
NOTES ON INTESECTION HOMOLOGY

VISHWAMBHAR PATI

1. Rapid Review of Sheaf Theory

1.1. Injective, soft, fine and flabby sheaves. In all that follows X is a locally compact, paracompact,
hausdorff topological space.

Definition 1.1.1 (Injective Sheaf). A sheaf I is said to be injective if given morphisms of sheaves α and β as
below:

0 −→ A
α

−→ B
β ց↓ ∃

I

the right vertical arrow exists. That is, the functor hom(−, I) from the category Sh(X) of sheaves on X to
the category of abelian groups is right exact.

Definition 1.1.2 (Flabby sheaf). Say that a sheaf F is flabby if for each open subset U ⊂ X , the restriction
map of sections:

Γ(X,F) −→ Γ(U,F)

is surjective.

Definition 1.1.3 (Soft sheaf). Say that a sheaf S is soft (sometimes called c-soft) if for each compact subset
K ⊂ X , the natural restriction map of sections:

Γ(X,S) → Γ(K,S)

is surjective. (The right hand abelian group is defined as lim→ Γ(U,S), the direct limit over the directed system
of all open neighbourhoods U of K).

Remark 1.1.4. If S is a soft sheaf, then the restriction map:

Γc(X,S) → Γc(Z,S)

is surjective for all closed sets Z. In fact, it is enough to prove that Γc(X,S) → Γ(K,S) is surjective for all
compact K ⊂ X . Let s ∈ Γ(K,S). By normality, local compactness etc., without loss we may assume there
is a compact neighbourhood U ⊃ K with s ∈ Γ(U,S). Define the new section u ∈ Γ(K

∐
∂U,S) by u ≡ s on

K and u ≡ 0 on ∂U . Then since K1 := K
∐

∂U is compact, and S is soft, there is a section t ∈ Γ(X,S) with
t|K1

= u. Define the section t1 by t1 ≡ t on K, and t1 ≡ 0 on X \ U◦. This t1 is compactly supported (in U),
and the required section extending s.

Conversely, the surjectivity of the above map for every closed subset Z implies softness trivially.

Remark 1.1.5 (Restricting injective, flabby and soft sheaves). From the definition above, it is clear that re-
stricting a flabby sheaf to an open set gives a flabby sheaf. The Remark 1.1.4 above similarly implies that
restricting a soft sheaf to a closed subset again gives a soft sheaf. In fact, restricting a soft sheaf to any locally

closed set gives a soft sheaf (Exercise). Finally, restricting an injective sheaf to an open set again gives an
injective sheaf, as is not difficult to prove.
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Example 1.1.6 (The Godement flabby envelope). Let F ∈ Sh(X) be any sheaf. Then define the sheaf E(F)
by:

Γ(U, E(F)) :=
∏

x∈U

Fx

with the obvious restriction maps coming from projection of a product to a smaller product. This is often
called the sheaf of discontinuous sections of F . It is trivial to check (using extension by zero) that this sheaf
is flabby. Note that there is a natural map:

0 → Γ(U,F) → Γ(U, E(F))

s 7→ (sx)x∈U

which is easily checked to define an injective sheaf map 0 → F → E(F).

Remark 1.1.7. Let X , F and E(F) be as above. Then for each x ∈ X , the stalk Fx is a direct summand of
E(F)x.

Proof: Clear, since for a fixed x ∈ X , the morphism defined by:

Fx →֒
∏

y∈U

Fy = Γ(U, E(F))

sx 7→ (sy)y∈U

for some open neighbourhood U of x, is a split map whose left inverse is the projection to Fx. Taking the
direct limit of these projections as U shrinks to x gives the required left inverse of Fx →֒ E(F)x. 2

Proposition 1.1.8. Injective ⇒ flabby ⇒ soft, for all sheaves on X as above.

Proof: Let I be flabby, and let 0 → I → E(I) be the inclusion into the Godement envelope. By the injectivity
of I, this morphism splits and I becomes a direct summand of E(I). This last sheaf is flabby by Example 1.1.6
above, and it is trivial to check that direct summands of flabby sheaves are flabby. Thus injective ⇒ flabby.

Because for a flabby sheaf F , the restriction map Γ(X,F) → Γ(U,F) is onto, and for a compact subset K
of X , we have Γ(K,F) = lim→ Γ(U,F), and direct limit is an exact functor, we find that Γ(X,F) → Γ(K,F)
is surjective for all K compact. Thus flabby ⇒ soft.

2

Remark 1.1.9. It is easy to see that all the implications above are strict. For let G be an abelian group which
is not injective. It is easily seen that the skyscraper sheaf F on X with stalk Fx = G at some fixed x ∈ X and
0 elsewhere is flabby, but not injective. Similarly the sheaf of continuous R-valued functions on say X = [0, 1]
is soft (by using Tietze’s extension theorem, X is a metric space, so normal) is soft, but not flabby.

Example 1.1.10 (Godement injective envelope and resolution). Let F be any sheaf of k-modules, k any com-
mutative ring. For each x ∈ X , embed the stalk Fx, which is a k-module, in an injective k-module Ix via
jx : Fx →֒ Ix. Now consider the sheaf I defined by

Γ(U, I) :=
∏

x∈U

Ix

It is easily verified that (a) the map s 7→ (jx(sx))x∈U defines a k-embedding 0 → F → I and (b) I is an
injective sheaf of k-modules.

Using this construction, and calling I as I0, one can now consider the k-sheaf I0/F , embed it in an injective
k-sheaf I1, and proceed inductively to get an injective resolution I. of F , viz. an exact sequence of sheaves:

0 → F → I0 → I1.... → Im → ..

where each Im is injective.
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Remark 1.1.11 (Canonical flabby resolution). In conjunction with the construction in Example 1.1.6, and
using the same construction as the last para, one can construct the canonical flabby resolution of any sheaf S
as :

0 → S → F0 → ... → Fm → ...

where F i := E(F i−1/ImF i−2). By definition, all the F i are flabby.

Definition 1.1.12 (Sheaf cohomology). If F is a sheaf on X , we define the i-th sheaf cohomology of X in F ,
denoted Hi(X,F), to be the i-th cohomology of the cochain complex:

0 → Γ(X, I0) → Γ(X, I1) → ... → Γ(X, Im) → ...

where F → I. is an injective resolution of F . It is again checked easily that two different injective resolutions
of F produce chain homotopically equivalent complexes, and hence the cohomology above is well-defined upto
isomorphism.

Similarly, one can define the i-th cohomology with compact supports H i
c(X,F) to be the i-th cohomology of

the complex Γc(X, I.), where Γc denotes compactly supported sections.

Note that since Γ(X,−) and Γc(X,−) are left exact functors, the definitions above imply that H0(X,F) =
Γ(X,F) and H0

c (X,F) = Γc(X,F).

More generally, if F : Sh(X) → A is any functor of sheaves to an abelian category, then the i-th derived

functor RiF (F) is defined as the i-th cohomology of the complex F (I.), and is an object in the category A.
With this definition, Hi(X,F) is the i-th derived functor of the global section functor Γ(X,−), and H i

c(X,F)
is the i-th derived functor of the global-sections-with-compact-supports functor Γc(X,−).

Proposition 1.1.13. Let X be as above, and let

0 → E →֒ F
β

−→ G → 0

be an exact sequence of sheaves on X .

(i): If E is flabby, then the sequence of global sections:

0 → Γ(X, E) →֒ Γ(X,F)
β

−→ Γ(X,G) → 0

is exact.

(ii): If E is soft, then the sequence of compactly supported global sections:

0 → Γc(X, E) →֒ Γc(X,F)
β

−→ Γc(X,G) → 0

is exact.

Proof: For (i), let s ∈ Γ(X,G) be a global section. Let M be the family :

M := {(t, U) : U ⊂ X open, t ∈ Γ(U,F) with β(t) = s|U}

Since by hypothesis β : Fx → Gx is surjective for all x ∈ X , M is non-empty. Partially order M by the relation
(t, U) ≤ (r, V ) if U ⊂ V and r|U = t. Clearly any chain {(ti, Ui)} ∈ M has the upper bound (t, U), where we
define U := ∪iUi and t := ∪iti.

Thus M has a maximal element, say (t, U). We claim that U = X . For let x 6∈ U and let V be an open
neighbourhood of x with the section r ∈ Γ(V,F) satisfying β(r) = s|V . Then it follows that r|U∩V − t|U∩V is
in the kernel of β, and hence equal to q ∈ Γ(U ∩ V, E).

Since E is flabby, there exists a p ∈ Γ(U, E) such that p|U∩V = q. Then the sections r ∈ Γ(V,F) and
t + p ∈ Γ(U,F) agree on U ∩ V , to give a section t′ ∈ Γ(U ∪ V,F) which lifts s, contradicting the maximality
of (t, U). This proves (i).

The proof of (ii) is analogous, for let s ∈ Γc(X,G), with supp s compact. Let K be a compact neighbourhood
of supp s. Let s1 ∈ Γ(K,G) such that s1 ≡ 0 on ∂K and s1 ≡ s on supp s.
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For each x ∈ K, there is a compact neighbourhood Ux of x and tx ∈ Γ(Ux,F) with β(tx) = s1 on Ux. Since
K is compact, we may assume ti ∈ Γ(Ui,F) for i = 1, .., m satisfying the same. Note ti − tj ∈ Γ(Ui ∩ Uj , E),
as in last para. Ui ∩ Uj being compact, by the softness of E , we can find tij ∈ Γ(X, E) with tij|Ui∩Uj

= ti − tj.
Then the section ti agrees with tj + tij on Ui ∩ Uj to give a section over Ui ∪ Uj lifting s1.

Proceeding inductively, and letting U := ∪m
i=1Ui, one certainly gets a section t ∈ Γ(U,F) lifting s1 over

∂K ∪ supp s. Now observe that t|∂K maps to s1|∂K ≡ 0 under β, so t|∂K ∈ Γ(∂K, E). By using the softness of
E , there is a section v ∈ Γ(X, E) whose restriction to ∂K is t|∂K . Then the difference t1 := t − v on U lifts s
on supp s and vanishes on ∂K. Extending t1 by zero on X \ K◦ is the required compactly supported section
which lifts s. 2

Corollary 1.1.14. Let X be as above, and

0 → E → F → G → 0

be an exact sequence of sheaves on X . If E and F are flabby (resp. soft), then G is also flabby (resp. soft).

Proof: By the Proposition 1.1.13 above, and the Remark 1.1.5, for U ⊂ X open, we have the diagram:

0 → Γ(X, E) → Γ(X,F) → Γ(X,G) → 0
↓ ↓ ↓

0 → Γ(U, E) → Γ(U,F) → Γ(U,G) → 0

If we assume E and F are flabby, the two left vertical arrows are surjections. The snake lemma then implies
that the right vertical arrow is also a surjection, and hence G is flabby. The argument for the case of E , F soft
is analogous, using a closed set Z instead of open U , Γc instead of Γ, and the Remark 1.1.4. 2

Proposition 1.1.15 (Cohomology long exact sequences). Let X be as above, and let

0 → F1 → F2 → F3 → 0

be a short exact sequence of sheaves on X . Then there is the long exact cohomology sequence:

... → Hi(X,F1) → Hi(X,F2) → Hi(X,F3) → Hi+1(X,F1) → ...

and the corresponding compactly supported analogue:

... → Hi
c(X,F1) → Hi

c(X,F2) → Hi
c(X,F3) → Hi+1(X,F1) → ...

Proof: It is not difficult to see that for a short exact sequence of sheaves:

0 → F1 → F2 → F3 → 0

one can come up with a short exact sequence of complexes of sheaves:

0 → I.
1 → I.

2 → I.
3 → 0

where Fj → I .
j is an injective resolution for Fj, j = 1, 2, 3. Then, since injective sheaves are flabby, and also

soft, by Proposition 1.1.13 we will have a short exact sequences of cochain complexes:

0 → Γ(X, I.
1) → Γ(X, I.

2) → Γ(X, I.
3) → 0

of global sections and, likewise,

0 → Γc(X, I.
1) → Γc(X, I.

2) → Γc(X, I.
3) → 0

for compactly supported global sections. These will lead to the long exact cohomology sequences:

... → Hi(X,F1) → Hi(X,F2) → Hi(X,F3) → Hi+1(X,F1) → ...

and the corresponding compactly supported analogue:

... → Hi
c(X,F1) → Hi

c(X,F2) → Hi
c(X,F3) → Hi+1(X,F1) → ...

which proves the lemma. 2
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The following fact is crucial for all sheaf-theory.

Proposition 1.1.16 (Acyclicity properties of flabby and soft sheaves). Let X be as above.

(i): If F is flabby, then Hi(X,F) = 0 for all i ≥ 1. That is, flabby sheaves are acyclic (=no higher derived
functors) for the functor Γ.

(ii): If S is soft, then Hi
c(X,S) = 0 for all i ≥ 1. That is, soft sheaves are acyclic (=no higher derived

functors) for the functor Γc.

Proof: Since for an injective sheaf I we can use the one term injective resolution I → I → 0 → 0..., it follows
that Hi(X, I) = Hi

c(X, I) = 0 for i ≥ 1 and I injective.

Now let F be a flabby sheaf, and let:

0 → F
ǫ
→ I0 d0

→ I1 → ... → Ij → ...

be an injective resolution of F . We may rewrite this as a series of short exact sequences:

0 → F
ǫ
→ I0 d0

→ Im d0 → 0

0 → Im d0 → I1 d1

→ Im d1 → 0

....

0 → Im dj−1 → Ij dj

→ Im dj → 0

Since F is flabby, by Propositions 1.1.8 and Corollary 1.1.14, we have that Im d0 is flabby. Inductively, we
find that Im dj is flabby for all j.

By the Proposition 1.1.13, when F is flabby, the sequence

0 → Γ(X,F) → Γ(X, I0) → Γ(X, Imd0) → 0

is exact, so by the first para above, since H1(X, I0) = 0, the first five terms of the long exact cohomol-
ogy sequence (see Proposition 1.1.15) implies that H1(X,F) = 0 for all flabby sheaves F . In particular,
H1(X, Im dj) = 0 for all j ≥ 0.

Now again use the first para, together with the long exact cohomology sequence (see associated to the short
exact sequence of sheaves

0 → Im dj−1 → Ij → Im dj → 0

to conclude that

H1(X, Imdj) ≃ H2(X, Imdj−1) ≃ .... ≃ Hj+2(X,F)

for all j ≥ 0. By the last line of the previous para, we get Hj+2(X,F) = 0 for all j ≥ 0.

Similarly, when F is soft, Im dj are soft for all j, by Proposition 1.1.14, and similar use of long exact sequence
for Hi

c leads to the result. 2

Corollary 1.1.17. Let E be a sheaf on X .

(i): If E → F . is a flabby resolution of F , then the i-th cohomology of the global section complex Γ(X,F .)
is the sheaf cohomology Hi(X, E).

(ii): Analogously, if E → S. is a soft resolution of E , then the i-th cohomology of the compactly supported
global section complex Γc(X,S.) is the sheaf cohomology Hi

c(X, E) with compact supports.
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Proof: Let’s first prove (i). One again breaks up the flabby resolution:

0 → E → F0 d0

→ F1 → ...

into the short exact sequences:

0 → E
ǫ
→ F0 d0

→ Im d0 → 0

0 → Im d0 → F1 d1

→ Im d1 → 0

....

0 → Im dj−1 → F j dj

→ Im dj → 0

Now using the Proposition 1.1.16 above, we have H i(X,F j) = 0 for all i ≥ 1 and j ≥ 0. Thus, as in the proof
of the proposition above, one finds that:

Hi(X, E) ≃ Hi−1(X, Im d0) ≃ .... ≃ H1(X, Imdi−2)

Now for the short exact sequence:

0 → Im di−2 → F i−1 → Im di−1 → 0

the initial bit of the long exact cohomology sequence reads:

Γ(X, Im di−2) → Γ(X,F i−1)
di−1

→ Γ(X, Im di−1) → H1(X, Im di−2) → 0

which shows that H1(X, Im di−2) ≃ Γ(X, Im di−1)/di−1(Γ(X,F i−1)). On the other hand the left exactness of
the functor Γ(X,−) applied to the short exact sheaf sequence 0 → Im di−1 → F i → Im di → 0 shows that

Γ(X, Im di−1) = ker(di : Γ(X,F i) → Γ(X, Im di)) = ker(di : Γ(X,F i) → Γ(X,F i+1))

This shows that Hi(X, E) is precisely the i-th cohomology of the global section complex Γ(X,F .). This
proves (i).

The proof of the second assertion (ii) is analogous, using Γc in place of Γ, and using the fact that soft sheaves
are Γc-acyclic. 2

Here is a useful cohomological way of testing softness of a sheaf.

Corollary 1.1.18 (A cohomological criterion for softness). Let X be as above. Then a sheaf F on X is soft
iff H1

c (U,F) = 0 for all open sets U ⊂ Z.

Proof: The only if part follows immediately from the Remark 1.1.5, which says that F|U is also soft, and the
Proposition 1.1.16 above.

To see the if part, we set Z := X \U , a closed set. For an injective resolution F → I., since injective sheaves
are soft (by 1.1.8) the Remark 1.1.4 implies that the restriction map:

Γc(X, I.) → Γc(Z, I.)

is surjective. Its kernel is clearly Γc(U,F), so that we have a short exact sequence of complexes:

0 → Γc(U, I.) → Γc(X, I.) → Γc(Z, I.) → 0

with Z := X \ U . This leads to the cohomology long exact sequence:

0 → Γc(U,F) → Γc(X,F) → Γc(Z,F) → H1
c (U,F) → ...

Since the last term is zero by hypothesis, it follows that the natural restriction map Γc(X,F) → Γc(Z,F) is
surjective. This is equivalent to softness, by the last line of Remark 1.1.4. 2

Corollary 1.1.19. Let h : W →֒ X be the inclusion of a locally closed subset in X as above, and S a soft
sheaf on X . Then the restricted sheaf h∗S on W is soft.

Proof: We have already noted in Remark 1.1.5 that the restriction of S to a closed set is soft. Since W is the
intersection of a closed set and an open set, it suffices to prove that the restriction of a soft sheaf to an open
set is soft. This follows immediately from the cohomological criterion for softness in Corollary 1.1.18 above. 2



NOTES ON INTESECTION HOMOLOGY 7

1.2. Direct image with proper supports.

Definition 1.2.1 (The functor f!). Let f : X → Y be a continuous map with X, Y both locally compact,
hausdorff, paracompact. Let F be a sheaf on X . Then define the presheaf f!F by:

Γ(U, f!F) := {s ∈ Γ(f−1(U),F) : f|supp s is proper}

Since this is a subpresheaf of the sheaf f∗F , it is a sheaf.

We need some facts about this functor.

Proposition 1.2.2. Let h : W →֒ X be the inclusion of a locally closed subset W in X as above. If S is a
soft sheaf on W , then h!F is soft on X .

Proof: See [Iv], p. 183 2

Corollary 1.2.3. Let h : W →֒ X be the inclusion of a locally closed subset, and F a sheaf on W . Then:

Hi
c(W,F) = Hi

c(X, h!F)

Proof: Let F → S. be a soft resolution of F on W . By (ii) of Corollary 1.1.17, H i
c(W,F) = Hi(Γc(W,S.)).

By the proposition above, and the (easily verified) fact that h! is exact, it follows that h!F → h!S
. is a soft

resolution of h!F . Thus again by 1.1.17, Hi
c(X, h!F) = Hi(Γc(X, h!S

.)).

By definition it follows that Γc(X, h!S) = Γc(W,S) for any sheaf S on W , so the right hand side above is
just Hi

c(W,F). 2

Corollary 1.2.4. Let h : W →֒ X be the inclusion of a locally closed subset. Then for a soft sheaf S on X ,
the sheaf h!h

∗S on X is also soft.

Proof: Immediate from Corollary 1.1.19 and Proposition 1.2.2 2

1.3. Finite cohomological dimension.

Definition 1.3.1. Say that X is of finite cohomological dimension if there exists an n such that Hn+i
c (X,F) =

0 for all sheaves F on X and all i ≥ 1. The smallest n satisfying this property is called the cohomological

dimension of X , and denoted dimc X .

Lemma 1.3.2. Let X be locally compact hausdorff, with dimc X ≤ n. Then for any locally closed subset
W ⊂ X , we have dimc W ≤ n.

Proof: If F is any sheaf on W , the Corollary 1.2.3 implies that H i
c(W,F) = Hi

c(X, h!F), and the right side
vanishes for i ≥ n + 1 if dimc X ≤ n by definition. Thus dimc W ≤ n. 2

Proposition 1.3.3. Let X be paracompact and locally compact hausdorff as above, and satisfying dimc X ≤
n. Let there be an exact sequence:

0 → F
ǫ
→ S0 d0

→ ... → Sn−1 dn−1

→ Sn → 0

of sheaves on X , with Si soft for 0 ≤ i ≤ n − 1. Then Sn is soft.
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Proof: We will use the cohomological criterion for softness of Proposition 1.1.18. We need to show that
H1

c (U,Sn) = 0 for all open sets U . There is the chain of short exact sequences:

0 → F
ǫ
→ S0 d0

→ Im d0 → 0

0 → Im d0 → S1 d1

→ Im d1 → 0

....

0 → Im dn−2 → Sn−1 dn−1

→ Sn → 0

Now use the softness (⇒ acyclicity) of the restricted sheaves Si
|U for 0 ≤ i ≤ n − 1, and mimic the proof of

Proposition 1.1.16 to conclude that:

H1
c (U,Sn) ≃ H2

c (U, Imdn−2) ≃ .... ≃ Hn+1
c (U,F)

Since dimc X ≤ n, it follows by Lemma 1.3.2 above that dimc U ≤ n, which implies that the right hand group
vanishes, which implies H1

c (U,Sn) = 0, and we are done. 2

Corollary 1.3.4. Let X be as above, with dimc X ≤ n. If F is a sheaf on X , and S. is any soft resolution of
F , then the truncation (τ≤nS). defined by:

(τ≤nS)j = 0 for j ≥ n + 1

= Im dn−1 for j = n

= Sj for j ≤ n − 1

is a soft resolution of F of length (n + 1).

Proof: By definition, we only need to check the softness of the last term Im dn−1, which follows from the
Proposition above. 2.

Proposition 1.3.5. Let X be as above, with dimc X ≤ n, and let k be a commutative Noetherian ring with
1. F be a flat k- sheaf on X . Then F has a resolution:

0 → F → S0 → ...Sn → 0

of length n + 1 such that each Si is soft and flat (Recall a k-sheaf S is said to be flat if (−) ⊗k S is an exact
functor on the category Shk(X) of k-sheaves on X).

Proof: Define Si := F i for i ≥ 0, where F → F . is the canonical flabby resolution defined in Remark
1.1.11. Since F i are flabby, by Proposition 1.1.8, they are soft.

F flat ⇒ Fx is flat ⇒ the sections over U of the Godement flabby envelope (see Definition 1.1.6) Γ(U, E(F))
is flat, for all U ⊂ X open. This implies that E(F)x, being a direct limit of flats, is flat. This implies that the
first term S0 of the Godement flabby resolution above is flat.

By the Remark 1.1.7, the short exact sequence

0 → Fx
ǫ
→ E(F)x → (Im ǫ)x → 0

is split, so the right hand term is a summand of the middle term, which is flat. So it is flat, and thus the sheaf
Im ǫ is flat. Now S1 is defined as E(Im ǫ) (see Remark 1.1.11), and by the above argument repeated for Im ǫ in
place of F , we see that S1, and inductively, all Si are flat.

Now truncate to get the complex τ≤nS
. as in Corollary 1.3.4 to get the required soft flat resolution of length

n + 1. 2

It is quite impractical to do anything with the Godement flabby resolution. Fortunately, soft flat resolutions
of well-known constant sheaves are abundant in nature. Here are a couple of examples.
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Example 1.3.6 (Singular cochain complex of sheaves). Let X be as above, and assume in addition that it
locally contractible (i.e. every point x ∈ X has a fundamental system of contractible neighbourhoods). Then
the constant sheaf ZX has a soft flat resolution given by:

0 → ZX → C0 → ... → Ci → ...

where Ci is the sheaf of singular i-cochains. It is defined as follows.

For an open cover U of X , say a singular i-simplex σ : ∆i → X is U-small if Im σ ⊂ U for some U ∈ U.
Notice that if an open covering V is a refinement of U, then a V-small simplex is U-small. For U open in X
and U an open cover of U , let Σi

U
(U) denote the set of all U-small singular i-simplices in U and set CU

i (U, Z)
to be the free-abelian group on Σi

U
(U) (called the group of U-small singular i-chains).

Finally define the abelian group:

Ci
U(U, Z) := homZ(CU

i (U, Z), Z)

Note that these fit into a cochain complex with coboundary operator δ defined as usual by (δ f)(σ) := f(∂σ)
An element of Ci

U
(U, Z) is called a U-small i-cochain in U with values in Z. Since Σi

V
⊂ Σi

U
for V ≥ U, we get

natural chain maps:
ρUV : C.

U(U, Z) → C.
V(U, Z)

We finally define the complex of sheaves of singular i-cochains (with integer coefficients) by:

Γ(U, C.) = lim
U

C.
U(U, Z)

We omit the verification that these are actually sheaves (only barycentric subdivision is used to prove this).
That 0 → ZX → C. is a resolution of the constant sheaf follows from local contractibility of X .

To see flatness of the Ci, note that by definition above, the abelian groups Ci
U
(U, Z) are torsion-free, and

hence flat. Then their direct limit over U is also flat, i.e. Γ(U, Ci) is flat for each open subset U , which implies
the sheaves Ci are flat.

Finally, note that C0 is the sheaf of all integer-valued functions on X , i.e. it is the Godement flabby
envelope E(ZX) (see 1.1.6 for definition) of the constant sheaf ZX . In particular it is flabby, and hence by
Proposition 1.1.8, it is a soft sheaf of rings. Now it is easily checked that Ci is a module over C0 (by “pointwise
multiplication”), and that a sheaf of modules over a soft sheaf of rings is itself soft. (For a compact subset
K ⊂ X , use the softness of C0 to construct Urysohn cut-off functions in Γ(X, C0) which are identically 1 on K
and vanish outside a compact neighbourhood U of K, as was done in the proof of 1.1.13. These can be scalar
multiplied with sections of Γ(K, Ci) to extend them to global sections. The details are omitted).

By the Corollary 1.1.17, the sheaf cohomology Hi(X, ZX) is the i-th cohomology of the complex of global
sections Γ(X, C.), i.e. the integral singular cohomology of X . By repeating the above for the constant sheaf
GX , (G any abelian group) and setting Ci

U
(U, G) := hom(CU

i (X, Z), G) one shows that the sheaf cohomology
Hi(X, GX) is the i-th singular cohomology with coefficients in G.

Example 1.3.7 (de Rham complex of sheaves). Let X be as above, and further assume that X is a smooth
manifold of dimension n. The de-Rham resolution:

0 → RX → Λ0 → ... → Λi d
→ Λi+1... → Λn → 0

is a soft flat resolution of the constant sheaf RX , of length n + 1. The exactness of this complex follows from
the fact that X is a manifold, and the de-Rham cohomology of Rn is zero in dimensions ≥ 1 (the Poincare
Lemma). The flatness is clear since everything is a real vector space, and softness again follows by the fact

that smooth Urysohn functions exist in Γ(X, Λ0) and Λi are modules over Λ0.

By the Corollary 1.1.17, the sheaf cohomology Hi(X, RX) is isomorphic to the i-th cohomology of the de-
Rham complex Λ.(X) := Γ(X, Λi) (called the i-th de-Rham cohomology). By combining this with the last para
of the previous example, one sees the de Rham Theorem, viz. that the de-Rham cohomology is isomorphic to
the singular cohomology with coefficients in R, both being isomorphic to the sheaf cohomology H∗(X, RX).
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Example 1.3.8 (Dolbeault complex of sheaves). Let X be as above, and further assume that X is a complex
manifold of dimension dimC X = n. The Dolbeault complex of sheaves:

0 → Ωp → Λp,0 → ... → Λp,q ∂
→ Λp,q+1... → Λp,n → 0

is a soft flat resolution of the sheaf Ωp of holomorphic p-forms on X of length n + 1. The exactness of this
complex follows from the Dolbeault-Grothendieck lemma. The flatness is clear since everything is a complex
vector space, and softness again follows by the fact that smooth Urysohn functions exist in Γ(X, Λ0,0) and Λp,q

are modules over Λ0,0.

By appealing to the Corollary 1.1.17, one again finds that the sheaf cohomology Hq(X, Ωp) is the q-th
cohomology of the Dolbeault complex of global sections Λp,.(X) := Γ(X, Λp,.), called the (p, q)-Dolbeault
cohomology Hp,q

∂
(X).

Proposition 1.3.9. Let k be a ring as above, and X a topological space as above. Let F be any k-sheaf on
X . Then there exists an exact-sequence (“left-resolution”):

... → Pi → Pi−1 → ... → F → 0

such that all the P i are flat k-sheaves.

Proof: For an open set U , and j : U →֒ X the inclusion, denote the sheaf j!j
∗kX = j!kU on X by kU ,

for notational simplicity. This is the sheaf whose stalk is k at all x ∈ U and 0 for all x 6∈ U . Clearly
Γ(U,F) = homk(kU ,F), and each s ∈ Γ(U,F) may be written as s∗(1), where s∗ : kU → F is the sheaf
morphism taking the constant section 1 to s. Thus taking a direct sum P0 := ⊕s,UkU , one gets a surjection:

P0 ǫ
→ F → 0

Note that since its stalks are k or 0, kU is flat for all U , and hence P0 is a direct sum of flat sheaves, thus flat.

Now apply the same construction to ker ǫ to get the flat sheaf P1 surjecting onto ker ǫ, and inductively go
on to define the flat sheaf P i. 2

Corollary 1.3.10. Let X and k be as above. Assume X is of finite cohomological dimension dimc X = n.
Let S be a soft and flat k-sheaf, and F be any k-sheaf on X . Then the tensor product sheaf S ⊗k F is soft.

Proof: Let j : U →֒ X be the inclusion, and as in the proof of the Proposition 1.3.9 above, denote by
kU := j!j

∗kX . Since S is a k- sheaf, one checks that scalar multiplication gives a morphism of sheaves:

S ⊗ kU → j!j
∗S

By comparing stalks inside and outside U , one sees that the map above is an isomorphism. By Remark 1.1.5
and Proposition 1.2.2, the sheaf j!j

∗S is soft since S is soft. Thus S ⊗ kU is soft.

Direct sums of soft sheaves are soft, so S ⊗k (⊕s,UkU ) is soft, where the direct sum is the one in the proof
of the Proposition 1.3.9 above. Consequently, in the notation of that proof, S ⊗k P0 is soft.

Likewise each S ⊗k P i is soft. Let us take the flat left-resolution P . → F of 1.3.9 above and truncate it to
get:

0 → ker dn → Pn−1 → ... → P0 → F → 0

S flat implies 0 → S ⊗ ker dn → S ⊗Pn−1 → ... → S ⊗ P0 → S ⊗ F → 0 is also exact. By the previous para
S ⊗k P i is soft for i = n − 1, n − 2, .., 0. Because dimc X = n, it follows by Proposition 1.3.3 that S ⊗k F is
soft. The proposition is proved. 2
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2. Dualising Complex and Homology

As always, X will be a locally compact hausdorff space. k will always be a Noetherian commutative ring
with 1.

2.1. The Dualising Sheaf.

Definition 2.1.1 (Dualising presheaf). Let S be a soft and flat k-sheaf. Let G be any k-module. For an open
subset U ⊂ X define the dualising presheaf D(S, G) of S with coefficients in G by the sections:

Γ(U, D(S, G)) := homk(Γc(U,S), G)

For open sets V ⊂ U of X , there is the k-module homomorphism Γc(V,S) → Γc(U,S) given by extension by
zero. The restriction map ρUV of the presheaf D(S, G) is defined by dualising this map.

Proposition 2.1.2. Let S and G be as in the definition above, with S assumed to be soft. Then:

(i): The presheaf D(S, G) is a sheaf, called the dualising sheaf of S (with coefficients in G).

(ii): If G is an injective k-module, then D(S, G) is an injective sheaf.

Proof: Let U , V be open sets in X . Then S soft implies that H1
c (U ∩ V,S) = 0, by Proposition 1.1.18. The

first four terms of the Mayer-Vietoris sequence for compactly supported cohomology read as:

0 → Γc(U ∩ V,S) → Γc(U,S) ⊕ Γc(V,S) → Γc(U ∪ V,S) → H1
c (U ∩ V,S) → ..

||
0

Taking homk(−, G), which is a left exact functor, leads to:

0 → Γ(U ∪ V, D(S, G)) → Γ(U, D(S, G)) ⊕ Γ(V, D(S, G)) → Γ(U ∩ V, D(S, G))

which is precisely the sheaf condition for the pair {U, V }. To generalise to arbitrary collections of open sets
use Zorn’s lemma (or transfinite induction). This proves (i)

To see (ii), first make the

Claim 1: Let S be a soft and flat k-sheaf on X . Then there is an isomorphism:

homk(F , D(S, G)) ≃ homk(Γc(X,F ⊗k S, G) (1)

for all k-sheaves F on X .

Proof of Claim 1: Note the left side of (1) is an abelian group of morphisms between two k-sheaves, whereas
the right side is an abelian group of morphisms between two k-modules. First of all there is the map of abelian
groups

θ : homk(F , D(S, G)) −→ homk(Γc(X,F ⊗k S, G)

α 7→ αX

where αX is the morphism on global sections of the two sheaves F and D(S, G) induced by the sheaf morphism
α. We claim that this is the map effecting the isomorphism claimed.

We first take the special case of a sheaf F = kU := j!j
∗kX which was introduced in the proof of the

Proposition 1.3.9, where U is an open set. In this case, using the remark made in the proof of Corollary 1.3.10,
we have F ⊗k S = kU ⊗k S = j!j

∗S. Thus

Γc(X,F ⊗k S) = Γc(X, j!j
∗S) = Γc(U,S)

so the right side of (1) is equal to homk(Γc(U,S), G). The left side is

homk(kU , D(S, G)) = Γ(U, D(S, G)) = homk(Γc(U,S), G)
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where the first equality follows by seeing the image of the section “1” and the second one is from the definition.
Thus Claim 1 follows for F = kU .

For a general sheaf F , write the two step flat left-resolution described in Proposition 1.3.9:

P1 → P0 → F → 0

where both P0 and P1 are direct sums of sheaves of the type kU considered in the last para. Thus (1) holds
for both P0 and P1.

Since S is assumed to be flat, we have exactness of:

P1 ⊗k S → P0 ⊗k S → F ⊗k S → 0

By Corollary 1.3.10, since S is flat and soft, all the three sheaves above are soft. Thus Γc(X,−) preserves
exactness, and we have an exact sequence:

Γc(X,P1 ⊗k S) → Γc(X,P0 ⊗k S) → Γc(X,F ⊗k S) → 0

Since homk(−, G) is a left exact functor on k-modules, and homk(−, D(S, G)) is a left exact functor of sheaves
we have exactness of the rows in the diagram:

0 −→ hom(F , D(S, G)) −→ hom(P0, D(S, G)) −→ hom(P1, D(S, G))
↓ θ ↓ θ ↓ θ

0 → homk(Γc(X,F ⊗k S), G) → homk(Γc(X,P0 ⊗k S), G) → homk(Γc(X,P1 ⊗k S), G)

where the right two vertical arrows are isomorphisms by the last para. Hence the first vertical arrow is also an
isomorphism. This proves Claim 1 2

To return to the proof of the proposition, note that S soft and flat implies (by Corollary 1.3.10) that for a
general short exact sequence of sheaves on X :

0 → F1 → F2 → F3 → 0

the tensored sequence
0 → F1 ⊗ S → F2 ⊗ S → F3 ⊗ S → 0

is an exact sequence of soft sheaves. Since Γc is acyclic for soft sheaves, (see (ii) of Lemma 1.1.13), we have
exactness of:

0 → Γc(X,F1 ⊗ S) → Γc(X,F2 ⊗ S) → Γ(X,F3 ⊗ S) → 0

Now G injective implies that the sequence:

0 → homk(Γc(X,F1 ⊗ S), G) → homk(Γc(X,F2 ⊗ S), G) → homk(Γ(X,F3 ⊗ S), G) → 0

is exact. Now appealing to Claim 1 shows that:

0 → hom(F1, D(S, G)) → hom(F2, D(S, G)) → hom(F3, D(S, G)) → 0

is exact. That is, homk(−, D(S, G)) is an exact functor, so D(S, G) is an injective sheaf and (ii) is proved. 2

2.2. The Dualising Complex of Sheaves and Borel-Moore Homology.

Definition 2.2.1 (Dualising complex). Let X, k be as above, and let S. be a complex of soft and flat k-sheaves
on X . Let G. be a complex of injective k-modules. Define a complex of presheaves by setting its sections over
U ⊂ X open as:

Γ(U, D.(S., G.) := hom.
k(Γc(U,S.), G.)

where hom. denotes the hom-complex. It is called the dualising complex of S. with coefficients in G..

Since each term of the dualising complex above is a direct sum of D(Sj , Gi), the following proposition is an
immediate corollary of Proposition 2.1.2:

Proposition 2.2.2. Let S. be a complex of flat and soft k-sheaves on X and G. be a complex of injective
k-modules. Then we have:

(i): The dualising complex D.(S., G.) is a complex of k-sheaves on X .
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(ii): The complex D.(S., G.) is an injective complex.

Example 2.2.3 (Fundamental sheaf for integral Borel-Moore homology). It is instructive to work out the spe-
cial example of the dualising complex for the case of S. = C., the singular cochain complex of sheaves, which
was seen to be a soft flat complex in the Example 1.3.6. For simplicity, take k = Z, and set G. to be the 2-term
injective resolution

Q
α
→ Q/Z → 0

of Z. In this case the dualising complex is a cochain complex concentrated in negative degrees, so for convenience
we define the chain complex by the usual trick of flipping the sign of the grading. More precisely, we define the
chain complex of sheaves D. by:

Γ(U,Di) := Γ(U, D−i(C., G.)) = hom−i(Γc(U, C.), G.) = hom(Γc(U, Ci), Q) ⊕ hom(Γc(U, Ci+1), Q/Z)

By the Proposition above, this is an injective chain complex of sheaves called the fundamental homology sheaf.
The i-th integral Borel-Moore homology of X is defined as:

HBM
i (X, Z) := Hi(Γ(X,D.))

the homology of the global section complex of D.. The i-th integral homology of X is defined as

Hi(X, Z) := Hi(Γc(X,D.))

The following lemmas and propositions will hopefully clarify the relation with our familiar geometric notions
of homology.

First we state a universal coefficient theorem for cell-complexes X .

Lemma 2.2.4 (Universal coefficients). Let X be a CW-complex with finitely many cells in each dimension.
Then there is a functorial, but non-functorially split short exact sequence:

0 → ExtZ(Hn+1(X), Z) → Hn(X) → homZ(Hn(X), Z) → 0 (2)

where H .(X) (resp. H.(X)) denote singular cohomology (resp. singular homology) with integer coefficients.

Proof: We let C. denote the cellular cochain complex of X , defined by Ci = Hi(X i, X i−1). Each Ci is free
and of finite rank by hypothesis. Thus the short exact sequence:

0 → Z . → C. d
→ B.[1] → 0

is a short exact sequence of free cochain complexes. Consequently, by taking hom(−, Z), we get the short exact
sequence of chain complexes:

0 → hom(B.[1], Z) → C. → hom(Z ., Z) → 0

where Ci := hom(Ci, Z) = Hi(X
i, X i−1) defines the cellular chain complex of X . Thus, by the associated

long-exact homology sequence:

... → hom(Bn+1, Z) → Hn(X) → hom(Zn, Z)
jn∗

→ hom(Bn, Z) → ...

where jn : Bn → Zn is the inclusion (since Hn(C.) is well-known to be the integral singular homology Hn(X)).
Thus we have short exact sequences:

0 → Coker jn+1∗ → Hn(X) → ker jn∗ → 0 (3)

which are (non-functorially) split since the right hand group ker jn∗ is a subgroup of hom(Zn, Z), and hence
finitely generated torsion free, so free.

Now the short exact sequence:

0 → Bn jn

→ Zn → Hn(X) → 0

is a free resolution of the integral cohomology Hn(X) = Hn(C.), so we have exact sequences:

0 → homZ(Hn(X), Z) → homZ(Zn, Z)
jn∗

→ homZ(Bn, Z) → ExtZ(Hn(X), Z) → 0

which shows that ker jn∗ ≃ homZ(Hn(X), Z) and Coker jn∗ ≃ ExtZ(Hn(X), Z). Substituting these groups in
(3) above yields the result. 2
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Remark 2.2.5 (Algebraic duality). The result above shows that for X a CW-complex with finitely many cells
in each dimension, the integral singular homology Hi(X) is algebraically dual to integral singular cohomology
in the sense of the exact sequence (2).

Lemma 2.2.6. Let M . be a cochain complex of abelian groups, and define the chain complex

D(M)i = hom(M i, Q) ⊕ hom(M i+1, Q/Z) = hom−i(M ., G.)

where G. : Q
α
→ Q/Z is the standard injective resolution of Z. Then we have a functorial short exact sequence:

0 → ExtZ(Hn+1(M .), Z) → Hn(D(M).) → homZ(Hn(M .), Z) → 0

If we further assume H .(M .) are finitely generated, then the exact sequence above is non-functorially split.

Proof: We denote by αr the map:

αr := hom(1, α) : hom(M r, Q) → hom(M r, Q/Z)

Then we see that α. : hom(M ., Q) → hom(M ., Q/Z) is a chain map of chain complexes, and the complex
D(M). defined above identifies as:

D(M). = C(α).

the mapping cone of α.. The usual Puppe long exact sequence of the mapping cone thus reads as:

→ Hn+1(hom(M ., Q/Z)) → Hn(D(M).) → Hn(hom(M ., Q))
αn∗→ Hn(hom(M ., Q/Z)) → ..

Noting that Q and Q/Z are injective, it follows that hom(−, Q) and hom(−, Q/Z) commute with taking
cohomology, so Hn(hom(M ., Q/Z)) = hom(Hn(M .), Q/Z) and likewise Hn(hom(M ., Q)) = hom(Hn(M .), Q).
Thus we have short exact sequences:

0 → Cokerαn+1# → Hn(D(M).) → kerαn# → 0 (4)

where αn# := hom(1, α) : hom(Hn(M .), Q) → hom(Hn(M .), Q/Z)

Applying hom(Hn(M .),−) to the short exact sequence:

0 → Z → Q
α
→ Q/Z → 0

leads (by the Snake lemma)to the four term sequence:

0 → hom(Hn(M .), Z) → hom(Hn(M .), Q)
αn#

→ hom(Hn(M .), Q/Z) → ExtZ(Hn(M ., Z) → 0

since ExtZ(Hn(M .), Q) = ExtZ(Hn(M .), Q/Z) = 0 by the injectivity of Q and Q/Z. Thus we get:

Cokerαn# = ExtZ(Hn(M .), Z); kerαn# = hom(Hn(M .), Z)

Plugging this in (4) yields the result. If Hn(M .) is finitely generated, then hom(Hn(M .), Z) is finitely generated
torsion free, so free. Hence the sequence above splits (non-functorially). 2

The following proposition shows that Borel-Moore homology as defined in Example 2.2.3 is algebraically
dual to sheaf-cohomology with compact supports in the constant sheaf ZX , in the sense of Remark 2.2.5.

Proposition 2.2.7 (Borel-Moore homology). For X as above, and D. the chain complex of sheaves defined in
Example 2.2.3, we have a functorial short exact sequence:

0 → ExtZ(Hn+1
c (X, ZX), Z) → HBM

n (X, Z) → homZ(Hn
c (X, ZX), Z) → 0

where H .
c(X, ZX) is the integer (sheaf) cohomology with compact supports. If these last cohomologies are all

finitely generated, then the sequence above splits non-functorially.

Proof: Follows immediately from Lemma 2.2.6 by noting that for the cochain complex of Z-modules M j :=
Γc(X,S.), where S. is a soft flat resolution of ZX , the chain complex D(M). is nothing but the global section
chain complex Γ(X,D.) of the fundamental homology complex of sheaves. 2
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Proposition 2.2.8. Let X be as above. Arguments similar (and simpler) to the above will show that if we
define a chain complex of sheaves by:

Γ(U,DR
i ) := Γ(U, D−i(S., R)) = homZ(Γc(U,Si), R)

where S. is the soft flat resolution of the constant sheaf ZX by Z-sheaves, the then we have a similar algebraic
duality:

Hn(Γ(X,DR
. )) = homR(Hn

c (X, Z), R)

where no ext term appears since R is injective as an abelian group. The left hand side is Borel-Moore homology
with R-coefficients.

There is an analogous result for the de-Rham complex of a smooth manifold X . More precisely:

Proposition 2.2.9. Let X be a smooth manifold of dimension n. Arguments similar (and simpler) to the
above will show that if we define a chain complex of sheaves by:

Γ(U,DdR
i ) := Γ(U, D−i(Λ., R)) = homR(Γc(U, Λi), R)

where Λ. is the soft, flat de-Rham complex of R-sheaves resolving the constant sheaf RX , then we have an
algebraic duality:

Hn(Γ(X,DdR
. )) = homR(Hn

c,dR(X), R)

where again no exts appear since everything is an R-module. The left hand side is Borel-Moore homology of
X with R-coefficients, and H .

c,dR denotes de-Rham cohomology with compact supports.

Remark 2.2.10. Note that the sheaf Γ(X,DdR
i ) = homR(Γc(X, Λi), R) defined in Proposition 2.2.9 is a very

large vector space, even larger than the space Ei(X) of i-currents, which contains only the continuous elements

of homR(Γc(U, Λi), R). It is therefore quite miraculous that both these complexes compute the i-th Borel-Moore
homology with R-coefficients (which is algebraically dual to i-th compactly supported de Rham cohomology by
2.2.9, and which Poincare duality will later show to be Poincare dual to (n− i)-th de Rham cohomology when
X is orientable.

3. Verdier Duality and Poincare Duality

3.1. Verdier Duality. The dualising complex construction above will enable us to clarify the extent to which
Poincare Duality is a local cohomological result. In articular, one will be able to conclude Poincare Duality for
cohomology manifolds. First we state the formal algebraic result which is the key to Poincare duality at the
local level.

Theorem 3.1.1 (Verdier Duality). Let X be as above, k a Noetherian commutative ring with 1. Let S. be a
soft and flat resolution of the constant sheaf kX by k-sheaves, and let G. be an injective complex of k-modules.
Let I. be an injective complex of k-sheaves on X . Then, for the dualising complex D.(S., G.) (see Definition
2.2.1) we have a quasi-isomorphism of complexes of abelian groups:

hom.(I., D(S., G.)) ≃ hom.(Γc(X, I.), G.) (5)

On taking 0-th cohomology of both complexes above, we have a functorial isomorphism of abelian groups:

[I., D.(S., G.)] ≃ [Γc(X, I.), G.] (6)

where [−,−] denotes chain-homotopy classes of chain maps in the appropriate category.

Proof: Tensoring the resolution kX → S. with I. gives a morphism:

θ : I. ⊗ kX → I. ⊗k S.

We claim θ is a quasi-isomorphism (of complexes of sheaves). Enough to check that θ induces isomorphism of
derived sheaves (stalk cohomologies). There are two Kunneth spectral sequences associated to tensor product
complexes of stalks, abutting to the cohomologies of the tensor product stalk complexes on either side above.
The sheaf morphism θ induces the following morphism of E2-terms at the stalk level:

θ : Epq
2 = Hp(I.

x) ⊗ Hq(k) = Ep0
2 = Hp(I.

x) ⊗ k −→ Ẽpq
2 = Hp(I.

x) ⊗ Hq(S.
x) = Ẽp0

2 = Hp(I.
x) ⊗ k
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which is clearly an isomorphism at E2, and both spectral sequences collapsing shows that θ is a q.i. as asserted.

Now I. is injective, thus soft (see Proposition 1.1.8), I. ⊗k S. is soft by Corollary 1.3.10 (since S. are soft
and flat). The functor Γc is acyclic for soft sheaves (see (ii) of Proposition 1.1.16), so the map induced by θ
(also denoted θ)

θ : Γc(X, I.) → Γc(X, I. ⊗k S.)

is a quasi-isomorphism as well. Since G. is injective, homk(−, G.) is an exact functor and we have a quasi-
isomorphism:

hom.(Γc(X, I. ⊗k S.), G.) → hom.(Γc(X, I.), G.)

Now we go back to the identity (1) of Claim 1 in the proof of Proposition 2.1.2. By rewriting that identity for
complexes (and veifying that the differentials agree), we see that the left hand side of the last relation can be
identified as:

hom.(Γc(X, I. ⊗k S.), G.) ≃ hom.(I., D(S., G.))

which proves the q.i. asserted in (5). Finally, as mentioned in the statement of the theorem, (6) follows from
(5). 2

Corollary 3.1.2 (Verdier Duality 2). Let T . be a complex of soft k-sheaves on X , and S. and G. as in the
Theorem 3.1.1 above. Then again we have a quasi-isomorphism:

hom.(T ., D(S., G.)) ≃ hom.(Γc(X, T .), G.) (7)

On taking 0-th cohomology of both complexes above, we have a functorial isomorphism of abelian groups:

[T ., D.(S., G.)] ≃ [Γc(X, T .), G.] (8)

Proof: Let I. be an injective resolution for T ., so we have a quasi-isomorphism T . → I.. Since D(S., G.) is
an injective complex of sheaves (by (ii) of Proposition 2.2.2), we have hom.(−, D(S., G.)) is an exact functor
on the category of complexes of k-sheaves, and hence we have a quasi-isomorphism:

hom.
k(I., D(S., G.)) → hom.

k(T ., D(S., G.))

Since Γc is acyclic for soft sheaves and injective sheaves (which are soft), and G. injective implies homk(−, G.)
is exact, we have a quasi-isomorphism of complexes of k-modules

hom.
k(Γc(X, I.), G.) → hom.

k(Γc(X, T .), G.)

By the Verdier Duality Theorem 3.1.1 above, the left hand sides of the two relations above are quasi-isomorphic.
Hence so are the right-hand sides, proving the corollary. The relation (8), follows from (7) by taking H0. 2

3.2. Poincare Duality.

Proposition 3.2.1 (Derived sheaf of the dualising sheaf). Let X, k be as above, with dimc X = n. Let let
kX → S. be a soft and flat resolution of the constant sheaf, and k → K . be an injective resolution of k by
k-modules. Then the dualising complex D.(S., K .) is quasi-isomorphic to a complex D. of sheaves satisfying:

Dp = 0 for p < −n

H−n(Γ(U,D.)) = homk(Hn
c (U, kU ), k) for U any open subset of X

Proof: For simplicity of notation, write E . := D.(S., K .).

Since dimc X = n, we can (by Proposition 1.3.5) find a soft flat resolution of length (n + 1):

0 → kX → S0 → ... → Sn → 0

for the constant sheaf kX . For an open subset U , letting j : U →֒ X denote the inclusion map, we see that (by
Corollary 1.1.19 and Proposition 1.2.2) the complexes j!j

∗S.[p] are soft complexes for all p.
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By the relation (8) of Corollary 3.1.2 applied to T . = j!j
∗S, we therefore have the isomorphism:

[j!j
∗S.[p], E .] ≃ [Γc(X, j!j

∗S.[p]), K .] = [Γc(U,S.[p]), K .] for all p (9)

Now j!j
∗S. is a sheaf that is zero outside U , and hence the left side can be rewritten:

[j!j
∗S.[p], E .] = [[j!j

∗S., E .[−p]] = [S.
|U , E .[−p]|U ] for all p (10)

Since E .
|U [−p] is an injective complex of sheaves (by Remark 1.1.5), and kU → S.

|U continues to be a soft

resolution (by Corollary 1.1.19), we have:

[S.
|U , E .[−p]|U ] ≃ [kU , E .

|U [−p]] = H−p(hom(kU , E .
|U )) = H−p(Γ(U, E .)) for all p

Combining this relation with (9) above, we have:

[Γc(U,S.[p]), K .] = H−p(Γ(U, E .)) for all U open and all p (11)

Now if p > n, then S.[p] will be non-zero only in strictly negative degrees, whereas K . lives only in non-
negative degrees. Thus the left side of relation (11) vanishes. Thus it follows that

H−p(Γ(U, E .)) = 0 for p > n, and all open U

By taking direct limits over neighbourhoods U of a fixed point x, we get H−p(E .
x) = 0 for p > n. Thus the

derived sheaf H−p(E .) = 0 for p > n. Hence we can replace the complex E . with the complex D. := τ≥−nE
..

By the relation (11) above,

H−n(Γ(U,D.) = H−n(Γ(U, E .)) = [Γc(U,S.[n]), K .]

where the last but one equality follows from the quasi-isomorphism of E . and D. and the last equality follows
from the relation (11). Now S.[n] is concentrated in ≤ 0 degrees, and K . in ≥ 0 degrees, so the right hand
group above is nothing but

[Γc(U,S.[n]), K .] = hom(H0(Γc(U,S.[n]), H0(K .)) = hom(Hn
c (U, kU ), k)

which proves the proposition. 2

Definition 3.2.2. Let X be a k-cohomology n-manifold of dimc X = n. That is, each point x ∈ X has a
fundamental system of neighbourhoods U satisfying Hi

c(U, kU ) = k for i = n and zero for i 6= n. Then consider
the presheaf OrX defined by:

Γ(U, OrX) = homk(Hn
c (U, kU ), k)

where the restriction maps come from dualising the natural forward map Hn
c (V, kU ) → Hn

c (U, kU ) coming from
extension of sections by zero.

That OrX is a sheaf follows from the Mayer-Vietoris sequence for cohomology with compact supports (see
the Proof of (i) of Proposition 2.1.2). It is called the k-orientation sheaf of X .

Finally say that X is k-orientable if OrX turns out to be the constant sheaf k.

Proposition 3.2.3. Let X be a k-cohomology n-manifold. Then the dualising complex E . = D.(S., K .) of
Proposition 3.2.1 above is quasi-isomorphic to the single term complex OrX [n]. (That is, the sheaf OrX placed
at the (−n)-th spot.
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Proof: Recall the relation (11) from the previous proposition:

H−p(Γ(U, E .)) ≃ [Γc(U,S.[p]), K .]

with all the notation of that proposition. Now if an open set U is cohomologically equivalent to Rn, then
the complex of k-modules Γc(U,S). is quasi-isomorphic to Hn

c (U, kU )[−n] (since soft resolutions also compute
compactly supported cohomology). Thus we have a quasi-isomorphism

Γc(U,S.[p])
q.i.
→ Hn

c (U, kU )[p − n]

Since K . is an injective complex of k-modules, we have:

[Γc(U,S.[p]), K .]
q.i.
→ [Hn

c (U, kU )[p − n], K .] ≃ [[Hn
c (U, kU ), K .[n − p]] = Extn−p

k ([Hn
c (U, kU ), k)

But since Hn
c (U, kU ) = k, it follows that the right hand side of the above relation is 0 for n 6= p, and

= hom(Hn
c (U, kU ), k) = Γ(U, OrX) for p = n.

Thus we have for a cohomologically trivial neighbourhood U of any x ∈ X :

H−p(Γ(U, E .)) = Γ(U, OrX) for p = n (12)

= 0 for p 6= n (13)

from which it follows (by taking direct limit over U a fundamental system of cohomologically trivial neigh-
bourhoods U of x) that the derived sheaf H−p(E .) coincides with that of OrX [n] via the map above. The
proposition follows. 2.

Corollary 3.2.4 (Poincare Duality). Let X be a cohomology n- manifold. Let D. = E−. denote the dual-
ising complex, of the previous proposition (written as a chain complex, with ≥ 0 grading). Then we have
isomorphisms:

Hi(X, OrX) ≃ Hn−i(Γ(X,D.)

and analogously:
Hi

c(X, OrX) ≃ Hn−i(Γc(X,D.)

Note that by the discussion in Example 2.2.3, for k = Z, the right hand sides of the relations above maybe
interpreted as integral Borel-Moore homology (resp. integral homology) of X .

Proof: The complex of sheaves E [−n]. is quasi-isomorphic to the sheaf OrX [n]. Hence we have an injective
resolution:

OrX → E .[−n]

of the orientation sheaf OrX . Hence the sheaf cohomology Hi(X, OrX) = Hi(Γ(X, E [−n].) = Hi−n(Γ(X, E .)) =
Hn−i(Γ(X,D.)). Likewise for cohomology with compact supports. 2
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4. Appendix

4.1. PL-spaces, geometric chains and cochains. Rather like the definition of a C∞-structure on a smooth
manifold as an equivalence class of C∞-atlases on it, one can define a PL-structure on a polyhedron as an
equivalence class. All triangulations considered below are locally finite by assumption.

Definition 4.1.1 (PL-structure and PL-space). Let X be a topological space which is a simplicical complex
(=polyhedron). Say a triangulation T ′ of X is equivalent to a triangulation T of X if there exists a triangulation
T ′′ of X which is a rectilinear subdivision of both T and T ′. Note that by this definition, each rectilinear
subdivision T ′ of a fixed triangulation T of X is equivalent to T . A PL-structure on X is an equivalence class

of triangulations of X . A triangulation arising out of a fixed PL-structure (i.e. in the given equivalence class)
is called an admissible triangulation. Every triangulation of X uniquely determines a PL structure on it. A
space with a PL-structure is called a PL-space. A closed sub-complex of X (with respect to an admissible
triangulation T ) automatically inherits an equivalence class of triangulations, i.e. a PL-structure, and is called
a closed PL- subspace.

Let T be a triangulation of a topological space X , and k a Noetherian ring with 1. Denote by Σi
T the set

of oriented i-simplices of T . We recall the k-module CT,BM
i (X, k) of simplicial, or Borel-Moore i-chains with

k coefficients with respect to T . It consists of formal sums (possibly infinite) ξ =
∑

σ∈Σi
T

ξ(σ)σ.

These k-modules clearly fit into the chain complex of locally finite simplicial chains by the obvious boundary
operator ∂ which makes sense because of local finiteness of the triangulation T , i.e. each point of X has a
neighbourhood meeting only finitely many simplices. It follows that each point can be a vertex of at most
finitiely many simplices, which, in turn, implies that each (i−1)-simplex can be a face of at most finitely many
i-simplices.

There is also the k-submodule CT
i (X, k) ⊂ CT,BM

i (X, k) of finite simplicial i-chains, which defines a sub-
complex of CT,BM

. (X, k). Clearly:

CT,BM
i (X, k) ≃

∏

σ∈Σi
T

kσ

CT
i (X, k) ≃ ⊕σ∈Σi

T
kσ

and the inclusion CT
i ⊂ CT,BM

i is the obvious inclusion of the direct sum in the direct product. Finally, X is

compact iff Σ0
T is a finite set iff Σi

T is a finite set for all i iff CT
i (X, k) = CT,BM

i (X, k).

Likewise, we have the k-module of simplicial k-valued i-cochains with respect to T , defined as Ci
T (X, k) :=

homZ(CT
i (X, Z), k) (which is also = homk(CT

i (X, k), k)). Note that C.
T is a cochain-complex of k-modules,

the coboundary operator being defined by the adjointness formula 〈δ f, σ〉 := 〈f, δσ〉. It contains the cochain
subcomplex Ci

T,c(X, k) of compactly suppported k-valued i-cochains with respect to T . Again it is easy to see
that in the notation of the last paragraph, we have:

Ci
T (X, k) ≃

∏

σ∈Σi
T

kσ

Ci
T,c(X, k) ≃ ⊕σ∈Σi

T
kσ

with the natural inclusion Ci
T,c ⊂ Ci

T being the obvious one.

Remark 4.1.2. The identifications above clearly show that for a fixed triangulation T of X ,

CT,BM
i (X, k) = homk(Ci

T,c(X, k), k)

For a PL-space X with some fixed PL-structure, there is a way of defining the simplicial-chain (or cochain)
complex of X with respect to all the admissible triangulations simultaneously. This eliminates the need for
constantly subdividing a given triangulation, and is done as follows.
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Definition 4.1.3 (Geometric chains and cochains on a PL-space). By definition, the admissible triangulations
on a PL-space X are a directed set. Let us write T ′ ≥ T (or T ≤ T ′) if T ′ is a rectilinear subdivision of T .
This defines a directed system via the maps:

αTT ′ : CT,BM
i (X, k) → CT ′,BM

i (X, k)

which take an oriented i-simplex σ of T to the sum of the finitely many compatibly oriented i-simplices whose
union is σ. It is easily verified that this is a chain map, and hence the direct limit of this system, denoted:

CBM
. (X, k) := lim

→T
CT,BM

. (X, k)

is a chain complex. An element of the k-module CBM
i (X, k) is called a geometric i-chain or geometric Borel-

Moore i-chain with coefficients in k.

The chain maps αTT ′ above restrict to chain maps of the subcomplexes of finite chains, i.e.

αTT ′ : CT
. (X, k) → CT ′

. (X, k)

and their direct limit is the complex:

C.(X, k) := lim
→T

CT
. (X, k)

which is a k-subcomplex of CBM
. (X, k). An element of Ci(X, k) is called a finite geometric i-chain. Clearly X

is compact iff Ci(X, k) = CBM
i (X, k).

We can now easily carry over the above considerations to cochains. Namely:

Ci(X, k) := homk(Ci(X, k), k) = homk(lim
→

CT
i (X, k), k)

Ci
c(X, k) := {f ∈ Ci(X, k) : supp f is compact}

Remark 4.1.4. If ξ =
∑

σ ξ(σ)σ ∈ CT,BM
i (X, k) is a locally-finite chain, then we define supp ξ := ∪ξ(σ) 6=0 | σ |.

Since being a closed set is a local property at each x ∈ X , and ξ is locally finite at each point of X , it follows

that | ξ | is a closed subset of X . Since each element ξ of CBM
i (X, k) is actually a chain in some CT,BM

i (X, k),
and supports don’t change under subdivision, it follows that | ξ | is closed for each geometric Borel-Moore
i-chain ξ.

A geometric Borel-Moore i-chain ξ must be locally finite at each point of X , not just each point of | ξ |.
For example, in the space X = [0, 1] say, if we define σi to be the 1-simplex [2−i−1, 2−i], then

∑∞
i=0 σi is not

a geometric Borel-Moore 1-chain in X . Each term of this chain is from a finer triangulation, and indeed the
sum ‘chain’ fails to be locally finite at 0.

However, if we let U ⊂ X be the open subset (0, 1], and give it the (induced) PL-structure coming from the
triangulation consisting of vertices {2−i}i≥0 and 1-simplices {σi}i≥0, then the chain ξ above is a valid Borel-
Moore 1-chain in U . This shows that there isn’t a natural inclusion map for Borel-Moore simplicial chains of
an open PL-subspace into the whole space. (For a forward homomorphism f∗ in Borel-Moore homology, one
needs f to be proper, as is easily seen from the definition above).

Remark 4.1.5. Even though i-cochains of arbitrary support Ci(X, k) come from dualising Ci(X, k), viz. the
i-chains of finite support, the i-cochains of compact support do not come from dualising Borel-Moore i-chains.
For example, let X = N with the discrete topology, and k = Q. Then all triangulations of X are the same,
and the Q-vector space of geometric 0-chains CBM

0 (X, Q) =
∏

i∈N Q. The Q-dual of the last group surjects
onto homQ(⊕i∈NQ, Q) =

∏
i∈N Q, so is a vector space of uncountable cardinality, and certainly not equal to

the countable set C0
c (X, Q) = ⊕i∈NQ.
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4.2. Sheaves of geometric chains and cochains. Let X be a PL-space as above. For an open subset
U ⊂ X , there exists a natural induced PL-space structure on U . In fact, if we fix an admissible triangulation
T of X , then there is a triangulation TU of U so that every i-simplex of U is an i-simplex of some subdivision
T ′ of T , and is therefore contained in a unique i-simplex of T . (Exercise: Construct TU from T ).

Clearly any finite i-chain ξ ∈ CTU

i (U, k) is a finite sum ξ =
∑r

n=1 ξnσn, and hence becomes a finite chain in

CT ′

i (X, k) for some some fixed admissible triangulation T ′ of X which is a subdivision of T . Composing with

the natural map CT ′

i (X, k) → Ci(X, k), we have a natural map:

CTU

i (U, k) → Ci(X, k)

for every induced triangulation TU from an admissible triangulation T of X . Taking a limit of the left hand side
over the directed set of admissible triangulations T of X (whose corresponding TU ’s form a cofinal subfamily
in the family of triangulations of U admissible with respect to its induced PL-structure), one has a natural
map of finite geometric i-chains:

jUX : Ci(U, k) → Ci(X, k)

which is a chain map, and on dualising leads to the restriction maps of geometric cochains

ρXU : Ci(X, k) → Ci(U, k)

More generally, if V ⊃ U , the same considerations as above apply to X replaced by V , and we have natural
restrictions ρV U . So it is natural to make the following:

Definition 4.2.1. Define the k-presheaf of geometric i-cochains by the sections:

Ci = Γ(U, Ci) := Ci(U, k)

with the sheaf maps ρV U as in the last para. It is clearly a k-presheaf.

Proposition 4.2.2. Let X be a PL-space. Then:

(i): The k-presheaf Ci of geometric i-cochains defined above is a sheaf.

(ii): Ci is a soft sheaf.

Proof: There is an obvious Mayer-Vietoris short exact sequence (exercise, remembering that direct limits
preserve exactness) of chain complexes:

0 → Ci(U ∩ V, k)
(jU∩V,U ,jU∩V,V )

−→ Ci(U, k) ⊕ Ci(V, k)
jU,U∪V −jV,U∪V

−→ Ci(U ∪ V, k) → 0

which leads to exactness of:

0 → Ci(U ∪ V, k) → Ci(U, k) ⊕ Ci(V, k) → Ci(U ∩ V, k)

since hom(−, k) is a left-exact functor. This gives the sheaf condition for a pair of opens U, V , and the usual
appeal to Zorn etc, gives it for arbitrary collections. This proves (i).

To see (ii) first note that for a fixed triangulation T of X , and Y ⊂ X a subcomplex of X with respect to
T , by definition Σi

T (Y ) ⊂ Σi
T (X), so that there is a splitting map:

π : CT
i (X, k) → CT

i (Y, k)

which is a left inverse for the inclusion j : CT
i (Y, k) → CT

i (X, k). π sends all i-simplices not contained in Y to
0, and all those in Y to themselves. This map is compatible with subdivisions, so on passing to the limit over
subdivisions of T , we get a splitting:

π : Ci(X, k) → Ci(Y, k)

Hence, for a subcomplex, the restriction map of simplicial i-cochains with respect to the triangulation T ,
namely:

ρ = j∗ : Ci(X, k) = homk(Ci(X, k), k) → Ci(Y, k) = homk(Ci(Y, k), k)

is a split surjection.

Now we need to show that Γ(X, Ci) → Γ(F, Ci) is surjective for each compact subset F of X . Let s ∈ Γ(F, Ci).
By the definition of the right hand side, there is a cochain f ∈ Ci(U, k) extending s, for some open set U of
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X . For each admissible triangulation T , we may regard f ∈ Ci
TU

(U, k) = hom(CTU

i (U, k), k) in the notation
introduced above.

Since F is compact, there exists a finite subcomplex Y (with respect to any fixed TU ) of U such that F ⊂ Y .
(For example, take Y to be the union of all simplices of the triangulation TU that intersect F , and note that
this is a finite set by the compactness of F ). Note that f|Y ∈ Ci(Y, k) also restricts to s.

Since Y is a finite union of simplices of TU , and each simplex of TU is a simplex of some subdivision of X ,
it follows that there exists a subdivision T ′ ≥ T triangulating X such that each simplex of Y is a simplex of
T ′. In other words, Y is a subcomplex of X with respect to T ′.

By the foregoing, Ci(X, k) → Ci(Y, k) is surjective. Thus there is a g ∈ Ci(X, k) which lifts f|Y . Its image

in Ci(X, k) is a lift of s ∈ Γ(F, Ci). This proves (ii).
2

4.3. The Dualising sheaf for a PL-space. By (ii) of the Proposition 4.2.2 above, for a PL-space X (which
is automatically locally contractible, since it is a polyhedron) the map:

kX → C.

gives a soft resolution of k. In the case of k = Z, or a field say, it is also flat.

Say we take k a field. Then the global sections of the dualising sheaf D.(C., k) will be given by definition as:

Γ(X, D−i(C., k)) = homk(Γc(X, Ci), k) = homk(Ci
c(X, k), k)

It is a fact that the map Ci
c(X, k) → Ci

c,T (X, k) is a quasi-isomorphism, and hence the natural map

homk(Ci
c,T (X, k), k) → Γ(X, D−i(C., k))

is a quasi-isomorphism. The same statement holds for U an open set in place of X (and TU in place of T ).

On the other hand, since Ci
c,T (X, k) = ⊕σ∈Σi

T
(X) k, it follows that homk(Ci

c,T (X, k), k) ≃
∏

σ∈Σi
T

(X) k =

CT,BM
i (X, k). Thus:

Proposition 4.3.1 (Dualising sheaves and geometric chains). Let k be a field, and X a PL-space. Then there
is a quasi-isomorphism between the global sections of the dualising sheaf, viz. Γ(X, D−i(C., k)) and the locally

finite (Borel-Moore) simplicial i-chains with respect to T given by CT,BM
i (X, k). Under this correspondence,

compactly supported sections of both sides correspond to each other, i.e. finite simplicial i-chains CT
i (X, k)

correspond to compactly supported sections Γc(X, D−i(C., k).

5. Geometric Intersection Homology

5.1. Stratified pseudomanifolds. We now introduce the class of topological spaces for which geometric
(=PL) intersection homology will be developed.

Definition 5.1.1 (n-pseudomanifold). A PL-space (in the sense of §4 above) is called an n-dimensional pseu-

domanifold if in some admissible triangulation T of X ,

(i): For each i, each i-simplex of T is a face of some n-simplex of T .

(ii): Each (n − 1) simplex of T is a face of exactly two n-simplices.

One readily checks that these notions are independent of the admissible triangulation chosen, and depend
only on the PL-structure. If, in addition, each n-simplex of T can be simultaneously and compatibly oriented
(i.e. in such a way that each (n−1)-simplex acquires opposite orientations induced from the two faces adjacent
to it), then say X is orientable. If every point of X has a neighbourhood (PL)-homeomorphic to a ball, then
call it an n-dimensional PL manifold.
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Definition 5.1.2 (Stratified n-pseudomanifold). A stratified n-pseudomanifold is a pseudomanifold X with a
filtration (called a PL-stratification):

X = Xn ⊃ Xn−1 = Xn−2 ⊃ Xn−3..... ⊃ X0 ⊃ X−1 = φ

by closed PL-subspaces Xn−k. Xn−k is called the closed stratum of X of codimension k. These strata are
required to satisfy:

(i): The set Sn−k := Xn−k \ Xn−k−1 is either empty or a PL-manifold of dimension n − k.

(ii): [Local triviality condition] Each point x ∈ Sn−k has a neighbourhood U which is PL-homeomorphic to
Bn−k × cL where Bn−k is the open ball of dimension (n− k), cL is the open cone cL on the link L where
L is required to be a stratified (k − 1)-pseudomanifold by a stratum preserving PL-homemorphism.

Some remarks about (ii) are in order. Note the definition is not circular, it is inductive on the dimension n,
since (k − 1) < n. An open set U ⊂ X inherits the stratification of X by intersecting the strata of X with U .
The open cone cL on L is the topological space cL := [0, 1)×L/ ∼ with strata (cL)k−j = cLk−1−j (cone on the
codimension-j stratum of L is the codimension j stratum of cL) and (cL)0 = cone point. Finally Bn−k × cL
has the strata Bn−k × (cL)i. Xn−2 is often denoted Σ and called singular locus for historic reasons.

Proposition 5.1.3. An n-pseudomanifold always admits a PL-stratification.

Proof: Take Xn−1 = Xn−2 to be the singular stratum Σ ⊂ X , which we can assume to be a subcomplex in
some triangulation T of X . (By a regular point we mean a point which has a neighbourhood PL- homeomorphic
to an n-ball, and a singular point is a point which is not regular. It is easy to see (using (ii) in the Definition
5.1.1 above) that Σ is contained in the (n − 2)-skeleton of X . Now define Xn−j to be the (n − j)-skeleton of
Σ. The details of verifying that this is a stratification are left as an exercise. 2

Theorem 5.1.4 (Lojasiewicz). If X is a complex analytic space of pure complex dimension n, then it has the
structure of a stratified 2n-pseudomanifold, with only even dimensional strata. i.e. S2j+1 = X2j+1 \ X2j = φ
for all j ≥ 0.

Remark 5.1.5. If X is a complex analytic space of pure C-dimension n, it might be tempting to stratify it by
taking X2n−2 := Σ(X) (the singular locus of X), X2n−4 = Σ(Σ(X)) and so on by induction. Unfortunately,
even though this filtration trivially satisfies (i) in the Definition 5.1.2, it does not satisfy the local-triviality
condition (ii) in general. A classic example is the affine cubic surface V (y2z − x2) ⊂ C3. It is easy to check
that the entire z-axis is the singular locus Σ(X), but the origin has no neighbourhood of the form B2 × cL
required. One needs to put in a zero stratum X0 = (0, 0, 0) for (ii) to be restored.

In general, the filtration by inductive singular loci defined here can be refined to give a genuine locally trivial
stratification. In general, the less strata there are, the better.

5.2. Intersection homology. For X a PL-space, and Y a closed PL-subspace, the dimension of Y makes
unambiguous sense (as the maximum dimension of all simplices occurring in Y , after provisionally fixing some
admissible triangulation on X with respect to which Y is a subcomplex).

Definition 5.2.1 (Perversity and allowability). Let X be a stratified n-pseudomanifold (see Definition 5.1.2).
A perversity associated to X is a sequence p = (p2, ..., pn) of non-negative integers satisfying:

(i): p2 = 0.

(ii): pk ≤ pk+1 ≤ pk + 1 for all 2 ≤ k ≤ n
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The bottom perversity 0 := (0, 0, ..., 0) and the top perversity t := (0, 1, 2, .., n − 2). The lower middle

perversity (resp. upper middle perversity) are defined as:

m := (0, 0, 1, 1, 2, 2, ..., mk = [(k − 2)/2] ....) (resp. n := (0, 1, 1, 2, 2, ..., [(k − 1)/2] , ...))

Finally say that the perversities p and q are said to be complementary if p + q = t. Note that the lower and
upper middle perversities above are complementary.

Definition 5.2.2 (Allowable chains, intersection homology). Let X be a stratified n-pseudomanifold, and p a
perversity. We say a geometric i-chain ξ ∈ CBM

i (X, k) is (p, i)-allowable if:

dim(|ξ | ∩Xn−k) ≤ i − k + pk, 2 ≤ k ≤ n

where |ξ | is the (closed) support of ξ viz. ξ := ∪ξ(σ) 6=0 |σ |.

A finite chain ξ ∈ Ci(X, k) is (p, i)-allowable if it is (p, i)-allowable considered as an element of CBM
i (X, k).

Notice that by definition, | ξ | ∩Xn−k is actually a subcomplex of X in some fine enough admissible triangu-
lation of X (viz. a closed PL-subspace), so the dimension in the definition above refers to the dimension as a
subcomplex.

The intersection chain complex of perversity p of geometric chains is the k-subcomplex of CBM
. defined as:

ICp,BM
i (X, k) = {ξ ∈ CBM

i (X, k) : ξ is (p, i)-allowable and ∂ξ is (p, i − 1)-allowable}

Finally, the intersection chain complex of perversity p of finite geometric i-chains is defined as:

ICp
i (X, k) = ICp,BM

i (X, k) ∩ Ci(X, k)

For X compact, of course, ICp
i (X, k) = ICp,BM

i (X, k).

The intersection homologies of X with perversity p (and coefficients k) are defined as:

IHp,BM
i (X, k) := Hi(ICp,BM

. (X, k); IHp
i (X, x) := Hi(ICp

. (X, k)

Remark 5.2.3. From the definitions above, it is clear that if a stratified n-pseudomanifold X happens to be
a n-manifold, and we equip it with the best possible stratification (with empty strata in dimensions < n), i.e.
Xn−2 = Xn−3 = ... = X0 = X−1 = φ, then all geometric i-chains, finite or otherwise, are vacuously allowable,
and Borel-Moore and finitely supported intersection homology (with any perversity p) coincide with usual
simplicial Borel-Moore and finitely supported simplicial homology respectively. What isn’t clear at this point
is that if we artificially stratify X with some lower dimensional strata, the answer doesn’t change. The usual
limitations of doing things with triangulations and geometric chains ! There is a formulation of intersection
homology modelled after singular chains (due to Henry King) which shows that intersection homology is
topologically invariant (see [K], ??). The technical complication with it is the notion of dimension, which has
to be topologically formulated.

Remark 5.2.4. Note that if a simplicial chain ξ had its support | ξ | meeting each closed stratum Xn−k

transversally, then we would have dim (| ξ | ∩Xn−k) = i−k for k = 2, 3, .., n. Hence the perversity pk measures
departure from transversality in codimension k. (“perverse”=“not transverse”). In particular, if a 0 or 1- chain
ξ is to be allowable, it must be transverse to the “singular locus” Σ = Xn−2 of codimension 2 (since p2 = 0),
so must be disjoint from it. That is, | ξ |⊂ X \ Xn−2 for an allowable 0 or 1-chain ξ.

It is instructive to work out the case of a stratified pseudomanifold with isolated singularities, the simplest
departure from the manifold situation. Before we do so, we recall the notion of a family of supports. (See
[BM], [God]).

Definition 5.2.5 (Homology with supports). A collection Φ of closed subsets of a topological space X is called
a family of supports if:
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(i): A, B ∈ Φ implies A ∪ B ∈ Φ.

(ii): A ∈ Φ, and C ⊂ A a closed subset, impies C ∈ Φ.

The key example, of course, is Φ = {K ⊂ X : K is compact}. Another example is the family of closed
sets in X which is disjoint from some fixed subset A. It is quite easy to show (using both (i) and (ii) in the
definition above) that the k-submodules of geometric chains with supports in Φ defined by:

CΦ
i (X, k) = {ξ ∈ CBM

i (X, k) :| ξ |∈ Φ; and | ∂ξ |∈ Φ}

form a subcomplex of CBM
. . The i-th homology Hi(C

Φ
. ) is denoted HΦ

i (X, k) and called the i-th homology

with supports in Φ (and coefficients in k).

For example, if we let Φ = {K : K compact}, then CΦ
. = C., the finitely supported chain complex, and

HΦ
i = Hi, the finitely supported homology.

Exercise 5.2.6. Let X be a topological space, and A ⊂ X a proper closed subset. Let Φ denote the family of
supports consisting of closed subsets of X disjoint from A. Then show that:

(i): If X is compact, we have:
HΦ

i (X, k) = Hi(X \ A, k)

(ii): When X is not assumed compact, assume it is paracompact and locally compact, hausdorff (⇒ normal).
Then, prove that:

CΦ
· (X, k) = lim

−→

U∈U

CBM
· (X \ U, k)

where U is the directed set of all neighbourhoods of A ordered by reverse inclusion. Hence it follows that:

HΦ
i (X, k) = lim

−→

U∈U

HBM
i (X \ U, k) for all i

[Note: Though limU∈U (X \U) = (X \A) as a topological space, the direct limit on the right side above
is not HBM

i (X \ A, k), since Borel-Moore homology does not commute with direct limits!]

Proposition 5.2.7 (Stratified Pseudomanifolds with Isolated Singularities). Let X be a stratified
n-pseudomanifold with isolated singularities. That is Xn−2 = Xn−3 = ... = X0, with X0 being a discrete set of
points. Let Φ be the family of closed subsets of X \X0 disjoint from X0. Then for a perversity p = (p2, .., pn)
we have:

IHp,BM
i (X, k) = HΦ

i (X, k) for i ≤ n − pn − 2

= Im
[
HΦ

i (X, k) −→ HBM
i (X, k)

]
for i = n − pn − 1

= HBM
i (X, k) for i ≥ n − pn (14)

Proof: First note that:
pk+1 − (k + 1) ≤ pk + 1 − (k + 1) = pk − k

by the definition of a perversity, so that pn − n = min2≤k≤n(pk − k). It follows that the allowability condition
for k = n (i.e. with respect to X0), namely:

dim(| ξ | ∩X0) ≤ i − n + pn, dim (| ∂ξ | ∩X0) = i − n + pn − 1

is the most stringent condition, and forces all the other allowability conditions for k = 2, .., n − 1, since
Xn−2 = Xn−3 = ... = X0. It follows that:

ICp
i (X, k) = CΦ

i (X, k) for i ≤ n − pn − 1

= CBM
i (X, k) ∩ ∂−1CΦ

i−1(X, k) for i = n − pn

= CBM
i (X, k) for i ≥ n − pn + 1 (15)



26 VISHWAMBHAR PATI

From this it immediately follows that the intersection homologies are as stated in (5.2.7) abvoe. 2

Corollary 5.2.8 (Compact case). Let X be a compact stratified n-pseudomanifold with isolated singularities,
viz., Xn−2 = Xn−3 = ... = X0. Then for any perversity p, the intersections homologies of X are given by:

IHp
i (X, k) = Hi(X \ X0, k) for i ≤ n − pn − 2

= Im
[
Hi(X \ X0, k) −→ Hi(X, k)

]
for i = n − pn − 1

= Hi(X, k) for i ≥ n − pn (16)

Proof: Follows immediately from the Exercise 5.2.6 and Proposition 5.2.7 above. 2

Exercise 5.2.9. Verify that the intersection homologies IHp
· (X, k) = H·(X, k) (for all p) when X is smooth

and compact, and X0 is taken to be any discrete subset of X .

5.3. Poincare Duality Again. We saw in Proposition 3.2.3 and its Corollary 3.2.4 that for a Z-orientable
(i.e. orientable) n-manifold M , we have Poincare Duality isomorphism:

D : Hi
c(M, Z) → Hn−i(M, Z)

This allows us to define the following intersection pairing:

. : HBM
i (M, Z) ⊗ Hn−i(M, Z) → Z

α ⊗ β 7→ α.β :=
〈
α, D−1β

〉

where we are using the natural map HBM
i (M, Z) → homZ(Hi

c(M, Z), Z) which is the right hand arrow in
the short exact sequence of Proposition 2.2.7. If one assumes that X is compact, H∗(M, Z) = HBM

∗ (M, Z)
and Hi(M, Z) = Hi

c(M, Z) are all finitely generated, and the fact that D is an isomorphism combined with
Proposition 2.2.7 shows that:

Proposition 5.3.1 (Intersection pairing on manifolds). Let M be a compact orientable n-manifold. Then,
denoting the free part of a finitely generated abelian group G by F (G), the restriction of the intersection
pairing:

. : F (Hi(M, Z)) ⊗ F (Hn−i(M, Z)) → Z

is non-degenerate over Z (viz. F (Hi(M, Z)) ≃ homZ(F (Hn−i(M, Z)), Z) via the map α 7→ α.( )).

Example 5.3.2 (Nodal cubic). The nodal cubic curve is the complex curve defined as:

X := {[x : y : z] ∈ P2(C) : xy2 − z2(z + x) = 0}

It is pictured in Fig. 1, and maybe viewed as a “degeneration” of the elliptic curve V (xy2−z(z +λx)(z +x)) ⊂
P2(C) as the root λ and the root 0 merge (i.e. λ → 0). The intersection pairing on H1(X, Z) = Zb (see the
Figure 1) is easily seen to be b.b = 0 (since the cohomology class β dual to b is a 1-dimensional class, it satisfies
β∪β = −β∪β and H2(X, Z) is infinite cyclic implies β∪β = 0 !) Hence the free part F (H1(X, Z)) = H1(X, Z)
is not non-degenerately paired with itself, and Poincare Duality has broken down for X .

The key reason for introducing intersection homology is to restore the non-degenerate pairing of Poincare
Duality. We first need a lemma on Borel-Moore homology.

Lemma 5.3.3 (One-point compactification and Borel-Moore homology). Let X be any locally compact haus-

dorff topological space, and let X̂ := X ∪ ∞ denote its one point compactification. Assume X̂ is locally
contractible. Then for k any Noetherian ring with 1, we have:

Hi
c(X, k) ≃ Hi(X̂,∞; k) for all i

and similarly:

HBM
i (X, k) ≃ Hi(X̂,∞; k) for all i
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Figure 1. The Nodal Cubic

Proof: If α ∈ Ci(X, k) is an i-cochain of compact support K, then by definition the restriction of α to
Ci(X \K, k) is zero, so that that α ∈ Ci(X, X \K, k). It easily follows that the compactly supported cochains
are given as the direct limit:

Ci
c(X, k) = lim

K⊂X compact
Ci(X, X \ K; k)

and since homology and direct limit commute, it follows that H i
c(X, k) = limK⊂X compact Ci(X, X \ K; k).

Using excision the fact that ∞ has a fundamental system U of contractible neighbourhoods in the one point

compactification X̂ = X ∪∞, we find that

lim
K

Hi(X, X \ K; k) = lim
U∈U

Hi(X̂ \∞, U \∞; k) = lim
U∈U

Hi(X̂, U ; k) = Hi(X̂,∞; k)

which proves the first assertion. For the Borel-Moore statement, use the Universal coefficient theorem Propo-
sition 2.2.7) 2

Before we establish Poincare Duality for a stratified n-pseudomanifold with isolated singularities, we quote
a result from [Dold], p 297.

Lemma 5.3.4 (Alexander-Lefschetz-Poincare). Let L ⊂ K ⊂ X be topological spaces such that (i) L is closed
in K, (ii) K \ L is closed in X \ L, and X \ L is an n-manifold which is oriented along K \ L, then:

Ȟi
c(K, L) ≃ Ȟi

c(K \ L) ≃ Hn−i(X \ L, X \ K)

Proposition 5.3.5 (Poincare Duality for IH.). Let X be a stratified and oriented n-pseudomanifold with
isolated singularities Xn−2 = ... = X0. Assume that X0 is a finite set. Let p and q be complementary

perversities. Then IHp,BM
i (X, Q) and IHq

n−i(X, Q) are dual to each other.

Proof: We drop the coefficient ring from both homologies and intersection homologies, since it is assumed to
be Q throughout the ensuing proof. By the Proposition 5.2.7, we have:

IHp,BM
i (X) = HΦ

i (X) for i ≤ n − pn − 2

= Im
[
HΦ

i (X) −→ HBM
i (X)

]
for i = n − pn − 1

= HBM
i (X) for i ≥ n − pn (17)



28 VISHWAMBHAR PATI

where Φ is the family of closed subsets of X disjoint from X0.

By a minor variation of the same proof, the analogue of 5.2.7 for finitely supported homology (for the
complementary verversity q) is easily seen to be:

IHq
n−i(X) = Hn−i(X \ X0) for n − i ≤ n − qn − 2 (⇔ i ≥ n − pn)

= Im
[
Hi(X \ X0) −→ Hi(X)

]
for n − i = n − qn − 1 (⇔ i = n − pn − 1)

= Hn−i(X) for n − i ≥ n − qn (⇔ i ≤ n − pn − 2) (18)

Let X0 = ∪m
i=1{xi}, and let Ui = cLi be a cone-like open neighbourhood of xi (by the local triviality

condition (ii) in Definition 5.1.2). Letting U =
∐r

i=1 Ui be an open neighbourhood of X0, set MU := X \ U .
Now, let us substitute X = X , L = X0 and K = MU

∐
X0 in the Lemma 5.3.4 above. Then L = X0 is closed

in K, and K \ L = MU is closed in X \ L = X \ X0, and the last set is an n-manifold which is orientable. So
by that Lemma we have:

Hi
c(MU ) ≃ Hn−i(X \ X0, U \ X0) = Hn−i(X, U) = Hn−i(X, X0)

where Cech cohomology is replaced by usual cohomology, and the last equality comes from the strong deforma-
tion retraction of U to X0. By (ii) of Exercise 5.2.6, we find that for a fundamental system U of such conical
neighbourhoods of X0, we have:

HΦ
i (X) = lim

U∈U
HBM

i (X \ U) ≃ lim
U∈U

HBM
i (MU ) = lim

U∈U
hom(Hi

c(MU ), Q) ≃ hom(Hn−i(X, X0); Q) for all i (19)

Now getting back to the intersection homologies, substituting in (17) and (18) above, we note that when
i ≤ n − pn − 2, we have n − i ≥ pn + 2 = (n − 2 − qn) + 2 = n − qn. Also n − i ≥ pn + 2 ≥ 2, and
Hn−i(X, X0) = Hn−i(X). Thus:

IHp,BM
i (X) = HΦ

i (X) ≃ hom(Hn−i(X, X0), Q) ≃ hom(IHq
n−i(X), Q) for all i ≤ n − pn − 2

by using (19) above.

For i ≥ n − pn, we have n − i ≤ n − qn − 2, and by (17) and Lemma 5.3.3 we have that:

IHp,BM
i (X, Q) = HBM

i (X) = Hi(X̂,∞)

But n−pn ≥ 2, so Hi(X̂,∞) = Hi(X̂, X0∪∞). But again by the Lemma 5.3.4, we have (taking X̂ for X = K
and L = X0 ∪∞) that

Hi(X̂, X0 ∪∞) ≃ hom(Hn−i(X̂ \ (X0 ∪∞)), Q) ≃ hom(Hn−i(X \ X0), Q) ≃ hom(IHq
n−i(X), Q)

where the last relation follows from (18). Thus IHp,BM
i (X, Q) ≃ hom(IHq

n−i(X), Q) for i ≥ n − pn as well.

Finally, in the critical dimension, i = n − pn − 1, n − i = pn + 1 = n − qn − 1 is the critical dimension for
the complementary perversity q, and both i and n − i are ≥ 1. Thus the map induced by inclusion:

Hn−i(X) → Hn−i(X, X0)

is injective, and we may as well write

IHq
n−i(X, Q) = Im

[
Hn−i(X \ X0) → Hn−i(X, X0)

]

Analogously, since i = n − pn − 1 ≥ 1, the natural map:

HBM
i (X) = Hi(X̂,∞) → Hi(X̂, X0 ∪∞)

is also injective. Also by the foregoing, HΦ
i (X) ≃ hom(Hn−i(X, X0), Q). Thus

IHp,BM
i (X, Q) = Im

[
HΦ

i (X) → Hi(X̂, X0 ∪∞)
]

By the preceding paragraphs HΦ
i (X) is non-degenerately paired with Hn−i(X, X0). Similarly by the preceding

paragraphs, Hi(X̂, X0 ∪ ∞) is non-degenerately paired with Hn−i(X \ X0). Thus the two images defining

IHp,BM
i and IHq

n−i above are non-degenerately paired. The proposition follows.
2
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Example 5.3.6 (Nodal cubic again). Let us go back to the nodal cubic curve of Example 5.3.2 and see what
happens to the intersection homologies. In this case X\X0 is homotopy equivalent to S1, and for any perversity
p, we have p2 = 0, so the critical dimension is 2−p2−1 = 1. Also the generator a of H1(X\X0) is nullhomologous

in X (see Figure 1), so IHp
1 (X) = 0. Also IHp

0 (X) = H0(X \ X0) = Q and IHp
2 (X) = H2(X) = Q. Thus,

with any perversity p, IHp
∗ (X) is isomorphic to H∗(S

2, Q), and Poincare duality is restored. (This is not an
accident, since S2 is the normalisation of X , and it will turn out later that intersection homology remains
invariant under normalisation.)

It is natural to ask whether Poincare duality holds over Z, i.e. whether the free parts of IHp
i and IHq

n−i are
non-degenerately paired over Z. That this is not so will follow from the next example.

Example 5.3.7 (Thom Spaces of vector bundles). Let E be a real rank k orientable bundle over a compact
manifold M of dimension n − k. The Thom space of E is the quotient space T (E) := D(E)/S(E), where
D(E) (resp, S(E)) is the disc bundle (resp. sphere bundle) of E, with respect to a suitable Riemannian metric
on E. Then X = T (E) is a space with one isolated singularity X0 = ∞. Note that X \ X0 = E, and
Hi(X, Z) = Hi(T (E),∞; Z) = Hi(D(E), S(E); Z) ≃ Hi−k(M, Z) via the Thom isomorphism for i ≥ 1. Thus
the image:

Hi(X \ X0, Z) → Hi(X, Z)

is precisely the image:

Hi(M, Z)
∩e
−→ Hi−k(M, Z)

for all i, where e ∈ Hk(M, Z) denotes the Euler class of E. Thus, by the above Corollary 5.2.8 we have:

IHp
i (X, Z) = Hi(M, Z), 0 ≤ i ≤ n − pn − 2

= Im[(− ∩ e) : Hi(M, Z) → Hi−k(M, Z)], i = n − pn − 1

= Hi−k(M, Z), i > n − pn

If, for example one takes M = S2, and E the real rank 2 bundle given by the tangent bundle E = τ(S2) whose
Euler class is e = 2µ ∈ Zµ = H2(S2, Z). Then for the lower middle perversity m and upper middle perversity
n, we have m4 = n4 = 1, so that the critical dimension for both m and n is i = 4 − m4 − 1 = 4 − n4 − 1 = 2,
and we have the intersection homology in the dimension 2, by the above, is

IHm
2 (X, Z) = 2Z = IHn

2 (X, Z)

which on pairing gives determinant 4 and is not non-degenerate over Z.

An interesting special case of the Example 5.3.7 above is the cone over a complex projective hypersurface.

Example 5.3.8 (Projective cone over a smooth hypersurface). Let M of dimC M = m − 1 be a smooth hy-
persurface in Pm(C). Regarding Pm(C) ⊂ Pm+1(C) as the hyperplane V (Xm+1), we define the projective cone

over M as:

X = {[αX0 :, ...., : αXm : β] ∈ Pm+1(C) : [X0 :, .., Xm] ∈ M, (α, β) ∈ C2 \ {(0, 0)}}

If one removes the point ∞ := [0 :, .., : 0 : 1] from X , the remainder X \∞ is the total space of the line bundle
E on M given by restricting the hyperplane bundle λ on Pm+1(C) to M . Thus X is the Thom space T (E) of
E, and the discussion of Example 5.3.7 above applies. The Euler class e in this case is the Kahler class of the
hypersurface M .

Again, the interesting dimension is the critical dimension, when i = n − pn − 1 = 2m − p2m − 1. Let us
take coefficients in C. In this case, ∩ e : Hi(M, C) → Hi−2(M, C) is the Lefschetz map, corresponding to the
cohomology Lefschetz map:

L = (−) ∪ e : H2m−2−i(M, C) → H2m−i(M, C)

via Poincare Duality on M . By the Lefschetz decomposition, the cokernel of this map is well-known to be the
primitive cohomology P 2m−i ⊂ H2m−i, which is defined as the kernel of Li+1 : H2m−i → H2m+i+2. If we
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denote by Pi−2 the subspace of Hi−2(M, C) which is complementary to the inverse image of P 2m−i in Hi−2,
then

IHp
i (M, C) = Im(− ∩ e) = Pi−2, i = 2m − p2m − 1

5.4. Cones and Products with R.

Definition 5.4.1. Let X be a stratified n-pseudomanifold. The open cone cX := [0, 1)×X/ ∼ where ∼ is the
equivalence relation of identifying 0 × X to a single point p called the cone point. It is given the stratification
described in Definition 5.1.2. That is:

(cX)j = c(Xj−1); (cX)0 = {p}

Note that the cone on an i-simplex is an (i + 1)-simplex, and hence the closed cone cX = [0, 1] × X/ ∼ has
the structure of a PL-space coming naturally from that of X . As an open subset of cX , the space cX also
acquires the structure of a PL-space (see outset of §4.2). We omit the details of checking that the filtration
above defines the structure of a stratified (n + 1)-pseudomanifold on cX . The local triviality condition follows
at points of all strata (from the corresponding condition for X), except at the cone point, where it holds by
definition!

With X as above, it is possible to give the structure of a stratified (n+1)-pseudomanifold to R×X as well.
Its structure as a PL-space follows by the well-known triangulation of [i, i+1]×σ for a k-simplex σ = 〈 v0, .., vk 〉.
That is, let the set

V 0 := {(s, vp) : s = i or i + 1; 0 ≤ p ≤ k, }

be the vertex set for [i, i + 1] × σ. Define a partial order on V 0 by the prescription (a, vr) ≤ (b, vs) iff a ≤ b
and r ≤ s, for a, b ∈ {i, i + 1} and r, s ∈ {0, .., k}. Then define a set 〈S〉 to be a simplex of [i, i + 1]× σ iff S is
a totally ordered subset of V 0. This gives a PL-space structure to [i, i + 1]×X for each i ∈ Z, and all of these
match up to give one on all of R × X . The strata of R × X are defined by:

(R × X)j = R × Xj−1

for all j = 0, .., n. Note therefore that R × X has no 0-dimensional stratum.

Lemma 5.4.2. Let X be a stratified n-pseudomanifold, and let Y := R×X be the product stratified (n +1)-
pseudomanifold as indicated above. Let ξ be a (p, i)-allowable cycle in Y which is supported in [0,∞) ×
X . Further assume that ξ is in “general position” so that all vertical lines R × {x} meet | ξ | transversely.
(Equivalently, the projection π2 : R×X → X is of full rank on all of |ξ |). Then there exists a (p, i+1)-allowable
chain K+ξ in Y such that the homology class ∂K+ξ = ξ . Further, K+ξ has support in [0,∞) × X .

Proof: For notational convenience, we denote [0,∞) by R+. We consider the map:

µ : R+ × R+ → R+

(s, t) 7→ s + t

which is linear. Thus we have a PL-map:

α := µ × idX : R+ × R+ × X → R+ × X

The general position assumption on ξ guarantees that α∗(R+ × ξ) is a geometric (i + 1)-chain, where

α∗ : CBM
i+1 (R+ × R+ × X, k) → CBM

i+1 (R+ × X, k)

is the chain map induced by α. Define K+ξ := (α)∗(R+ × ξ)) (see Fig. 2). By definition, |K+ξ |⊂ R+ × X .

Furthermore:

∂K+(ξ) = ∂(α)∗(R+ × ξ) = α∗(∂(R+ × ξ)) = α∗(0 × ξ) = ξ
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where the second equality follows because α∗ is a chain map. To check the (p, i + 1)-allowability of K+ξ, note
that R+ × Xn−k = α(R+ × R+ × Xn−k), so that:

dim (|K+ξ | ∩(R × Xn−k)) = dim (|K+ξ | ∩(R+ × Xn−k)) = dim (α(|R+ × ξ |) ∩ α(R+ × R+ × Xn−k))

= dim(α(R+ × (|ξ | ∩(R+ × Xn−k)))) = dim(α(R+ × (|ξ | ∩(R × Xn−k))))

≤ 1 + dim (|ξ | ∩(R × Xn−k)) ≤ 1 + (i − k + pk) = (i + 1) − k + pk

where the second inequality of the last line is from the (p, i)-allowability of ξ. Hence K+ξ is (p, i+1)-allowable.
The lemma follows.

2

Definition 5.4.3 (Dimensional transversality). Let A and B be closed PL-subspaces of a stratified
n-pseudomanifold X . Let Sn−k := Xn−k\Xn−k−1, which is a manifold of dimesnion (n−k) by (i) of Definition
5.1.2. Say that A ⌢| kB, i.e. A is dimensionally transverse to B in the codimension k stratum if:

dim (A ∩ B ∩ Sn−k) ≤ dim (A ∩ Sn−k) + dim (B ∩ Sn−k) − (n − k)

This simply means that in the manifold Sn−k, the intersection A ∩ Sn−k and B ∩ Sn−k meet PL-transversely.
Finally, say that A ⌢| B if A ⌢| kB for all k.

Proposition 5.4.4. Let X be a stratified n-pseudomanifold. Give R×X the structure of a stratified (n + 1)-
pseudomanifold as in Definition 5.4.1 above. Then:

IHp,BM
i (X, k) ≃ IHp,BM

i+1 (R × X, k)

for all i and all perversities p.

Proof: Let ξ ∈ ICp,BM
i (X, k) be a (p, i)-allowable i-chain. Define the suspension of ξ by:

Σ(ξ) = R × ξ

This simply means that if ξ =
∑

σ ξ(σ)σ in some admissible triangulation T of X , then triangulating R× σ as
described in Definition 5.4.1 above, we set Σ(σ) := R × σ, which can be viewed as an (i + 1)-chain in R × X ,
for each i-simplex σ of T. Finally set Σξ :=

∑
σ ξ(σ)Σ(σ), which is an (i + 1)-chain in R×X . Define the map:

Σ : CBM
i (X, k) → CBM

i+1 (R × X, k)

ξ 7→ Σ(ξ)

It is easily verified that the j-th face operator commutes with Σ, and hence that Σ is a chain map. Now we
claim that if ξ is a (p, i)-allowable chain in X , then Σ(ξ) is a (p, i + 1)-allowable chain in R × X . For,

dim(|R × ξ | ∩(R × X)n+1−k) = dim(|R × ξ | ∩(R × Xn−k)) = 1 + dim(|ξ | ∩Xn−k)

≤ 1 + (i − k + pk) = (i + 1) − k + pk

which shows that Σ(ξ) is (p, i + 1)-allowable. Clearly if ∂ξ is (p, i − 1)-allowable, then ∂(Σ(ξ)) = Σ(∂ξ) is
(p, i)-allowable, by the same reasoning, so that Σ restricts to a chain map:

Σ : ICp,BM
· (X, k) → ICp,BM

·+1 (R × X, k)

We now claim that this map is a quasi-isomorphism.

Given a (p, i + 1)-allowable cycle ξ ∈ R × X , define θ(ξ) = ξ ∩ ({t} × X) after making sure that t is chosen
from a generic set such that the PL-subspace | ξ | is dimensionally transverse to the PL-subspace {t} × X , so
that θ(ξ) is a geometric i-chain. (For example, let ξ be an (i + 1)-chain in the product triangulation R × T
where T is some triangulation of X , and take t to be distinct from all the countably many vertices that occur
in |ξ |.) Let us check that θ(ξ) is (p, i)-allowable. By dimensional transversality:

dim (|θ(ξ) | ∩Sn−k+1
R×X ) = dim (|ξ | ∩({t} × X) ∩ (R × Sn−k))

≤ dim (|ξ | ∩(R × Sn−k)) + dim (({t} × X) ∩ (R × Sn−k)) − (n + 1 − k)

≤ ((i + 1) − k + pk) + (n − k) − (n + 1 − k) = i − k + pk
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Figure 2. The operation K+

where the last line follows from the (p, i + 1)-allowability of ξ. This shows that θ(ξ) is (p, i)-allowable. Also ξ
a cycle and above dimensional transversality implies that ∂(θ(ξ)) = ∂ξ ∩ ({t}×X) = 0, so θ(ξ) is also a cycle.

Verify that ξ ∩ ([t, s] × X) gives an (allowable) homology between ξ ∩ ({t} × X) and ξ ∩ ({s} × X), so that

θ(ξ) is well-defined upto (intersection) homology class, and clearly θ(Σξ) = ξ. Also if η ∈ ICp,BM
i+2 (R × X, k)

such that ∂η = ξ, then after choosing t so that η and ξ are both dimensionally transverse to {t} × X , we get

η ∩ ({t} × X) ∈ ICp,BM
i+1 (X, k) and also ∂(η ∩ ({t} × X)) = θ(ξ). Thus we have that

Σ· : IHp,BM
i (X, k) → IHp,BM

i+1 (R × X, k)

is a split injection. We need to show it is surjective. Let ξ be (p, i + 1)-cycle, and let θ(ξ) be defined as in
the last para. We need to show that these two cycles ξ and Σθ(ξ) are (intersection) homologous in R × X .
Translate and take t of the preceding para to be t = 0, so that θ(ξ) = ξ ∩ ({0} × X). Let ξ+ := ξ ∩ (R+ × X)
and ξ− := ξ ∩ (R− ×X). One chooses the orientations of ξ± compatibly with those of R± so that ξ = ξ+ − ξ−

and ∂ξ+ = θ(ξ) = ∂ξ−. Now consider the (i + 1)-chain η := ξ+ − (R+ × θ(ξ)). Then ∂η = θ(ξ)− θ(ξ) = 0. η is
supported in R+×X by definition. Again, by putting ξ in general position, we can assume that η is also in the
same general position as required by Lemma 5.4.2. Thus, there exists a (i + 2)-chain K+η so that ∂(K+η) =
η = ξ+ − (R+ × θ(ξ)). Similarly, one finds an (i + 2)-chain K−ζ such that ∂K−ζ = ζ := ξ− − (R− × θ(ξ)).
Then it follows that:

∂(K+η − K−ζ) = ξ+ − (R+ × θ(ξ)) − ξ− + (R− × θ(ξ)) = ξ − (R × θ(ξ)) = ξ − Σ(θ(ξ))

Also, by the proof of Lemma 5.4.2, both K+η and K−ζ are (p, i + 2)-allowable, and hence so is K+η − K−ζ.

Thus [ξ] = [Σθ(ξ)] in IHp,BM
i+1 (R × X, k) and the proposition is proved. 2

Remark 5.4.5. We note that for R × X , which has no codimension (n + 1)-stratum, we only need an “n”-
perversity p = (p2, .., pn) on the left hand side of the above proposition.

We now do the finitely supported version of the above result.

Proposition 5.4.6 (Finitely supported intersection homology of R × X). Let X be a stratified n-pseudomanifold,
and let Y := R × X be given the product stratification. Then:

IHp
i (Y, k) ≃ IHp

i (X, k) for all i and all p
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Proof: Again, in view of Remark 5.4.5 above, only n-perversities p = (p2, .., pn) are relevant to this proposition.
Consider the inclusion map j : X →֒ Y defined by j(x) = (0, x), and the projection map π : Y → X defined by
π(t, x) = x. Since j(S) ∩ Y n−k = S ∩ Xn−k for all subsets S ⊂ X , it is clear that j induces a chain map

j∗ : ICp
i (X, k) → ICp

i (Y, k)

for all i and p. We note that if σ is an i-simplex of Y which is in general position with respect to vertical rays
R × {x}, then π homeomorphically maps σ to its image π(σ). Thus if ξ is a (p, i)-allowable chain in Y which
is in general position, we have:

dim (π |ξ | ∩Xn−k) = dim (π(|ξ | ∩π−1Xn−k)) = dim (|ξ | ∩π−1Xn−k)

= dim (|ξ | ∩Y n−k) ≤ i − k + pk for k = 2, .., n

and hence π(ξ) = π∗(ξ) is (p, i)-allowable for ξ a (p, i)-allowable chain. For a chain ξ in general position, its
boundary chain is also in general position, and the same reasoning shows that ∂π∗(ξ) is (p, i − 1)-allowable if
∂ξ is (p, i − 1) allowable. It follows (after checking that it is well defined) that we have a map:

π∗ : IHp
· (Y, k) → IHp

· (X, k)

satisfying π∗j∗ = id. We claim that j∗π∗(ξ) is (intersection) homologous to ξ for each cycle ξ ∈ ICi(Y, k).
This is quite easy. For two points x = (s, x1) and y = (t, x1) in the same vertical ray R × {x1}, we denote
(λs + µt, x1) by λx + µy. With this notation, for an i-simplex σ in Y which is in general position, define the
geometric (i + 1)-chain

Kσ := {t.x + (1 − t)π(x) ∈ R × X : t ∈ [0, 1], x ∈ σ}

which may be thought of as a prism with one end being σ and another end being π(σ). This defines Kξ as a
finitely supported (i + 1)-chain for each finitely supported i-chain ξ. It follows quite easily that if ξ is a cycle,
then ∂Kξ = ξ−π(ξ). This also shows that ∂Kξ is (p, i)-allowable whenever ξ is (p, i)-allowable. It is clear that
for a i-simplex σ in general position, dim (|Kσ | ∩(R × Xn−k)) = 1 + dim (| σ | ∩(R × Xn−k)), which proves
that Kξ is the (p, i + 1)-allowable if ξ is (p, i)-allowable. The proposition follows. 2

Remark 5.4.7. Note that if we take just a locally finite chain ξ in R×X which is not finite, then π(ξ) will not
in general be locally finite. For example take ω = e2πiα ∈ S1 with α irrational, and set xn = (n, ωn), n ∈ Z+.
Then ξ =

∑
n xn is a locally finite (Borel Moore) 0-chain in R × S1, but |π(ξ) | is a countable dense set in S1.

This is precisely why the calculations for Borel-Moore homology and finitely supported homology are radically
different.

We first prove an analogue of Lemma 5.4.2 for the case of cones.

We also assume henceforth, whenever we take a cone, that X is compact so that cX is locally finite and

locally compact.

Lemma 5.4.8. Let X be a compact stratified (n − 1)-pseudomanifold, and let Y := cX = [0,∞) × X/ ∼ be
the cone on X , which is given its natural structure of a stratified n-pseudomanifold as in Definitions 5.1.2,
5.4.1. Let p = (p2, .., pn) be any perversity. Then:

(i): Let i ≥ n−pn−1 and let ξ be a (p, i)-allowable cycle supported in the closed a-cone c≤aX := [0, a]×X/ ∼
contained inside cX . Assume ξ is ‘general position’ so that each ray c{x} intersects | ξ | transversely.
Then there exists a (p, i + 1)-allowable chain K+ξ, also supported in c≤aX , satisfying ∂K+ξ = ξ.

(ii): Let ξ be a (p, i)-allowable cycle supported in c≥aX := [a,∞) × X contained inside cX , in general
position as above. Then there exists a (p, i + 1)-allowable chain K−ξ, also supported in c≥aX , satisfying
∂K−ξ = ξ

Proof: For the proof of (i), set K+ξ := cξ =
∑

σ ξ(σ)c(σ), where c(σ) is the (i + 1)-simplex obtained by
(closed)-coning the i-simplex σ from the cone point p of cX (i.e. c(σ) is the simplicial join p ∗ σ, and the
general position hypothesis of ξ guarantees that this is an (i+1)-simplex). For codimensions 0 ≤ k ≤ n−1, the
allowability condition dim (|K+ξ | ∩Y n−k) ≤ (i+1− k+ pk) follows from the (p, i)-allowability of ξ, exactly as
in Lemma 5.4.2. On the other hand, in codimension k = n, we have that |K+ξ | ∩Y 0 = {p} is 0-dimensional,
and 0 ≤ (i + 1)−n + pn by the condition imposed on i. Thus K+ξ is (p, i + 1)-allowable and (i) is established.
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The proof of (ii) is completely analogous to Lemma 5.4.2, using the translation map:

β : R+ × (cX \ {p}) → cX \ {p}

(s, [(t, x)]) 7→ [(t + s, x)]

instead of the map α used in that lemma. We skip the details. 2

Now one can calculate the intersection homologies of a cone.

Proposition 5.4.9 (Borel-Moore intersection homology of a cone). Let X be a compact stratified (n − 1)-
pseudomanifold, and let Y := cX be the open cone, a stratified n-pseudomanifold with stratification as in
Definitions 5.1.2, 5.4.1 above. Then, for all perversities p, we have:

IHp,BM
i (Y, k) = 0 for i ≤ n − pn − 1

= IHp
i−1(X, k) for i ≥ n − pn

Proof: Let i ≤ n − pn − 1. Then if ξ ∈ CBM
i (Y, k) is a (p, i)-allowable cycle, it follows that dim(| ξ | ∩Y 0) ≤

i − n + pn ≤ −1, so ξ is a cycle supported in Y \ {p}. Since |ξ | is closed, it is actually contained in c≥aX for
some a > 0. Now (ii) of the foregoing Lemma 5.4.8 applies (after putting ξ is general position if needed), and

ξ = ∂K−ξ shows that ξ is nullhomologous in IHp,BM
i (Y, k). This proves the first assertion of the proposition.

Next, define the coning operation:

c : Ci(X, k) → Ci+1(Y, k)

ξ 7→ cξ

where cξ =
∑r

j=1 ξjc(σj) for ξ =
∑r

j=1 ξjσj . It is easy to check that if ξ is (p, i)-allowable in X (where the

entry pn of p is ignored since dim X = n − 1) and i ≥ n − pn − 1, then c(ξ) is (p, i + 1)-allowable in Y . The
key point is that dim (| cξ | ∩Y 0) = dim{p} = 0 ≤ (i + 1) − n + pn. The intersections with other strata fall in
line from the (p, i)-allowability of ξ. We claim this map c induces isomorphisms in intersection homology in
the dimensions i + 1 ≥ n − pn.

If i+1 ≥ n−pn, a generic a-slice {a}×X ⊂ cX = Y meets |ξ | (dimensionally) transversely, as in the proof of
Proposition 5.4.4. Then set θ(ξ) = ξ∩ ({a}×X), which is a (p, i)-allowable cycle by analogous reasoning. Also
set ξ+ := ξ ∩ c≤aX and ξ− := ξ ∩ c≥aX . Then, again choosing orientations compatibly, we have ξ = ξ+ − ξ−.
The cycle η := ξ+ − c≤a(θ(ξ)) is (p, i)-allowable, supported in c≤aX and (if we move it into general position
by initially perturbing ξ) satisfies the conditions in (i) of Lemma 5.4.8 above. Thus η = ∂K+η. Similarly, by
(ii) of the Lemma 5.4.8 above, we have ζ := ξ− − c≥a(θ(ξ)) = ∂K−ζ. Thus we finally have:

ξ − c(θ(ξ)) = (ξ+ − c≤a(θ(ξ)) − (ξ− − c≥a(θ(ξ)) = η − ζ = ∂K+η − ∂K−ζ

shows that ξ is (intersection) homologous to c(θ(ξ)). Thus the maps ξ 7→ θ(ξ) with inverse map ρ 7→ cρ
(after checking that the map θ is well-defined at the level of homology) produces the desired isomorphism

IHp,BM
i+1 (cX, k) ≃ IHp

i (X, k) for i + 1 ≥ n − pn, and the proposition follows. 2

It is quite natural to ask what happens to the above results in the context of finitely supported intersection
homology instead of Borel-Moore intersection homology. We have the following proposition.

Proposition 5.4.10 (Finite support intersection homology for cones). Let X and Y = cXn−1 be as in the
last Proposition 5.4.9. Then, for any perversity p = (p2, .., pn) the finitely supported intersection homology of
Y is given by:

IHp
i (Y, k) = IHp

i (X, k) for 0 ≤ i ≤ n − pn − 2

= 0 for i ≥ n − pn − 1
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Proof: Let ξ ∈ ICp
i (Y, k) be a (p, i)-allowable chain of finite support in Y for i ≤ n − pn − 1. Then

i − n + pn ≤ −1, from which it follows that | ξ | does not meet the cone point p = Y 0. Hence it is a finitely
supported chain in Y \ {p} = c>0X . Since ξ is a finite chain, it actually lies in c>aX for some a > 0. Thus we
have an identification:

ICp
i (Y, k) = lim

a→0
ICp

i (c>aX, k) for 0 ≤ i ≤ n − pn − 1

It follows that IHp
i (Y, k) = lima→0 IHp

i (c>aX, k) for 0 ≤ i ≤ n− pn − 2, and from the Proposition 5.4.6 (since

c>aX ≃ (a,∞) × X), this last limit is IHp
i (X, k).

For i ≥ n− pn − 1, we note that for ξ a (p, i)-allowable chain, the cone K+ξ is an allowable (p, i + 1)-chain,
where K+ is the operator defined in the proof of Lemma 5.4.8. As noted there, for ξ a cycle, we have ∂K+ξ = ξ.
This shows that ξ is nullhomologous. The proposition follows. 2

Remark 5.4.11. Again, in analogy with the Remark 5.4.7, we note that the operation K+ of coning off a
cycle from the cone point p can only be applied to finitely supported chains. Coning off an infinite chain will
produce a chain that isn’t locally-finite at p. Hence the difference between the calculations of Propositions
5.4.9 and 5.4.10.

Corollary 5.4.12 (Poincare Duality for cones). Let X be a compact stratified (n − 1)-pseudomanifold. As-
sume that X satisfies k-Poincare duality, viz. for each pair of complementary perversities r = (r2, .., rn−1) and
s = (s2, .., sn−1) we have

IHr
i (X, k) ≃ IHs

n−1−i(X, k)

for all 0 ≤ i ≤ (n − 1). Then the open cone Y := cX also satisfies k-Poincare Duality, viz.,

IHp,BM
i (Y, k) ≃ IHq

n−i(Y, k)

for all complementary perversities p, q and all 0 ≤ i ≤ n.

Proof: Let p + q = t = (0, 1, 2, .., n− 2), so that pk + qk = k − 2 for all k. Then for i ≤ n − pn − 1, we have
n − i ≥ pn + 1 = n − 2 − qn + 1 = n − qn − 1, and we have:

IHp,BM
i (Y, k) = 0 = IHq

n−i(Y, k)

where the first equality follows from Proposition 5.4.9 and the second from Proposition 5.4.10. On the other
hand, for i ≥ n − pn, we have (n − i) ≤ pn = n − qn − 2, so that:

IHp,BM
i (Y, k) ≃ IHp

i−1(X, k); IHq
n−i(Y, k) ≃ IHq

n−i(X, k)

where the first equality follows from Proposition 5.4.9 and the second from Proposition 5.4.10. But then, X

compact and Poincare duality hypothesis on X implies that for all i we have IHp
i−1(X, k) ≃ IHq

n−i(X, k), since

dim X = (n − 1). Thus IHp,BM
i (Y, k) ≃ IHp

n−i(Y, k) for i ≥ n − pn as well, and the corollary follows. (Note
we haven’t specified the Poincare Duality map, which will be done later) 2

5.5. Comparison of intersection homology and usual homology. We note the following differences
between intersection homology and ordinary homology.

Remark 5.5.1 (Intersection homology with finite support is not homotopy invariant). Note that if we take
Y = cX , where X is a compact stratified (n − 1)-pseudomanifold, then it is always contractible (to the cone
point p = Y 0). However, if we ensure that X has non- trivial homology, then by the computation of Proposition
5.4.10 its intersection homology with finite support is non-zero in general. Hence homotopy invariance is no
longer true for finitely supported intersection homology, in contrast with finitely supported homology.

Remark 5.5.2 (Subdivision and intersection homology). We recall that simplicial homology can be calculated
with respect to any admissible triangulation. Unfortunately, this is false for intersection homology. One must
take geometric chains, i.e. consider all admissible trinagulations simultaneously. As an example, take the
triangulation T of S3 illustrated in the Fig. 3, with seven vertices (The two solid 3-balls depicted are to be
glued along the common boundary S2 by the vertex identifications 1 ↔ 1, 2 ↔ 2, 3 ↔ 3, 4 ↔ 4 and 5 ↔ 5 as
shown). Set p = (p2, p3) = (0, 0) (the bottom perversity) and set X0 = {1, 5, 6, 7}. If one writes down the chain
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Figure 3. A triangulation of S3

complex of allowable simplicial chains (whose boundaries are allowable) with respect to this triangulation T ,
the homologies one gets are not the intersection homologies of S3. Indeed, for a 2-chain ξ the (p, 2)-allowability
condition means that the dimension dim(| ξ | ∩X0) ≤ 2 − 3 + p3 = −1, so | ξ | must be disjoint from X0.
But notice that every 2-simplex of T intersects X0, and hence it follows that the trivial chain 0 is the only
allowable 2-chain in this triangulation. Hence the allowable 1-cycle 〈23〉 + 〈34〉 + 〈42〉 is not the boundary of
an allowable 2-chain, and generates 1-homology. However, when we pass to a subdivision, it is easy to see that

it will bound an allowable 2-cycle which avoids X0, and lead to IHp
1 (S3, k) = 0, as it should (since it should

be H1(S
3, k) = 0, by Exercise 5.2.9).

Remark 5.5.3. Intersection homology with coefficients in k = Z does not generally obey duality of free parts
in complementary dimensions and complementary perversities for oriented n-pseudomanifolds as ordinary Z-
coefficient homology does for n-manifolds (see Example 5.3.7). It will only obey it after tensoring with Q.

6. Sheaf Theoretic Intersection Homology

6.1. Softness of the Intersection Sheaves. We recall the dualising (homology) sheaf from §4.3. The
geometric Borel-Moore i-chains give rise to a sheaf CBM

i = D−i(C·, k), whose sections on an open set U ⊂ X
are given as:

Γ(U, CBM
i ) = hom(Γc(U, Ci), k) ≃ CBM

i (U, k) = lim
T

CBM,TU

i (U, k)

where the limit on the right is a direct limit over all induced triangulations TU on U as T ranges through the
directed set of all admissible triangulations T on X . We note that if V ⊂ U are open sets, then there is a
geometric description of the sheaf restriction maps. Let T be an admissible triangulation on X . There are
compatible triangulations TU and TV such that for each i-simplex σ of TV , there is a unique i-simplex τ(σ) of
TU which is its carrier, viz. σ ⊂ τ(σ), which leads to the restriction maps:

ρUV : CBM,TU

i (U, k) → CBM,TV

i (V, k)

ξ =
∑

α∈TU

ξ(α)α 7→
∑

α, σ∈TV :τ(σ)=α

ξ(α)σ

Passing to limits over admissible triangulations leads to the restriction map

ρUV : Γ(U, CBM
i ) → Γ(V, CBM

i )
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The Borel-Moore intersection homology sheaf is defined as a suitable subsheaf of CBM
i . First note that for

any closed PL-subspace Y ⊂ X , the germ Yx of Y at any point x ∈ X makes sense. Just take a neighbourhood
U of x, and look at the equivalence class of the intersection U ∩Y , the equivalence relation of course being that
of germs (=equality on restriction to a smaller neighbourhood). The dimension of a germ (since it is locally a
closed subcomplex) also makes sense, and hence we may make the:

Definition 6.1.1 (The Intersection chain complex of sheaves). Let X be a stratified n-pseudomanifold, and
let p = (p2, .., pn) be a perversity. Define:

Γ(U, ICp
i ) := {ξ ∈ Γ(U, CBM

i ) : dim(|ξ | ∩Xn−k)x ≤ i − k + pk,

dim(|∂ξ | ∩Xn−k)x ≤ i − 1 − k + pk for all x ∈ U, and all 2 ≤ k ≤ n}

By definition, it follows that (i) For V ⊂ U open, ρUV maps Γ(U, ICp
i ) into Γ(V, ICp

i ), and (ii) ICp
· is a

subcomplex of sub-presheaves of the complex of sheaves CBM
· , and hence a chain-complex of sheaves on X .

One can turn it into a cochain complex IC·
p as usual, by changing the sign of the grading and making it a

superscript.

Notation : 6.1.2. In the rest of this section, the perversity p will be held fixed throughout and suppressed from

the notation.

Lemma 6.1.3. The sheaves IC· are soft.

Proof: Let X be a stratified n-pseudomanifold, and K ⊂ X be a compact set. Let ξ ∈ Γ(K, ICi) be an
i-chain. We need to find an i-chain in Γ(X, ICi) whose restriction to K is ξ. We first do the simpler case:

Case 1: K is a compact PL-subspace of X .

By the definition of Γ(K, ICi) and the local compactness, paracompactness etc. of X , there is an open

neighbourhood U of K, and a chain, also denoted ξ, in CBM,TU

i (U, k) satisfying:

dim(|ξ | ∩Un−k) ≤ i − k + pk; dim(|∂ξ | ∩Un−k) ≤ i − 1 − k + pk

where Un−k := U ∩ Xn−k are the strata of the induced stratification on U . We assume (without loss) that
the triangulation TU of U is such that all of the Un−k are subcomplexes of U (for example, by passing to
an admissible triangulation T of X under which all Xn−k are subcomplexes, and then taking TU compatible
with T ). Similarly, since K is compact, we can assume that K is a subcomplex of T and of TU . Write
ξ =

∑
σ∈TU

ξ(σ)σ.

At this point it is natural to take the chain τ defined by:

τ :=
∑

σ∩K 6=φ

ξ(σ)σ

This will be a finite chain by the compactness of K, and hence may be regarded as a chain in X . Further,
since ξ is (p, i)-allowable and | τ |⊂|ξ |, it will follow that τ is also (p, i)-allowable. Clearly the restriction of τ
to K is the same as that of ξ to K. However, the trouble is that |∂τ | has nothing to do with |∂ξ |. Indeed ξ
may be a cycle, and the set |∂ξ | may consequently be empty, but the set |∂τ | may not be (p, i− 1)-allowable.
The trouble can be remedied by taking a subdivision.

Let T ′
U be the first barycentric subdivision of TU . For an oriented i-simplex σ′ ∈ T ′

U , define the carrier of

σ′, denoted carr(σ′), to be the unique i-simplex σ ∈ TU such that |σ′ |⊂|σ |. Now set:

F := {σ′ ∈ T ′
U an oriented i-simplex : ξ(carr(σ′)) 6= 0 and σ′ has a vertex in K}

Since K is compact, the set F is finite. Now consider the i-chain τ ∈ C
T ′

U

i (U, k) defined by:

τ :=
∑

σ′∈F

τ(σ′)σ′
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where

τ(σ′) = ξ(σ) if carr(σ′) = σ and σ′, σ are compatibly oriented

= −ξ(σ) if carr(σ′) = σ and σ′, σ are oppositely oriented

= 0 otherwise

Since F is a finite set, we can find a single admissible triangulation T1 of X such that τ ∈ CT1

i (X, k). It is
easily verified that τ restricts to ξ in Γ(K, Ci), and since |τ |⊂|ξ |, it follows that τ is (p, i)-allowable.

Now ∂τ is a sum of oriented (i−1)-simplices which are faces ∂jσ
′ of oriented i-simplices σ′ ∈ F , with certain

coefficients. Each oriented i-simplex σ′ in T ′
U is of the form:

σ′ = ±〈b(σ0), b(σ1), ..., b(σi = b(σ)〉

where σ0 ≺ σ1 ≺ .... ≺ σi = σ is a full flag of faces of σ ∈ TU and b(σj) the barycentre of σj . Thus σ′ has a
vertex in K iff b(σ0) = σ0 ∈ K.

Let σ′ ∈ F be as above, and let carrσ′ = σ, σ a (p, i)-allowable i-simplex as above. Write the support of
face ∂σ′ as the disjoint union:

|∂σ′ |= A
∐

B; where A =|∂σ′ | ∩σ◦; B =|∂σ′ | ∩ |∂σ |

where σ◦ is the interior of σ.

Claim: A ∩ Xn−k = φ for all k ≥ 2. This is because σ being (p, i)-allowable, satisfies:

dim(|σ | ∩Xn−2) ≤ i − 2 + p2 ≤ i − 2

Thus σ cannot be contained in Xn−2. Since Xn−2 is a subcomplex of TU , and σ is a simplex of TU , it
follows that the intersection | σ | ∩Xn−2 is a proper subcomplex of | σ |, and hence contained in | ∂σ |. Thus
σ◦ ∩ Xn−2 = φ, and a fortiori A ∩ Xn−k = φ for all k ≥ 2. The Claim follows.

Thus, for k ≥ 2, the intersection |∂σ′ | ∩Xn−k is a union of faces:

|∂σ′ | ∩Xn−k =
⋃

j∈M

(|∂jσ
′ | ∩Xn−k) ⊂ B ∩ Xn−k

where
M := {j : carr(∂jσ

′) = ∂lσ for some l}

Now suppose j ∈ M , with carr(∂jσ
′) = ∂lσ for some l. Then two cases arise:

Subcase 1: ∂lσ occurs with non-zero coefficient in ∂ξ. In this case by the (p, i− 1)-allowability of ∂ξ, we have

dim(|∂lσ | ∩Xn−k) ≤ i − 1 − k + pk

for all k ≥ 2, which implies that:

dim(|∂jσ
′ | ∩Xn−k) ≤ dim(|∂lσ | ∩Xn−k) ≤ i − 1 − k + pk

for all k ≥ 2.

Or

Subcase 2: ∂lσ does not occur in ∂ξ. In this event we have another simplex σ̃ of TU occurring in ξ such that
∂lσ = ∂kσ̃ and ξ(σ) = −ξ(σ̃). Since σ′ has a vertex in K (σ′ ∈ F we recall), so b(σr) ∈ K for some r ≥ 0,
which implies (since K is a subcomplex with resp. to TU ) that σk ⊂ K, which implies b(σ0), .., b(σr) ∈ K as
well. Since ∂jσ

′ is contained in ∂lσ, the barycenter b(σ) does not occur in ∂jσ
′, so in fact :

∂jσ
′ = 〈b(σ0), ..., b(σi−1)〉

Now consider the simplex:
σ̃′ := 〈b(σ0), ..., b(σi−1), b(σ̃)〉

This simplex σ̃′ is a simplex of T ′
U . Furthermore σ̃′ qualifies for membership of F , since its first r-vertices are

the same as the first r vertices of σ′, and hence lie in K. Thus σ̃′ occurs in τ , with coefficient ξ(σ̃) = −ξ(σ).
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The boundary terms ∂tσ̃
′ of ∂σ̃′ therefore occur in ∂τ with coefficient ξ(σ̃). In particular the term ξ(σ̃)∂mσ̃′,

where
∂mσ̃′ = 〈b(σ0), ..., b(σi−1)〉 = ∂lσ

′

occurs in the boundary ∂τ , and cancels out the term ξ(σ)∂jσ
′ in ∂τ . Thus in Subcase 2, the term |∂jσ

′ | does

not occur in ∂τ , so is not a subset of |∂τ |, and hence plays no role in the (p, i− 1)-allowability of ∂τ . Thus ∂τ
is (p, i − 1)-allowable. 2.

Case 2: Now let C be an arbitrary compact set, let ξ ∈ Γ(C, ICi). As in Case 1, take a representative
ξ ∈ Γ(U, ICi) where U is an open neighbourhood of K. Look at all the finitely many simplices σ ∈ TU that
meet C (since K is compact), and let K be the union of all these finitely many simplices. Clearly C ⊂ K, and
K is a finite subcomplex. Apply case 1 above to ξ|K . The proposition follows. 2

Corollary 6.1.4 (IH∗ as hyperhomology). The Borel-Moore (resp. finitely supported) intersection homology
of a stratified n-pseudomanifold X is the hypercohomology of X (resp. hypercohomology of X with compact
supports) in the complex of sheaves IC·. That is:

IHBM
i (X, k) = Hi(X, IC·) = RiΓ(X, IC·); IHi(X, k) = Hi,c(X, IC·) = RiΓc(IC·)

Proof: We recall the hyperhomology spectral sequence with:

E1
pq = Hq(X, ICp)

which abuts to Hp+q(X, IC·). Since ICp is soft for all p ≥ 0, and X is paracompact, hausdorff, it follows that
ICp is acyclic for the global section functor Γ. Thus the spectral sequence collapses, and E1

p,0 = H0(X, ICp) =
Γ(X, ICp) = ICp(X, k). As a consequence:

E2
p,0 = E∞

p,0 = Hp(IC·(X, k)) = IHp(X, k) = Hp(X, IC·)

The statement for finitely supported intersection homology is proved similarly, noting that IC· being soft, is
acyclic for finitely supported homology. 2

6.2. The Local Computation. The next step is to compute the derived sheaf H·(IC·), in the spirit of what
we did in the Proposition 3.2.3 for the complex of geometric chains. In that Proposition, the link of every
point on an n-manifold is an (n−1)-sphere, and the derived sheaf turns out to be concentrated in dimension n.
Unlike that scenario, the derived sheaf of IC· will no longer just be concentrated in dimension n. Indeed, for
a point x ∈ Sn−k, the codimension k-stratum, it will contain local topological data about the link Lx, where
U ≃ Bn−k × cLx is a locally trivial neighbourhood of x.

Definition 6.2.1. We define the truncation operator τ≥r on a chain complex C· by:

(τ≥rC)m = Cm for m > r

= ker [∂r : Cr → Cr−1] for m = r

= 0 for m < r

Note that there is thus a natural chain map τ≥rC· → C· which induces isomorphisms of homology Hi for i ≥ r.

Lemma 6.2.2. Let X be a compact stratified (k− 1)-pseudomanifold. Let p = (p2, .., pn) be any n-perversity,
which is to be held fixed, and will be henceforth suppressed from the notation. Similarly, all intersection
homology is with respect to some fixed coefficient ring k, which is also suppressed from the notation. Then
there is a commutative diagram:

τ≥n−pk
IC∗−(n−k+1)(X)

ρ
−→ IC∗−(n−k+1)(X)

↓ α∗ ↓ β∗

ICBM
∗ (Rn−k × cX)

γ
→ ICBM

∗ (Rn−k × (cX \ {p}))

where the vertical arrows are quasiisomorphisms. Here, the top horizontal map is from Definition 6.2.1 and
the bottom horizontal map γ is the restriction map on sections of the Borel-Moore intersection homology sheaf
defined in the last subsection.
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Proof: For i ≥ n − pk, the left vertical arrow αi is the composite:

ICi−(n−k+1)(X)
c

−→ ICBM
i−n+k(cX)

Σn−k

−→ ICBM
i (Rn−k × cX)

where c is the coning map of Proposition 5.4.9 and Σ is the suspension map of Proposition 5.4.4.

The second map Σn−k is a quasiisomorphism when i ≥ n−pk, by Proposition 5.4.4. In this case, j := i−n+
k ≥ k − pk. Thus the first map is a quasiisomorphism of complexes τ≥n−pk

IC∗−(n−k+1)(X) → IC∗−n+k(cX),
by Proposition 5.4.9. Hence the quasiisomorphism α∗.

That the second vertical map β∗ is a quasiisomorphism follows from noting that Rn−k × (cX \ {p}) ≃
Rn−k+1 × X , and the Proposition 5.4.4.

The commutativity of the diagram follows by noting that for a chain ξ in X , the restriction of cξ to
cX \ {p} ≃ R × X is the same as the suspension R × ξ = Σξ. This proves the commutativity for n = k. The
commutativity for general k then follows by composing everything with Σn−k. 2

We now revert to cochain complexes instead of chain complexes. So we define:

Definition 6.2.3. The sheaf of intersection cochains, denoted IC· (with perversity p, which is usually going
to be suppressed from the notation) is defined as:

ICj = IC−j

(This is the convention in [GM2]. Some authors (e.g. [Bor]) use ICj = ICn−j , which has the advantage of
keeping IC· a chain complex in non-negative degrees.)

Proposition 6.2.4. Let X be a compact (k− 1)-pseudomanifold, and let i : Rn−k × (cX \ {p}) →֒ Rn−k × cX
denote the inclusion. Let x ∈ Rn−k × {p} be any point. Then:

(i): The natural (sheaf restriction) maps:

ICBM
· (Rn−k × cX) → (IC−·)x

ICBM
· (Rn−k × (cX \ {p})) → (i∗IC

−·)x

are quasiisomorphisms.

(ii): The derived sheaf of IC· is given by

Hj(IC·)x = Hj(i∗IC
·)x for j ≤ pk − n

= 0 for j > pk − n

= 0 for j < −n

for x ∈ Rn−k × {p}. Thus, at a point x ∈ Rn−k × cX , the stalk cohomology Hj(IC·)x is concentrated in
the range −n ≤ j ≤ pk − n.

(iii): The two sheaves IC· and i∗IC
· are cohomologically constant (that is Hj(IC ·

x) and Hj(i∗IC
·
x) are

constant) for x ∈ Rn−k × {p}

Proof: For x ∈ Rn−k × {p}, one may choose a fundamental system of neighbourhoods Vǫ such that Vǫ ≃
Bn−k

ǫ × cX , where Bn−k
ǫ ⊂ Rn−k is an open ball of dimension n − k. Furthermore Vǫ is stratified compatibly

with the stratification on Rn−k × cX . For any such Vǫ, the sheaf theoretic restriction map:

ICBM
· (Rn−k × cX) → ICBM

· (Vǫ) = Γ(Vǫ, IC·)

produces isomorphisms on homology by appeal to Proposition 5.4.9. Taking limits over Vǫ, and noting that
IC· = IC−·, we have the first assertion of (i). For the second statement of (i), note that by definition

Γ(Vǫ, i∗IC·) = Γ(i−1(Vǫ), IC·) = ICBM
· (Bn−k

ǫ × (cX \ {p}))

Since cX \ {p} ≃ R × X , appeal to the Proposition 5.4.4 implies the second assertion of (i).
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For the next assertion (ii), since the top horizontal arrow ρ of Lemma 6.2.2 is an isomorphism on Hi for
i ≥ n − pk, it follows from that lemma that:

ICBM
∗ (Rn−k × cX)

γ
→ ICBM

∗ (Rn−k × (cX \ {p}))

is a quasiisomorphism for i ≥ n − pk. That is, for j := −i ≤ pk − n. Part (i) then implies that Hj(IC·
x) is

isomorphic to Hj(i∗IC
·
x) for j ≤ pk − n. This is precisely the first statement of (ii). The second statement

follows immediately from the fact that α∗ of Lemma 6.2.2 is a quasiisomorphism. The third statement follows
from the fact that ICi ≡ 0 for i > n, since Rn−k × cX is a PL-space of dimension n. This proves (ii).

The constancy of the cohomology sheaves follows from the fact that the link X of the cone cX is constant
for x ∈ Rn−k × {p}, and depending on j, the homologies of these sheaves are either zero or corresponding
intersection homology of X . 2

6.3. Constructibility of the complex IC· and Deligne’s Construction. The local calculations of the last
section allow the definition of the complex IC· by an inductive procedure proceeding from the top-dimensional
stratum Sn−2 and moving down to Sn−k.

Proposition 6.3.1 (Properties of the complex IC·). , Let k be a coefficient ring, and let X be a stratified
n-pseudomanifold. Let Sn−k := Xn−k \ Xn−k−1 (which is either empty or an (n − k)-dimensional manifold)
as before, and let Uk := X \Xn−k. Let ik : Uk → Uk+1 denote the inclusion. Then for the intersection cochain
complex IC· we have the following facts:

(i): IC· is a bounded complex, and zero in degrees < −n.

(ii): IC·
|U2

is quasisomorphic to OrU2
[n], where OrU2

is the orientation sheaf of U2.

(iii): The derived sheaf Hj(IC|Uk+1
) = 0 for j > pk − n.

(iv): The natural map of complexes of sheaves (called the attaching map):

IC·
|Uk+1

→ τ≤pk−nRik∗IC
·
|Uk

is a quasisomorphism of complexes of sheaves on Uk+1.

(v): IC· is cohomologically locally constant on Sn−k for each k (i.e. Hj(IC ·) is a locally constant sheaf) on
each Sn−k.)

Proof: (i) follows by Definition 6.1.1, since IC−j = ICj is a sheaf of j-chains for 0 ≤ j ≤ n.

For k = 2, we have Sn−2 = X \ Xn−2 = U2. Then

Hi(ICn−·|U2
)x = lim

V
(Hi(Γ(V, ICn−·)) = lim

V
IHBM

n−i (V )

where V ranges over a fundamental system of neighbourhoods of x. By the local triviality of (ii) of Definition
5.1.2, V is homeomorphic to Rn, and IHBM

n−i (V ) ≃ HBM
n−i (V ), and this last homology = 0 for i 6= 0, and = OrU2

for i = n. Thus Hj(IC·
|U2

)x = 0 for j 6= −n and = OrU2
for j = −n. Thus IC·

|U2
is quasiisomorphic to OrU2

[n],

and (ii) is proved.

To see (iii), first note that for x ∈ Uk, Hj(IC·
|Uk+1,x) = Hj(IC·

|Uk,x) = 0 for j > pk−1 − n, by induction on

k. Hence it is 0 a fortiori for j > pk − n since pk−1 ≤ pk. (The induction begins by (ii) proved above).

For x ∈ Sn−k = Uk+1 \ Uk, there is a neighbourhood U of x which is PL-stratified homeomorphic to
Rn−k ×cX , where X is a stratified (k−1)-pseudomanifold. In this model, the stratum Sn−k∩U = Rn−k ×{p},
where p is the cone point of cX . Thus the stalk of the intersection complex has the same cohomology as the
intersection complex of U = Rn−k × cX . For x ∈ Sn−k ⊂ Uk+1, it follows from the assertion (ii) of Proposition
6.2.4 that Hj(IC ·

|Uk+1,x) = 0 for j > pk − n. This proves the assertion (iii).

To see (iv), note that IC· = IC−· is a complex of soft sheaves by Lemma 6.1.3. Since Uk is open for all k,
IC·|Uk

is also a soft complex of sheaves, by Corollary 1.1.19. Thus ik∗(IC
·
|Uk

) is quasiisomorphic to Rik∗(IC
·
|Uk

),

as complexes of sheaves on Uk+1. For x ∈ Uk, the stalks i∗(IC
·
|Uk+1,x) and IC·

|Uk+1,x are the same, and because
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of (iii), so are the cohomologies of the stalks τ≤pk−ni∗(IC
·
|Uk+1,x) and IC·

|Uk+1,x). For x ∈ Uk+1 \ Uk = Sn−k,

the assertion follows by using a model neighbourhood U = Rn−k × cX as in the last para, and appealing to
the first statement of (ii) of Proposition 6.2.4

(v) follows straightaway from considerations as above and (iii) of Proposition 6.2.4. The key point again is
that for x ∈ Sn−k, the link Xx of x is locally constant. 2

Remark 6.3.2. The Proposition above shows that at points x ∈ U2, the dense stratum, the stalk of the
derived sheaf Hj(IC·

|U2
)x is situated only at j = −n (generalising the statement of Proposition 3.2.3). At

points x ∈ Sn−k, the stalk of the derived sheaf Hj(IC·)x is situated in the degrees −n ≤ j ≤ n− pk. So as one
moves to points in strata of higher codimension, the derived sheaf has more spread, and lives in more degrees.

Definition 6.3.3. Let X be a stratified n-pseudomanifold, with closed strata Xj ⊃ Xj−1.... Say a complex
of sheaves A· is cohomologically locally constructible (denoted CLC, and sometimes just called constructible by
abuse of language) with respect to this stratification if the derived sheaf Hm(A·) is a locally constant sheaf on
each Sj = Xj \ Xj−1 for each m.

For example, by (v) of Proposition 6.3.1, it follows that IC· is a constructible complex of sheaves on a
stratified N -pseudomanifold X . It is quite natural to ask what properties a constructible complex P · of
sheaves on X must satisfy in order to be quasiisomorphic to IC·. In this connection, we have the following:

Definition 6.3.4 (Deligne’s Construction). Let X be a stratified n-pseudomanifold, and let Sn−k := Xn−k \
Xn−k−1, Uk = X \ Xn−k, and ik : Uk →֒ Uk+1 denote the inclusion. Let p be a perversity (which will be
fixed, suppressed from the notation in the sequel), and let R be the fixed coefficient ring, which will also be
suppressed. Let Db(Y ) denote the derived category of bounded R-sheaves on a topological space Y . Inductively
define a complex P ·

k ∈ Db(Uk) by:

(i): P ·
2 = OrU2

[n], where OrU2
denotes the R-orientation sheaf of U2 = X \ Xn−2 = X \ Σ.

(ii): Assume Pk ∈ Db(Uk) has been defined for k ≥ 2. Define:

P ·
k+1 := τ≤pk−n Rik∗P

·
k

which makes sense as an element of Db(Uk+1).

(iii): Set P · ∈ Db(X) to be P · = P ·
n+1. (noting that Un+1 = X !)

A complex of sheaves P · on Db(X) obtained by Deligne’s construction above is called a perverse sheaf

with perversity p and coefficients R. (More generally, one can define a perverse sheaf with perversity p and
coefficients k in analogous fashion.)

Clearly, the Proposition 6.3.1 implies that the sheaf of intersection cochains IC· is a perverse sheaf. One
may ask whether the properties proved in Proposition 6.3.1 somehow characterise perverse sheaves in Db(X)
(i.e. upto quasiisomorphism). There is a set of axioms denoted (AX1) which codify the Proposition 6.3.1

Definition 6.3.5 (The Axioms (AX1)). Let X be as above, and S· be a complex of sheaves on X . Denote
Sk := S|Uk

, and let p be a perversity. Say that S· satisfies axioms (AX1) if:

(i): (Normalisation): S·
2 is quasiisomorphic to F [n], where F is a locally constant sheaf on U2.

(ii): (Lower bound): Hj(S·) = 0 for j < −n.

(iii): (Vanishing Condition): Hj(S·
k+1) = 0 for j > pk − n.
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(iv): (Attaching condition): Letting jk : Sn−k →֒ Uk+1 and ik : Uk →֒ Uk+1 denote the natural inclusions,
the natural “attaching” map:

Hi(j∗kS
·
k+1) → Hi(j∗kRik∗i

∗
kS

·
k+1)

is an isomorphism for all i ≤ pk − n

Theorem 6.3.6 (Deligne). Let S· be a complex of sheaves on X as above, which satisfies (AX1), with respect
to the perversity p and with F = OrU2

(the R-orientation sheaf of U2). Then S· is CLC, and quasisomorphic
to a perverse sheaf (with perversity p) with R-coefficients. In particular it is quasiisomorphic to the complex
of R-intersection cochains IC· defined earlier.

Proof: See Theorem 3.5, [GM2]. 2
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