compute s1, let xi = pi where 1 ≤ i ≤ r and y j−1 = q1q
h j
j where

2 ≤ j ≤ s. Using [19][Chapter 14, Section 3] one can easily check that( xi ,n
p j

) = 1 for 1 ≤ i, j ≤ r ,
( xi ,n

q j

) = 1 for 1 ≤ i ≤ r , 1 ≤ j ≤ s,
( yi ,n

p j

) = 1 for 1 ≤ i ≤ s − 1, 1 ≤ j ≤ r and
( yi ,n

q j

) = 1 for 1 ≤ i ≤ s − 1,
1 ≤ j ≤ s. That is, the (r + s − 1) × r + s sub matrix of C1 is zero matrix.
Since xi , yi ≡ ±7 (mod 25), using [2][Exercise 2.12, pg. 353–354] one can
easily check that

( xi ,λ
λ

)( yi ,λ
λ

) = 1. Therefore, s1 = 0.

So, we see that the λ2-rank of SK is t − s1 = r + s − 1. Since 2t − s1 ≤
rankSK ≤ 4t − 3s1, we obtain that 2r + 2s − 2 ≤ rankSK ≤ 4r + 4s − 4.

The second part of the statement follows from the fact that q = 0, as, then
the matrix C1 is of size (r + s − 1) × (r + s + 2), which can have rank at
most 1. �

Theorem 5.14. Let pi ≡ ±7 (mod 25) for 1 ≤ i ≤ r be primes and let
q j be primes such that q j ≡ ±2 (mod 5) but q j 	≡ ±7 (mod 25) for 1 ≤
j ≤ s with s ≥ 2. Let n = pa1

1 · · · par
r qb1

1 · · · qbs
s , where 1 ≤ ai , b j ≤ 4 for

1 ≤ i ≤ r and 1 ≤ j ≤ s. Let n ≡ ±1,±7 (mod 25). Let F = Q(ζ5) and

K = F(n
1
5 ). Assume that all ambiguous ideal classes of K/F are strongly

ambiguous. Then, the λ2-rank of SK is r + s −2 and 2r +2s −4 ≤ rankSK ≤
4r + 4s − 8.
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If there are ambiguous ideal classes which are not strongly ambiguous, then
s1 ≤ 1, λ2-rank of SK is greater than or equal to r + s − 3 and max(2r +
2s − 5, r + s − 2) ≤ rankSK ≤ 4r + 4s − 8.

Proof. Firstly, we notice that λ does not ramify in K/F . Since N(q) 	≡ 1

(mod 25), ζ /∈ NK/F (K ∗). Looking at the fields Ki = F(p
1
5
i ) and L1 =

F(q
1
5
1 ), L j = F((q1q

h j
j )

1
5 , where 1 ≤ h j ≤ 4 are chosen such that q1q

h j
j ≡

±1,±7 (mod 25), j 	= 1, one can easily see that some ζ u(1 + ζ )v is a fifth
power modulo pi for all i = 1, . . . , r and a fifth power modulo q j for 1 ≤
j ≤ s. Thus q∗ = q = 1 and t = d − 3 + q∗ = r + s − 2.

To compute s1, let xi = pi where 1 ≤ i ≤ r and y j−1 = q1q
h j
j where

2 ≤ j ≤ s − 1. Using [19][Chapter 14, Section 3] one can easily check that( xi ,n
p j

) = 1 for 1 ≤ i, j ≤ r ,
( xi ,n

q j

) = 1 for 1 ≤ i ≤ r , 1 ≤ j ≤ s,
( yi ,n

p j

) = 1

for 1 ≤ i ≤ s − 2, 1 ≤ j ≤ r and
( yi ,n

q j

) = 1 for 1 ≤ i ≤ s − 2, 1 ≤ j ≤ s.
That is, the (r + s − 2)× (r + s) matrix C1 is the zero matrix. So s1 = 0.

We obtain that the λ2-rank of SK is t − s1 = r + s − 2. Since 2t − s1 ≤
rankSK ≤ 4t − 3s1, we get 2r + 2s − 4 ≤ rankSK ≤ 4r + 4s − 8.

The second part of the statement follows from the fact that q = 0, and then

Table 1. Number fields and their class groups.

n n(F) SK

2,3,4,7,8,9,16,17,23,27 1 1
43,47,49,53,73,81,97 1 1

13,37,67,83 1 1

18, 24, 26,51,68,74 2 1
6,12,14,21,28,36,39,48,52 2 C5
54,56,69,72,91,92,94,98 2 C5

34,46,63,86 2 C5
301 2 C5

19,29,59,79,89 2 C5 × C5
57,76 3 C5 × C5

38,58,87,133 3 C5 × C5 × C5

42,78,84 3 C5 × C5 × C5 × C5 × C5

11, 41,61,71 4 C5 × C5
31 4 C5 × C5 × C5 × C5 × C5

82,93,99 5 C5 × C5
22,44,62,77 5 C5 × C5 × C5

33,88 5 C5 × C5 × C5 × C5
66 6 C5 × C5 × C5 × C5 × C5

5,25 1 1
10,15,20,45,75,80 2 1

40,50,65,85 2 1
35 2 C5

30,60,70,90 3 C5
55,95 3 C5 × C5
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Table 2. Structure of 5 class group
of K .

p Structure of SK as R module

19 R/(λ2)

29 R/(λ2)

59 R/(λ2)

79 R/(λ2)

89 R/(λ2)

109 R/(λ2)

139 R/(λ3)

149 R/(λ2)

179 R/(λ2)

199 R/(λ2)

229 R/(λ2)

239 R/(λ2)

269 R/(λ2)

349 R/(λ2)

the matrix C1 is of size (r + s − 2) × (r + s + 1), which can have rank at
most 1. �

The following table provided by SAGE gives the computation of various

class groups. We have F = Q(ζ5), K = F(n
1
5 ). We denote by n(F) the

number of distinct prime divisors of n in F and SK the 5-class group of K
respectively.

We observe from Table 1 that, if p ≡ −1 (mod 5), then rank of class group
is at least 2. That motivated us to prove the following result (see also Table 2

below). The table is obtained using SAGE with K = Q(ζ5)(p
1
5 ), where

p ≡ −1 (mod 5) and R = Z[ζ5]. The second column describes the
R-module structure of the 5-class group SK .

Theorem 5.15. Let p be a prime congruent to −1 (mod 5). Let F = Q(ζ5)

and K = F(p
1
5 ). Assume that all ambiguous ideal classes are strongly

ambiguous. Then 25 divides the class number of K . More precisely, the
λ2-rank of SK is 1 and we have, 2 ≤ rankSK ≤ 4.

Proof. It is known that any prime of the form p ≡ −1 (mod 5) can be written
as

p = a2 + ab − b2

with a, b ∈ Z, non-zero with (a, b) = 1. Note that this implies that (a, p) =
(b, p) = 1.

Let c = a − b, define

π1 = aζ 3 + aζ 2 + b and π2 = aζ 3 + aζ 2 + c.
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Now we observe the following two identities:

a2 + bc = a2 + b(a − b) = p and a2 − ab − ac = a2 − a(b + c) = 0.

Thus,

π1π2 = (aζ 3 + aζ 2 + b)(aζ 3 + aζ 2 + c)

= (2a2 + bc)+ a2(ζ + ζ 4)+ (ab + ac)(ζ 2 + ζ 3)

= (a2 + bc)+ (a2 − ab − ac)(1 + ζ + ζ 4)

= p.

This gives us prime decomposition of p in F . Now to compute the λ2-rank of
SK , we compute t and s1.

If p ≡ −1 (mod 25), then N(πi ) = p2 ≡ 1 (mod 25) for i = 1, 2.
So ζ ∈ NK/F (K ∗).

If p 	≡ −1 (mod 25), then N(πi ) = p2 	≡ 1 (mod 25) for i = 1, 2.
So ζ /∈ NK/F (K ∗).

In both cases,

−ζ 2(1 + ζ ) ≡ b

a
(mod π1) and − ζ 2(1 + ζ ) ≡ c

a
(mod π2).

Note that b
a and c

a are in F
∗
p. Since 5 � p − 1, x �→ x5 is an isomorphism of

F
∗
p. Hence b

a and c
a are fifth power modulo π1 and π2 respectively. Thus in

both cases we see that, −ζ 2(1 + ζ ) ∈ NK/F (K ∗).
Combining these facts, we see that in both cases, t = g − 1 = 1.
In the case, p 	≡ −1 (mod 25), we have q∗ = q = 1. In the case p ≡ −1

(mod 25), we have q∗ = q = 2 and λ does not ramify in K/F .

Let M1 denote the genus field of K/F . It is of the form M1 = K (x
1
5
1 ). Since

M1 is unramified over K , only the primes that ramify in K can divide x1.
Suppose p ≡ −1 (mod 25). Then, only π1 and π2 ramify in K . So x1 is

of the form x1 = πα1
1 π

α2
2 . To compute s1, we need to compute

( x1,p
π1

)
,
( x1,p
π2

)
.

Let c1 = (−1)α1 x1
pα1 = (−1)α1π

α2−α1
2 . Since π̄2 = c − b (mod π1), with

c − b ∈ F
∗
p, we see on using [19][Chapter 14, Section 3] that,

( x1,p
π1

) =
(c̄1)

(p2−1)/5 = 1. This was because the residue field is Fp2 and (p2 − 1)/5
is a multiple of p − 1. Similarly we find that,

( x1,p
π2

) = 1. So in this case the
(1 × 2) matrix C1 is the zero matrix. Hence s1 = 0.

Now suppose the p 	≡ −1 (mod 25), then λ also ramifies in K . So in this
case, x1 is of the form, x1 = λaπ

α1
1 π

α2
2 . To compute s1, we need to compute( x1,p

π1

)
,
( x1,p
π2

)
and

( x1,λ
(λ)

)
. Let c1 = (−1)α1 x1

pα1 = (−1)α1πα2−α1
2 λa . Since

π̄2 = c − b (mod π1), with c − b ∈ F
∗
p and (λ̄)4 = 5 (mod π1), we see that
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(c̄1)
4(p−1) = 1. That is

( x1,p
π1

) = (c̄1)
(p2−1)/5 = ±1. Since it is a fifth root

of unity in Fp[ζ ]∗, it can not be −1. Thus,
( x1,p
π1

) = 1. Similarly we see that,
( x1,p
π2

) = 1. To compute
( x1,λ
(λ)

)
, we compute

( x1,λ
(π1)

)
and

( x1,λ
(π2)

)
and use the

product formula. We compute
( x1,λ
(πi )

)
similarly to get,

( x1,λ
(πi )

) = 1 for i = 1, 2.

Thus
( x1,λ
(λ)

) = 1. So in this case the 1 × 3 matrix C1 is the zero matrix. Hence
s1 = 0.

Thus s1 = 0 in either case which means that the λ2-rank of SK is t−s1 = 1.
Lastly, we observe that,

2 = 2t − s1 ≤ rankSK ≤ 4t − 3s1 = 4,

that is 25 divides the class number of K . �

The following theorem may be useful in studying elliptic curves over
towers of the form Kn := Q(e2iπ/5n

, x1/5). It is motivated by a comment of
John Coates that Iwasawa theory implies the triviality of SKn for all n for all
x considered in the theorem.

Theorem 5.16. Let F = Q(ζ5) and let K = Q(ζ5, x
1
5 ) where x is a positive

integer which is not divisible by the 5th power of any prime in F. Suppose
that the prime λ = 1 − ζ5 ramifies in K . Then SK = {1} if, and only if,
x = pa, where p is a prime number such that p ≡ ±2 (mod 5), but p 	≡ ±7

(mod 25) and 1 ≤ a ≤ 4. Further, 5 is totally ramified in Q(ζ25, x
1
5 ) for x as

above.

Proof. Suppose that x = pa , where p is as described above. Then, clearly
λ ramifies in K/F from Lemma 5.1(c), since x 	≡ ±1,±7 (mod 25).
Furthermore, ζ is not in NK/F (K ∗) once again by Lemma 5.1, since
NF/Q(p) 	≡ 1 (mod 25); so q∗ ≤ 1. Thus t = d − 3 + q∗ = q∗ − 1. It
follows that q∗ = 1 and t = 0. Since, t = 0, we see that SK = {1}.

Conversely, suppose that λ ramifies in K/F and SK is {1}. Then we
must have t = 0 (since, rank SK ≥ t). We also note that, in this situation
x 	≡ ±1,±7 (mod 25). Let g be the number of distinct primes of F ,
which divides x . Then d = g + 1 (since λ ramifies in K/F). Thus
0 = t = d − 3 + q∗ = g + q∗ − 2, or in other words, g + q∗ = 2.

If g = 2, there are three possible cases.

(i) x ≡ −1 (mod 5) is a prime. Then as in Theorem 5.16, we see that,
t = 1.

(ii) x = paqb, where p ≡ ±7 (mod 25) and q ≡ ±2 (mod 5) but q 	≡ ±7
(mod 25). By Theorem 5.13 with r = s = 1, we see that t = 1.

(iii) x = paqb, where p, q ≡ ±2 (mod 5) but p, q 	≡ ±7 (mod 25) and
x 	≡ ±1,±7 (mod 25). By Theorem 5.13 with r = 0 and s = 2, we see
that t = 1.
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Table 3. Structure of 5-class group of K .

n = p × q Structure of SK as R module

7 × 19 R/(λ)× R/(λ2)

7 × 29 R/(λ)× R/(λ3)

7 × 59 R/(λ)× R/(λ2)

7 × 79 R/(λ)× R/(λ3)

7 × 89 R/(λ)× R/(λ2)

7 × 149 R/(λ)× R/(λ2)

43 × 149 R/(λ)× R/(λ3)

107 × 149 R/(λ)× R/(λ2)

7 × 199 R/(λ)× R/(λ2)

43 × 199 R/(λ)× R/(λ2)

107 × 199 R/(λ)× R/(λ2)

Thus, we must have g = 1; that is, x = pa with p ≡ ±2 (mod 5). If p ≡ ±7
(mod 25), then x ≡ ±1,±7 (mod 25), contradicting the assumption that λ
ramifies in K/F . So we obtain that, x = pa, where p is a rational prime such
that p ≡ ±2 (mod 5), but p 	≡ ±7 (mod 25) and 1 ≤ a ≤ 4. This completes
the proof excepting the last assertion which is checked easily using a finite
computation. �

Remark 5.17. If we remove the assumption that λ ramifies in K/F , then
SK is trivial if and only if x = pa with p ≡ ±2 (mod 5) or x = paqb, where
p, q ≡ ±2 (mod 5) but p, q 	≡ ±7 (mod 25) and x ≡ ±1,±7 (mod 25).
By Theorem 5.12, with r = 1, it follows that, if g = 1, then x = pa , with
p ≡ ±2 (mod 5) has t = 0. On the other hand, in case g = 2, we see from
Theorem 5.14 (with r = 0 and s = 2) that in the case mentioned, t = 0.
Compare with Table 1.

The following theorem is similar in flavor to that of Theorem 5.15 (see

also Table 3 below). The table is obtained using SAGE with K = Q(ζ5)(n
1
5 ),

where n = pq with p ≡ ±7 (mod 25), q ≡ −1 (mod 5) and R = Z[ζ5].
The second column describes the R-module structure of the 5-class group SK .

Theorem 5.18. Let p be a prime congruent to ±7 (mod 25) and q be

a prime congruent to −1 (mod 5). Let F = Q(ζ5) and K = F((pq)
1
5 ).

Assume that all ambiguous ideal classes are strongly ambiguous. Then, 125
divides the class number of K . More precisely, the λ2-rank of SK is 1, and
3 ≤ rankSK ≤ 5.

Proof. Suppose firstly that q ≡ −1 (mod 25). Then, q factors as π1π2 in
F as in Theorem 5.15. Since p ≡ ±7 (mod 25), p is prime in F . We have
N(p) = p4 ≡ 1 (mod 25) and N(πi ) = q2 ≡ 1 (mod 25) for i = 1, 2.
Thus ζ ∈ NK/F (K ∗).
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As in Theorem 5.15, we see that 1 + ζ is a fifth power modulo π1 and

modulo π2. Considering the intermediate field K1 = F(p
1
5 ), we see that the

Hasse formula from section 5.1 for this situation gives t1 = d1 − 3 + q∗
1 =

q∗
1 − 2. Thus q∗

1 = 2, that is, 1 + ζ is a fifth power modulo p. Thus 1 + ζ ∈
NK/F (K ∗). We note that in this case λ does not ramify.

If q 	≡ −1 (mod 25), then N(πi ) = q2 	≡ 1 (mod 25) for i = 1, 2. But in
this situation, −ζ 2(1+ζ ) ∈ NK/F (K ∗). So q∗ = 1 and λ ramifies. Combining
these facts, we immediately see that, in both cases, t = g − 1 = 3 − 1 = 2.

Next we want to compute s1. Let x1 = p and x2 = π
α1
1 π

α2
2 as in the

proof of Theorem 5.15. When q ≡ −1 (mod 25), to compute the matrix C1,
we need to compute the Hilbert symbols,

( x1,pq
p

)
,
( x1,pq
π1

)
,
( x1,pq
π2

)
,
( x2,pq

p

)
,

( x2,pq
π1

)
,
( x2,pq
π2

)
. Using the formula given in [19][Chapter 14, Section 3] , we

can see as in Theorem 5.15, that
(

x1, pq

p

)
=

(
x1, pq

π1

)
=

(
x1, pq

π2

)
=

(
x2, pq

π1

)
=

(
x2, pq

π2

)
= 1,

and
( x2,pq

p

) 	= 1. Thus, the 2 × 3 matrix C1 has only one nonzero entry.
So s1 = 1.

When q 	≡ −1 (mod 25), C1 has one more column consisting of
( x1,λ
(λ)

)

and
( x2,λ
(λ)

)
. We see as in 5.15,

( x2,λ
(λ)

) = 1 and since x1 = ±7 (mod 25),
( x1,λ
(λ)

) = 1 as well. Then. the 2 × 4 matrix C1 in this case also has only one
nonzero entry. So s1 = 1.

Thus we see that in both cases, the λ2-rank of SK is t − s1 = 1. Lastly, we
observe that,

3 = 2t − s1 ≤ rankSK ≤ 4t − 3s1 = 5. �

Remarks. If there are ambiguous ideal classes which are not strongly
ambiguous, then in Theorem 5.15, s1 can possibly be equal to 1; in that case,
the rank of SK would be 1. Similarly, in Theorem 5.18, s1 can possibly be 2;
in that case, the rank of SK would be 2. But, we have not been able to find
any example for either of these situations; perhaps, under the hypotheses of
Theorem 5.16 or of Theorem 5.17, all ambiguous ideal classes are strongly
ambiguous.

6. 5-class group of pure quintic fields

In this final section, we apply the results of the last section (especially
Theorems 5.12, 5.13 and 5.14) to deduce results on some quintic extensions
of Q. Let L be a degree 5 extension of Q such that [L(ζ5) : L] = 4
and Gal(L(ζ5)/L) ∼= Z/4Z = G. Let K = L(ζ5). Write G =< σ >.
Let ω be the character G → Z

∗
5 which maps σ to 3 modulo 5. Note that

ω2(σ ) = −1.



l-Class groups of cyclic extensions of prime degree l 447

Lemma 6.1. Let C be a Z5[G] module. Let C(ωi) = {a ∈ C : σa =
ωi(σ )a} for i = 0, 1, 2, 3. Then C ∼= C+ ⊕ C(ω) ⊕ C(ω2) ⊕ C(ω3) where
we have written C+ for C(ω0) = {a ∈ C|σa = a}.
Proof. We omit the easy proof. �

Lemma 6.2. Let SK and SL denotes the 5-class group of K and L
respectively. Then, SL ∼= S+

K and SL/5SL ∼= (SK/5SK )
+.

Proof. We have a natural inclusion SL ↪→ SK as 5 is relatively prime to
[K : L] = 4. Moreover, SL ↪→ S+

K as σa = a for all a ∈ SL . Let a ∈ S+
K , then

a = 4
(1

4 a
) = (1 + σ + σ 2 + σ 3)

(1
4a

) = N
( 1

4 a
)
. Thus, a ∈ SL . So SL ∼= S+

K .
Now, SL/5SL

∼= S+
K/5(S

+
K )

∼= (SK/5SK )
+. �

6.1 Decomposing SK under the affine group of F5

Now let L is a pure quintic field, that is L = Q(n
1
5 ), where n is a

positive integer which does not contain any 5th power. Let F = Q(ζ5) and

K = F(n
1
5 ) = L(ζ5). Then K is a cyclic extension of degree 5 over F and

we can use the theory developed in the previous sections to determine SK .
Let σ be a generator of G = Gal(K/L) and τ be a generator of Gal(K/F).
We observe that, K/Q is Galois. We fix the generators σ, τ in Gal(K/Q)
satisfying the relations

σ 4 = τ 5 = 1, στ = τ 3σ.

Let λ = 1 − τ .
Note that SK , 5SK are Z5[G]-modules. Consider the filtration

SK ⊃ λSK ⊃ λ2SK ⊃ λ3SK ⊃ 5SK = λ4SK .

Using the relations στ = τ 3σ and τ = 1 − λ, we note that

σλa = λ((λ2 − 3λ+ 3)σa) ≡ 3λσa (mod λ2),

σλ2a = 5λσa − 6λ2σa + 2λ3σa ≡ −λ2σa (mod λ3),

σλ3a = 10λσa − 15λ2σa + 7λ3σa ≡ 2λ3σa (mod λ4).

Note that λi SK for 0 ≤ i ≤ 4 are Z5[G]-modules. Using Lemma 6.1, we get
for 0 ≤ i ≤ 3,

λi SK/5SK ∼= (λi SK/5SK )
+ ⊕

3⊕

j=1

(λi SK/5SK )(ω
j ),

λi SK/λ
i+1SK

∼= (λi SK/λ
i+1SK )

+ ⊕
3⊕

j=1

(λi SK/λ
i+1SK )(ω

j ).
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The natural projection λi SK/5SK → λi SK/λ
i+1SK is surjective with

kernel λi+1SK/5SK . Restricting to the + part, we get the surjective map
(λi SK/5SK )

+ → (λi SK/λ
i+1SK )

+ with kernel (λi+1SK/5SK )
+. Since

(SK/5SK )
+, (λi SK /λ

i+1SK )
+ are of exponent 5, we have,

rankSL = rank(SK/5SK )
+ =

3∑

i=0

rank(λi SK/λ
i+1SK )

+.

The rank of (SK/λSK )
+ can be read off from the generators of the genus

field, which we will describe at the end. We first determine the rank of
(λi SK/λ

i+1SK )
+ for i ≥ 1.

As before, consider the map induced by multiplication by λ:

λ∗
i : λi SK/λ

i+1SK → λi+1SK/λ
i+2SK

a (mod λi+1SK ) �→ λa (mod λi+2SK ).

Since σλa = 3λσa (mod λ2), we see that λ∗
0 induces surjective maps

θi : (SK/λSK )(ω
i) → (λSK/λ

2SK )(ω
i+1) for i = 0, 1, 2, 3.

We note that
∑3

i=0 rank Kerθi = s1.
We have,

rank(λSK/λ
2SK )

+ = rank(SK/λSK )(ω
3)− rank Kerθ3.

Similarly, since σλ2a = −λ2σa (mod λ3), we see that λ∗
1 induces surjective

maps

αi : (λSK/λ
2SK )(ω

i) → (λ2SK /λ
3SK )(ω

i+2) for i = 0, 1, 2, 3.

We note that
∑3

i=0 rank Kerαi = s2.
We have,

rank(λ2SK /λ
3SK )

+ = rank(λSK/λ
2SK )(ω

2)− rankKerα2

= rank(SK/λSK )(ω)− rankKerθ1 − rankKerα2.

Finally, since σλ3a = 2λ3σa (mod λ4), we see that λ∗
2 induces surjective

maps

βi : (λ2SK/λ
3SK )(ω

i) → (λ3SK/λ
4SK )(ω

i+3) for i = 0, 1, 2, 3.

We note that
∑3

i=0 rank Kerβi = s3.
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We have,

rank(λ3SK /λ
4SK )

+ = rank(λ2SK /λ
3SK )(ω)− rankKerβ1

= rank(λSK/λ
2SK )(ω

3)− rankKerα3 − rankKerβ1

= rank(SK/λSK )(ω
2)− rankKerθ2

− rankKerα3 − rankKerβ1

Putting these together, we get

rankSL = rank(SK/λSK )− (rank Kerθ1 + rank Kerθ2 + rank Kerθ3

+ rank Kerα2 + rank Kerα3 + rank Kerβ1).

Observing that rank(SK/λSK ) = t , we see that rankSL ≤ t . Also, noting that∑3
i=0 rank Kerθi = s1, we obtain another upper bound for the rank of SL as

rankSL ≤ t − s1 + rank Kerθ0 ≤ rank(SK/λSK )
+ + (t − s1).

On the other hand, using
∑3

i=0 rank Kerαi = s2 and
∑3

i=0 rank Kerβi = s3,
we see that,

rankSL ≥ t − s1 − s2 − s3.

Thus, we have proved the following theorem.

Theorem 6.3. Let L = Q(n
1
5 ), where n is an integer which does not contain

any fifth power. Let F = Q(ζ5) and K = F(n
1
5 ) = L(ζ5). Then,

t − s1 − s2 − s3 ≤ rankSL ≤ min (t, (t − s1)+ rank(SK/λSK )
+).

Corollary 6.4. When t = s1, rankSL = rank(SK/λSK )
+.

Proof. Since t = s1, λSK = 5SK and s2 = s3 = 0. Thus Kerαi = Kerβ j = 0
for all i, j . Moreover, λSK/λ

2SK = 0. So,

rankSL = rank(SK/λSK )
+ + t − s1 = rank(SK/λSK )

+. �

6.2 Kummer duality to bound rank of (SK/λSK )
+

Finally we describe how one can determine rank(SK/λSK )
+ or give an upper

bound for this rank. Let M be the maximal abelian unramified extension of
K with exponent 5. By class field theory, we have, SK /5SK

∼= Gal(M/K ).
By Kummer theory there exists a subgroup A of K ∗,

(K ∗)5 ⊂ A ⊂ K ∗,
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such that M = K ( 5
√

A). We have a bilinear pairing

A/(K ∗)5 × Gal(M/K ) → {5th roots of unity}
(x, μ) �→ [x, μ] = (x

1
5 )μ−1.

By Kummer theory A/(K ∗)5 and Gal(M/K ) are dual groups with respect to
this pairing. Thus identifying SK/5SK with Gal(M/K ) we see that A/(K ∗)5
and SK/5SK are dual groups in the bilinear pairing. Let M1 be a field
K ⊂ M1 ⊂ M and M1/K is Galois. By Kummer theory, there is a subgroup
B of A such that

(K ∗)5 ⊂ B ⊂ A ⊂ K ∗

and M1 = K ( 5
√

B). Moreover, there is a group T , satisfying 5SK ⊂ T ⊂
SK , such that SK/T is dual of B/(K ∗)5 and SK/T ∼= Gal(M1/K ). One can
easily check that [xσ , μσ ] = [x, μ]σ , where σ is the generator of Gal(K/L),
x ∈ B/(K ∗)5 and μ ∈ SK/T , μσ = z−1

σ μzσ where zσ ∈ Gal(M1/L) is a
element which maps to σ under the natural projection.

Writing

(B/(K ∗)5)+ = {b ∈ B/(K ∗)5|bσ = b},
(B/(K ∗)5)(ω) = {b ∈ B/(K ∗)5|bσ = b3},
(B/(K ∗)5)(ω2) = {b ∈ B/(K ∗)5|bσ = b−1},
(B/(K ∗)5)(ω3) = {b ∈ B/(K ∗)5|bσ = b2},

we have the following lemma:

Lemma 6.5. Let

B/(K ∗)5 × SK/T → {5th roots of unity inK }
(x, μ) �→ [x, μ]

be the bilinear pairing described above. Then (B/(K ∗)5)+ is dual to
(SK/T )(ω) under the pairing. Similarly, (B/(K ∗)5)(ω2) is dual to (SK/T )(ω3),
(B/(K ∗)5)(ω) is dual to (SK/T )+ and (B/(K ∗)5)(ω3) is dual to (SK/T )(ω2)

under this pairing.

Proof. Let x ∈ (B/(K ∗)5)+ and μ ∈ (SK/T )+. Then [x, μ] = [xσ , μσ ] =
[x, μ]σ = [x, μ]3, since ζ σ = ζ 3. Thus [x, μ]2 = 1, hence [x, μ] = 1. Thus
(B/(K ∗)5)+ and (SK/T )+ are orthogonal in this pairing.

Now, let x ∈ (B/(K ∗)5)+ and μ ∈ (SK/T )(ω2). Then [x, μ] =
[xσ , (μ−1)σ ] = [x, μ−1]σ = ([x, μ]−1)σ = [x, μ]2, since ζ σ = ζ 3. Thus
[x, μ] = 1. We see that, (B/(K ∗)5)+ and (SK/T )(ω2) are orthogonal in this
pairing.
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Finally, let x ∈ (B/(K ∗)5)+ and μ ∈ (SK/T )(ω3). Then [x, μ] =
[xσ , (μ3)σ ] = [x, μ3]σ = [x, μ]−1, since ζ σ = ζ 3. Thus [x, μ]2 = 1, hence
[x, μ] = 1. Thus (B/(K ∗)5)+ and (SK/T )(ω3) are orthogonal in this pairing.

The other cases are similar and the duality claimed easily follows. �

Let M1 = K (x
1
5
1 , . . . , x

1
5
t ) be the genus field of K/F , that is SK/λSK

∼=
Gal(M1/K ). Suppose x1, . . . , xw are the rational numbers among the xi ’s.
Then, rank(B/(K ∗)5)+ = w. Suppose xw+1, . . . , xr are the xi ’s whose
factors only contain rational numbers and primes of the form aζ 2 + aζ 3 + b.
Noticing that for an element π = aζ 2 + aζ 3 + b, we get πσ

2 = π 	= πσ ,
we have

rank(B/(K ∗)5)(ω2) = r −w

and
rank(B/(K ∗)5)(ω)⊕ (B/(K ∗)5)(ω3) = t − r.

Hence
rank(SK/λSK )

+ ≤ t − r.

In particular, we obtain the theorem:

Theorem 6.6. Let L = Q(n
1
5 ), where n = pa1

1 · · · pam
m qb1

1 · · · qbu
u where

pi ≡ ±2 (mod 5), q j ≡ −1 (mod 5) and 1 ≤ ai , b j ≤ 4 for i ∈ {1, . . . ,m}
and for j ∈ {1, . . . , u}. Let F = Q(ζ5) and K = F(n

1
5 ) = L(ζ5). Then

rank(SK/S�K )
+ = 0 and

t − s1 − s2 = λ3 − rank ofSK ≤ rankSL ≤ λ2 − rank of SK = t − s1.

Proof. As proved in proposition 5.8 and Theorem 5.15, all the generators of
the genus field M1 are either rational integers with prime factors pi or contains
factors of q j in F . But, as we proved in Theorem 5.15, factors of q j ’s are of
the form aζ 2 +aζ 3 +b. Hence, with r as defined before the theorem, we have
r = t . Notice that both (SK/λSK )

+ and (SK/λSK )(ω
2) are 0 in this case.

Therefore, we have

t − s1 ≥ rankSL = t − s1 − rank Kerα2

= (t − s1 − s2)+ rank Kerα0 ≥ t − s1 − s2. �

Remarks. (i) We would have better results if we can get more information
about rank (SK/λSK )

+.
(ii) Under the assumption that all ambiguous ideal classes are strongly

ambiguous, we computed the λ2-rank of SK in Theorems 5.12, 5.13,
5.14, 5.15 and 5.18. If there are ambiguous ideal classes which are not
strongly ambiguous, the maximum value of s1 is given.
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Corollary 6.7. Let L = Q(N
1
5 ). In the following cases SL is trivial or

cyclic.

• Let N = pa, where p ≡ ±2 (mod 5) is a prime, 1 ≤ a ≤ 4.
• Let N = qa1

1 qa2
2 where qi ≡ ±2 (mod 5) but qi 	≡ ±7 (mod 25), 1 ≤

ai ≤ 4 for i = 1, 2 such that N ≡ ±1,±7 (mod 25).
• Let N = pa, where p ≡ −1 (mod 5) is a prime, 1 ≤ a ≤ 4.
• Let N = pa1

1 pa2
2 where pi ≡ ±7 (mod 25), 1 ≤ ai ≤ 4 for i = 1, 2 such

that N ≡ ±1,±7 (mod 25).
• N = paqb where p ≡ ±7 (mod 25) , q ≡ ±2 (mod 5) but q 	≡ ±7
(mod 25) and 1 ≤ a, b ≤ 4 such that N 	≡ ±1,±7 (mod 25).

• N = qa1
1 qa2

2 where qi ≡ ±2 (mod 5) but qi 	≡ ±7 (mod 25), 1 ≤ ai ≤ 4
for i = 1, 2 such that N 	≡ ±1,±7 (mod 25).

• N = pa1
1 pa2

2 qb where pi ≡ ±7 (mod 25), q ≡ ±2 (mod 5) but q 	≡ ±7
(mod 25) 1 ≤ ai , b ≤ 4 for i = 1, 2 such that N ≡ ±1,±7 (mod 25).

• N = paqa1
1 qa2

2 where p ≡ ±7 (mod 25), qi ≡ ±2 (mod 5) but qi 	≡ ±7
(mod 25), 1 ≤ a, ai ≤ 4 for i = 1, 2 such that N ≡ ±1,±7 (mod 25).

• N = qa1
1 qa2

2 qa3
3 where qi ≡ ±2 (mod 5) but qi 	≡ ±7 (mod 25), 1 ≤ ai ≤

4 for i = 1, 2, 3, such that N ≡ ±1,±7 (mod 25).
• Let N = paqb, where p ≡ −1 (mod 5) and q ≡ ±7 (mod 25) are

primes, 1 ≤ a, b ≤ 4.

Proof. In all these situations, rank(SK/λSK )
+ = 0. From Theorem 5.12,

5.13, 5.14, 5.15 follows that for each of these cases except the last case t = 0
or 1. In the last case, we see from Theorem 5.18 that t = 2 and s1 ≥ 1. Thus
rankSL ≤ 1. The result follows. Note that, in first two cases the class groups
are trivial. �

Remark. Let f be a normalized cuspidal Hecke eigenform of weight k and
level N . Let K f denote the extension of Q5 generated by the q-expansion
coefficients an( f ) of f . It is known that K f is a finite extension of Q5. In the
case N is prime and 5||N − 1, it is known [16] that there exists unique (up
to conjugation) weight 2 normalized cuspidal Hecke eigenform defined over
Q̄5, satisfying the congruence

al( f ) ≡ 1 + l (mod p)

where p is the maximal ideal of the ring of integer of K f , and l 	= N are
primes. In this situation it is also known that K f is a totally ramified extension
of Q5 and let [K f : Q5] = e5. Calegari and Emerton [1] showed that e5 = 1 if

the class group of Q(N
1
5 ) is cyclic. They also showed that if N ≡ 1 (mod 5),

and the 5-class group of Q(N
1
5 ) is cyclic, then

∏(N−1)/2
l=1 ll is not a 5th power

modulo N . This corollary gives us information when 5-class group of Q(N
1
5 )

is cyclic for various N .
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Table 4. Structure of 5 class group of L .

n SL

2 × 7 1
3 × 7 1

7 × 43 1
2 × 3 × 7 C5

2 × 13 × 7 C5
7 × 107 C5

3 × 13 × 7 C5 × C5

19, 29, 59, 79, 89, 109, 139, 149, 179, 199, 229, 239, 269, 349 C5

7 × 19, 7 × 29, 7 × 59, 7 × 79, 7 × 89, 7 × 149, 7 × 199 C5
43 × 19, 43 × 29, 43 × 59, 43 × 79, 43 × 89, 43 × 149, 43 × 199 C5

11, 41, 61, 71, 101, 151, 191, 241, 251, 271 C5
31, 131, 181 C5 × C5

211, 281 C5 × C5 × C5
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premier l, Annales de l’institut Fourier, Tome 23, No. 3 (1973) 1–48.



454 Manisha Kulkarni, et al.
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