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The proof of Fermat’s last theorem represents one of the highest intellectual accomplish-
ments of the 20th century. The author has attempted to write down an almost complete,
self-contained account of this success. It requires an indomitable spirit to launch this
daunting task. The author’s Japanese book has been translated into a two-volume book
in English. The first volume, consisting of seven chapters, studies the three main players
in this saga—elliptic curves, modular forms and Galois representations [T. Saito, Fer-
mat’s last theorem, translated from the Japanese original by Masato Kuwata, Transl.
Math. Monogr., 243, Amer. Math. Soc., Providence, RI, 2013; MR3136492]. It gives an
outline of the proof of Fermat’s last theorem (hereafter to be abbreviated as FLT). This
second volume is a technical tour-de-force of four chapters and gives complete proofs of
almost all the steps. Even though our task is to review this second volume, it is first
necessary quickly to recall the background.

The layout of the FLT proof is well known and we recall it only briefly so as to
understand the description of the details of the proof given in this review. In the early
1970’s, Hellegouarch related a fictitious solution of FLT to an elliptic curve; his idea
was to apply known results on FLT to obtain some consequences for elliptic curves. In
1986, Frey turned it around by looking for consequences in the opposite direction. If l
is an odd prime, and if a, b, c form a possible nontrivial triple of integers satisfying al +
bl = cl where (without loss of generality) al ≡ −1 (mod 4) and 32 | bl, Frey looked at
the elliptic curve

E : y2 = x(x− al)(x+ bl).

This curve is semistable, i.e., has square-free conductor. If L is the smallest field over
which the points of order l are defined, the action of the absolute Galois group GQ on
E[l] defines a faithful representation

ρE,l: Gal(L/Q)→GL2(Fl)

for a choice of basis for E[l]. Mazur used the fact that the elliptic curve is semistable
to show that ρE,l is irreducible if l ≥ 11. Combining with Serre’s work from 1972, it
follows that the Galois group is actually isomorphic to GL2(Fl); therefore, the field L is
large in this sense. Moreover, Serre studied two-dimensional Galois representations over
finite fields in general in 1987 and conjectured that for Frey’s curve, the corresponding
Galois representation comes from modular forms modulo l. More precisely, he made the
precise conjecture that the corresponding modular form must be of weight 2 and level
2 (which does not exist!). Meanwhile, the Shimura-Taniyama conjecture (originating
from a prediction by Taniyama in 1955) produced a direct connection between the
representations ρE,l and modular forms of weight 2, but with a rather large level
(product of primes dividing abc). In 1990, Ribet came up with the stunning result that if
the above representation were indeed to come from a modular form mod l, it would come
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also from a modular form mod l of weight 2 and level 2. In other words, Ribet’s theorem
implies that the Shimura-Taniyama conjecture (assumed just for semistable elliptic
curves) implies FLT. Wiles proved the Shimura-Taniyama conjecture for semistable
curves using collaborative work with Taylor to bring the proof into completion. The
Shimura-Taniyama conjecture asserts that elliptic curves over Q are modular; that is,
there is a Hecke eigenform f of weight 2 on Γ0(N) for some N so that

|E(Fp)|= p+ 1− ap
for almost all primes p, where f =

∑
anq

n. Here, Galois representations enter in the
following manner: For an elliptic curve E, the action of GQ on the subgroup E[ln] of
ln-division points gives rise to an l-adic representation

ρE,l:GQ→GL(lim←−E[ln])∼= GL2(Zl).

Such an l-adic representation is said to be modular if there is a Hecke eigenform f
such that for almost all primes p where ρE,l is unramified, the trace of the Frobenius
at p is the Fourier coefficient ap of f . Then, E is modular if and only if there is some
l for which ρE,l is modular. Hence, from then on, in the proof of FLT, elliptic curves
fade away and only their avatars in the form of Galois representations appear. We
mention in passing that semistability of a representation (either over a finite field or
over a complete, Noetherian local ring) means it is either good or ordinary. Next, since
Serre’s conjectures predict the modularity of mod l Galois representations (which was
known for primes like 3 and 5), the problem is to lift the modularity property to l-adic
representations. Wiles proved the following:

Let l be an odd prime, let K be an l-adic field and F, the residue field of OK . Suppose
ρ:GQ→GL2(F) is a semistable, irreducible, modular representation. Then, a semistable
lifting ρ:GQ→GL2(OK), for which det ρ is the cyclotomic character, is modular of level
Nρ (equal to the product of all primes where ρ is not good).

To do this, Wiles used Mazur’s deformation theory. More generally, one considers lifts
to representations over complete, Noetherian Zl-algebras R with residue field F where
Mazur’s theory gives a certain universal ring RΣ. In fact, if Σ is a finite set of primes
and one looks for lifts of ρ whose restriction to the decomposition groups at l have
good properties and whose ramification outside Σ is restricted, then there is a ring RΣ

and a lift ρΣ:GQ→ GL2(RΣ) which is universal with respect to all lifts to all such R.
Wiles constructed explicitly this universal deformation ring as a certain Hecke algebra.
In other words, modular forms are replaced by their avatars: these Hecke algebras.
Thus, the rest of the proof is directed towards proving that the natural map from
Mazur’s deformation ring to the Hecke ring constructed by Wiles is an isomorphism.
This requires a lot of commutative algebra at the point where it is needed to prove that
the Hecke algebra T corresponding to the empty set Σ is a complete intersection; this
was done by Wiles and Taylor.

The main theorems (leading to a proof of the FLT) proved in this book almost
completely are the following ones:

(i) the proof of the identification of the deformation ring with a corresponding Hecke
algebra (this is proved in Chapter 11 where Selmer groups are studied),

(ii) the modularity theorem for l-adic representations stated above as a consequence
of (i), and

(iii) the ‘lifting of level’ for mod l Galois representations (proved in Chapter 11).
We now attempt to describe the proofs as given in Chapters 8 to 11.
Chapter 8 defines and discusses modular curves over Z. Even though modular curves

over Q were already studied in Chapter 2 of the first book, their arithmetic properties
depend also on the behaviour of modular curves over Z at primes dividing the level



(where they may not have good reduction). According to the author, this aspect of
having been able to analyze modular curves over Z is the crucial fact which enabled
a proof of the FLT to emerge in the 20th century. Modular curves over Q are usually
defined by means of cyclic subgroups of order N of an elliptic curve. However, a
supersingular elliptic curve over a scheme over Fp has no subgroup of order p in the
usual sense. Therefore, a cyclic subgroup scheme is defined via a Drinfeld level structure;
viz., if S is a scheme and N ≥ 1, and G is a finite, flat commutative group scheme of
finite presentation type over S of degree N , then G is said to be cyclic of order N if
there is a section P :S → G flat locally on S such that 0, P, 2P, . . . , (N − 1)P is a full
set of sections.

Then, for r relatively prime to N , one defines the functor M0(N, r)Z[1/r] over Z[1/r],
which sends any scheme T over the latter to the set of isomorphism classes of triples
(E,C, α) where E is an elliptic curve over T , C is a cyclic subgroup scheme of order N ,
and α is an isomorphism from Z/rZ×Z/rZ to E[r].

One similarly defines a functor M1(N, r)Z[1/r] as usual by considering sections of order
N instead of cyclic subgroups of order N . The two functors coincide when N = 1 and
the author first shows that for r ≥ 3, this functor is representable by a smooth affine
connected curve Y (r)Z[1/r] over Z[1/r].

For instance, for r = 3, it is SpecZ[1
3 , ζ3, µ,

1
µ3−1 ].

Further, the author proves that when (r,N) = 1 and r ≥ 3, M1(N, r)Z[1/r] is rep-
resentable by a finite scheme Y1(N, r)Z[1/r] over Y(r)Z[1/r]. Looking at the action of
GL2(Z/rZ) on Y1(N, r)Z[1/r], the author deduces that the quotient Y1(N)Z[1/r] is a
coarse moduli scheme of the restriction of the functor M1(N) over Z to Z[1/r]. Using
this, the author can conclude the following theorem, which is one of the two main results
of this chapter:

(i) There exists a coarse moduli scheme Y1(N)Z of M1(N) over Z. If N ≥ 4, then
Y1(N)Z[1/N ] is a fine moduli scheme. Moreover, Y1(N)Z is a normal, connected, affine
curve over Z and is smooth over Z[1/N ]. Finally, for a prime p not dividingN , Y1(N)Z⊗Z
Fp is a coarse moduli scheme of the restriction M1(N)Fp .

(ii) Analogous assertions hold for M0(N).
The author remarks that even though these theorems imply that the modular curves

Y0(N)Z and Y1(N)Z are the integral closures of Y0(N)Z[1/N ] and Y0(N)Z[1/N ], respec-
tively, it is not sufficient to simply define them in this manner because the study of their
detailed structure requires the definition through Drinfeld level structures as given in
this chapter.

The second of the two main theorems of this chapter concerns the compactified curves.
The compactifications X0(N)Z and X1(N)Z of Y0(N)Z and Y1(N)Z are their integral
closures with respect to the j-map to A1

Z. The main theorem here (from which the fourth
assertion is crucially used later) is:

(i) The projective curve X0(N)Z is normal and each of its geometric fibers is connected.
(ii) For any prime p not dividing N , this curve is smooth at p and the fiber X0(N)Fp =

X0(N)Z⊗Fp is a smooth compactification of Y0(N)Fp .
(iii) Analogous assertions of (i), (ii) hold for X1.
(iv) Let N =Mp with (p,M) = 1. Then, X0(N)Z is weakly semistable at p. The closed

immersions

ji:Yi(M)Fp → Yi(N)Fp

(for i = 0, 1) extend to Xi(M)Fp . The fiber X0(N)Fp is the union of the images C0 and

C1 of j0, j1. The intersection of these images is the coarse moduli scheme of M0(M)Fp .
Using the above-mentioned theorem from Chapter 8 (especially (iv) above), Chapter 9

proves the following level and ramification mod l result which is important in the



deduction of FLT.
Let l ≥ 3 be a prime, and F a finite extension of Fl. Let ρ:GQ → GL2(F) be a

continuous, irreducible representation. Suppose ρ is modular of level N . If M denotes
the prime-to-p part of N , then:

(i) ρ is modular of level M ⇐⇒ ρ is good at p;
(ii) ρ is modular of level pM ⇐⇒ ρ is semistable at p.
The main point is to prove that modularity is a consequence of the latter assertions

in (i) and (ii) above. The author proves this for (i) when p 6≡ 1 (mod l); as he says, the
assertion for p≡ 1 (mod l) requires a lot more preparation involving p-adic uniformiza-
tion of Shimura curves and Jacquet-Langlands-Shimizu correspondence and he does not
give it in the book.

Roughly, the proof of ‘good at p implies modular’ goes as follows:
Consider the Hecke algebras T := T0(Mp)Z and T′ := T0(M)Z[Up]/(U

2
p − TpUp + p).

Here, Tp, Up are the Hecke operators defined in the usual way. There is a natural
surjection from T to T′ and a sufficient criterion for modularity of a mod l representation
can be given in terms of this surjection. Indeed, if ρ is a continuous, absolutely irreducible
representation of level Mp and φ:T→ F is a ring homomorphism satisfying

det(1− ρ(φq)t) = 1−φ(Tq)t+ qt2

for almost all primes p, and if there is a finite extension F′ of F and a ring homomorphism
φ′:T→ F′ satisfying an obvious commutativity condition, then ρ is modular of level M .

Let us indicate where the theorem of Chapter 8 quoted above plays a role while using
the above criterion.

Let m be the maximal ideal of T corresponding to the kernel of a certain homomor-
phism to F which arises from the modularity of ρ of level Mp. In fact, if K is a finite
extension of Ql and f is a primary form over K, there is a ring homomorphism from
T0(N)Q to its residue field (which can be taken to be our F) which sends each Tp to an
element congruent to the eigenvalue ap(f). Denote by J0(Mp)[m], the elements of the
Jacobian J0(Mp)(Q) which are killed by m. It can be observed that as a mod l represen-
tation, J0(Mp)[m]⊗T F is isomorphic to the direct sum of copies of ρ. By the hypothesis,
ρ is good at p and so, we have a finite étale group scheme J0(Mp)[m]Zp over Zp. By
properties of Néron models, the inclusion of J0(Mp)[m] in J0(Mp) extends to a closed
immersion from J0(Mp)[m]Zp to J0(Mp)Zp which can be reduced mod p to obtain a
closed immersion from J0(Mp)[m]Fp to J0(Mp)Fp over Fp. Of course, here J0(Mp)Fp de-
notes the reduction mod p of a Néron model of J0(Mp). Then, the T-module scheme
J0(Mp)Fp over Fp is a successive extension of three T-module schemes—Φ, J0(Mp)ab

Fp

and J0(Mp)torus
Fp

—where Φ is the group of connected components, and ‘ab’ and ‘torus’

denote, respectively, the abelian and torus parts of J0(Mp)Fp .
The theorem is then proved by means of the following three steps:
(i) showing that the composite morphism

J0(Mp)[m]Fp → J0(Mp)Fp → Φ

is zero;
(ii) if the morphism J0(Mp)[m]Fp → J0(Mp)ab

Fp
induced because of (i) above is not the

zero morphism, then showing that ρ is modular of level M ; and
(iii) showing that if J0(Mp)[m]Fp

→ J0(Mp)ab
Fp

is the zero morphism, then

p≡ 1 (mod l).
As mentioned at the beginning, getting to the modularity of an l-adic representation

from the modularity of the reduction mod l uses deformation rings. Chapter 10 studies
Hecke modules—these are completions of the homology groups of modular curves.
The main theorem of this chapter identifies the deformation ring with a suitable



Hecke algebra. The required properties of the deformation ring which would ultimately
complete the proof of the FLT are proved in Chapter 11. In Chapter 11, the author
starts with a self-contained introduction to Galois cohomology after which he defines
and studies Selmer groups. The main purpose is to relate Selmer groups to deformation
rings for this moves the question from deformation rings to Selmer groups. Before
describing this relation, we recall that Selmer groups are defined in Galois cohomology
via local conditions. More precisely, if S is a finite set of primes, and M is a GQ-module
which is unramified outside S, then a family of subgroups Lp ≤ H1(Qp,M) for p ∈ S
defines a subgroup of H1(GS ,M) given as the inverse image of

⊕
p∈S Lp under the

restriction map

H1(GS ,M)→
⊕
p∈S

H1(Qp,M).

Here, GS is the quotient of GQ by the normal subgroup generated by all the inertia
subgroups at primes in S.

Now, let us describe the local conditions in our situation. Let l be an odd prime,
let F be a finite field of characteristic l, and K be an l-adic field with residue field F.
Let ρ:GQ→GL2(F) be a modular, irreducible, semistable mod l representation, f be a
corresponding primitive form, and let the associated l-adic representation be ρf :GQ→
GL2(OK), which is a lift of ρ unramified outside Sρ ∪{l}. Let Σ be a finite set of primes
not intersecting Sρ such that if l ∈ Σ, then ρ is good and ordinary at l. Taking S = Sρ ∪
Σ∪ {l} and considering O2

K as a GS-module, the local conditions defining our Selmer
group are as follows: If

W = {f ∈ End(O2
K) : Tr(f) = 0}

look at the OK/πOK-module W = W/πW . The local subgroups corresponding to the
primes in S are defined according to whether ρ is good or ordinary at that prime (which
we do not recall here precisely). Denote the corresponding Selmer group by SelS(W ).
The relation between the deformation ring and the Selmer group is:

Let RΣ be the deformation ring and πΣ:RΣ→OK be the homomorphism defined by
ρ. Let mΣ be the maximal ideal of Rσ. Then, there is a natural F-linear isomorphism

HomF(mΣ/(m
2
Σ, π),F)→ SelS(W ).

Further, if pΣ is the kernel of the ring homomorphism from RΣ to OK induced by ρ,
there is a natural OK-module isomorphism

HomOK(pΣ/p
2
Σ,K/OK)→ lim−→ SelS(W/πnW ).

Following this, the author verifies properties of Selmer groups which—using the above
relationship with deformation rings—completes the proof of FLT itself.

The present state of the art is that the full Shimura-Taniyama conjecture as well as
Serre’s modularity conjecture have been proved.

Here are a few minor comments on the book.
The mathematical writing is lucid and is interspersed with copious comments which

are very illuminating. To give an instance, it is explained that in order to obtain
arithmetic properties, it is necessary to define the modular curves Y0(N)Z, Y1(N)Z
using Drinfeld level structures and not merely as integral closures of Y0(N)Z[1/N ] and
Y1(N)Z[1/N ].

In several places, a sentence starts with a mathematical symbol; this could have been
avoided as it leads to confusion especially when the previous sentence also finishes with
a symbol.

After many lemmata (especially in Chapter 8), examples are provided adding to a
quick appreciation of the lemma.



Interesting exercises are given periodically; it is somewhat amusing to find that they
appear under the caption ‘question’.

This magnificent book will be used for many years to come. B. Sury
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