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Abstract

The fact that quadratic number fields are cyclotomic is elementary to prove. Using
the idea of its proof, we obtain a product-sum formula which yields an interesting
expression for the Legendre symbol.

1. Introduction

It is well known that for quadratic number fields, the assertion of the Kronecker-

Weber theorem is elementary to prove. In fact, one can give a ‘one-sentence’ proof

of it. Following up on this idea, we observe in this note a product-sum relation that

emanates by comparison with Gauss sums. It is an intriguing question whether

the product-sum relation can be viewed as an instance or as an analogue of the

Weyl character formula. Using the product-sum formula, we obtain an explicit

expression for any Legendre symbol in terms of roots of unity. This is reminiscent

of an expression in terms of trigonometric functions due to Eisenstein, but does not

appear to be the same.

2. A Product-Sum Identity

The fact that quadratic fields are cyclotomic is elementary to prove, but we recall

a proof here as we need that idea. The proof can be stated as a single sentence but

we break it into parts for ease of communication. Let ζn = e2iπ/n for any positive

integer n. Observe that
∏n−1
r=1 (1− ζrn) = n. As a consequence, we obtain

(−1)(
n
2)

∏
0≤l<k≤n−1

(ζln − ζkn)2 =
∏
l 6=k

(ζln − ζkn)
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=
∏
l

ζln
∏
k 6=l

(1− ζk−ln ) =
∏
l

(nζln) = nnζ
(n
2)
n = nn

for odd n. Combining this with the evident equality
√

2 = e2iπ/8+e−2iπ/8, it follows

that for any positive integer m,
√
m and

√
−m are both expressible as polynomials

in ζN with integer coefficients. Here N = 8
∏r
i=1 pi, where the pi’s are the odd

prime factors of m.

For an odd prime p, the above proof yields

(−1)(p−1)/2pp =
∏

0≤s<r<p

(ζrp − ζsp)2,

with ζp = e2iπ/p. Thus, the left-hand side is pp or −pp according as to whether

p ≡ 1 or 3 mod 4. Therefore, we note that
∏

0≤s<r<p(ζ
r
p − ζsp) = ±pp/2 or ±ipp/2

according as to whether p ≡ 1 or 3 mod 4.

On the other hand, it is well known that the Gauss sum
∑p−1
a=1

(
a
p

)
ζap =

√
p or

i
√
p according as to whether p ≡ 1 or 3 mod 4. Here

(
a
p

)
is the Legendre symbol.

Therefore, up to sign,
∏

0≤s<r<p(ζ
r
p − ζsp) and p

p−1
2

∑p−1
a=1

(
a
p

)
ζap are equal. We

prove more precisely the following product-sum formula.

Theorem 1. Let ζp = e2iπ/p. Then,

∏
0≤s<r<p

(ζrp − ζsp) = (−1)
p2−1

8 p
p−1
2

p−1∑
a=1

(
a

p

)
ζap .

It should be borne in mind that the sign in the identity depends on the choice of the

primitive p-th root of unity.

The product-sum identity seems tantalizingly close to an instance of the Weyl

character formula recalled below, but we do not know if it can be so viewed:

χλ(T )
∏
α>0

(eα(T )/2 − e−α(T )/2) =
∑
w∈W

sgn(w)eλ+ρ(wT )

where χλ is the character of an irreducible representation of a compact connected

Lie group, with highest weight λ, the sum runs over the positive roots, ρ is one-half

the sum of positive roots and T is in the Lie algebra of a maximal torus.

3. An Expression for the Legendre Symbol

Before proving the theorem, we first deduce from it an expression for the Legendre

symbol.
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Corollary 1. For an odd prime p, and (b, p) = 1, writing ζp = e2iπ/p, we have the

expression (
b

p

)
= ζ

(p
3)(b−1)
p

p−2∏
t=1

( t∏
k=1

ζ−kp − 1

ζ−kbp − 1

)
.

The proof follows immediately from the theorem by looking at the effect of the

transformation ζp 7→ ζbp for (b, p) = 1 which multiplies its right-hand side by

(
b
p

)
.

This proves the corollary.

The expression in the corollary is reminiscent of an expression in terms of trigono-

metric functions due to Eisenstein but does not appear to be the same.

4. Proof of the Product-Sum Identity

The proof of Theorem 1 requires us to determine the sign of the left-hand side of the

statement. We accomplish this by closely following a matrix calculation attributed

to Schur that determines the sign of the Gauss sum ([1], pp. 207-212).

Proof. We will show that
∏

0≤l<k<p(e
2iπk/p − e2iπl/p) = ip(p−1)/2pp/2, and also

simultaneously show that the Gauss sum
∑p−1
a=1

(
a
p

)
ζap equals

√
p or i

√
p according

as to whether p ≡ 1 or 3 mod 4. Note that this would imply the product-sum

formula. As mentioned earlier, the idea is due to Schur.

Write ζp = e2iπ/p. Consider the p× p matrix A = (ζklp )0≤k,l<p. Note that

tr(A) =

p−1∑
s=0

ζs
2

p

and

det(A) =
∏

0≤l<k<p

(e2iπk/p − e2iπl/p).

The right-hand side here is the left-hand side of the asserted product-sum formula.

We first observe that the Gauss sum
∑p−1
a=1

(
a
p

)
ζap can also be written as the

sum S :=
∑p−1
s=0 e

2iπs2/p. Hence, the Gauss sum

S =

p−1∑
s=0

ζs
2

p = tr(A) =

p∑
r=1

λr,

where λ1, · · · , λp are the eigenvalues of A. Now,

(A2)u,v =
∑
w

ζ(u+v)wp = bu+v,
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where bm =
∑
w ζ

mw
p . Multiplying by ζmp , we see that bm = p or 0 according as to

whether p|m or not. Note that∑
r

λ2r = tr(A2) =
∑
u

b2u = p.

Also,

(A4)uv =
∑
w

bu+wbw+v = p2 or 0

according as to whether u = v or not. Thus A4 = p2I where I is the p× p identity

matrix. The characteristic polynomial χA4(λ) of A4 is (λ− p2)p which means that

the eigenvalues λ41, · · · , λ4p are all equal to p2. In particular, λr = iar
√
p where

ar = 0, 1, 2 or 3. For k = 0, 1, 2, 3 let

mk = |{ar : ar = k}|.

Note that m0 +m1 +m2 +m3 = p. The Gauss sum S equals∑
r

λr =
∑
r

iar
√
p =
√
p(m0 + im1 −m2 − im3)

and |S|2 = p. We have (m0 − m2)2 + (m1 − m3)2 = 1. In other words, either

m0 −m2 = ±1 and m1 = m3 or m0 = m2 and m1 −m3 = ±1. Hence S = vη
√
p

where v = ±1 and η = 1 or i. Thus, we obtain the equation

m0 + im1 −m2 − im3 = vη.

Taking conjugates and noting η̄ = η−1, we have the equation

m0 − im1 −m2 + im3 = vη−1.

Also, the equality tr(A2) =
∑
r λ

2
r = p observed earlier, gives us the equation

m0 −m1 +m2 −m3 = 1.

Thus, the system of 4 linear equations can be written as a matrix equation Bx = y

where B =


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

, x =


m0

m1

m2

m3

 and y =


p
vη
1

vη−1

. Inverting this

matrix, we get x = B−1y with B−1 = 1
4


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

.

In particular, since m2 = p+1−v(η+η−1)
4 is an integer, we have that η = 1 or i

according as to whether p ≡ 1 mod 4 or p ≡ 3 mod 4. Further,

det(A) =
∏
r

λr = pp/2im1+2m2−m3 = pp/2i3(p−1)/2v = pp/2ip(p−1)/2v.
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To obtain this, we have substituted the value of m1 + 2m2 −m3 gotten from x =

B−1y, namely, m1 + 2m2−m3 = p+1
2 − v or p+1

2 + v according as to whether p ≡ 1

mod 4 or p ≡ 3 mod 4. We have also written iv instead of iv (as we may) above.

Finally, we show that v = 1 as follows which will prove both the sign of trA) and

of det(A), thereby, determining the sign of the Gauss sum also, and proving our

product-sum formula. To show v = 1, observe that

det(A) =
∏

0≤l<k<p

(e2iπk/p − e2iπl/p) =
∏
l<k

eiπ(k+l)/p(eiπ(k−l)/p − eiπ(l−k)/p).

As
∑

0≤l<k<p(k + l) = p(p− 1)2/2, we have∏
l<k

eiπ(k+l)/p = eiπ(p−1)
2/2 = i(p−1)

2

= 1.

Hence

det(A) =
∏
l<k

(eiπ(k−l)/p − eiπ(l−k)/p)

=
∏
l<k

(2i sin
π(k − l)

p
) = ip(p−1)/2

∏
l<k

(2 sin
π(k − l)

p
).

As the last mentioned product is positive, the two expressions

det(A) = pp/2ip(p−1)/2v = ip(p−1)/2
∏
l<k

(2 sin
π(k − l)

p
)

imply that v > 0 and is, therefore, equal to 1. This completes the proof that

det(A) = pp/2ip(p−1)/2, and hence, the main theorem is proved.
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