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Introduction.

Gödel (1939) gave an interpretation of ZFC+GCH in an

extension by definitions of ZF . This gives us the following

theorem.

Theorem. If ZF is consistent, so is ZFC +GCH.

Moreover the corresponding class of this interpretation,

denoted by L and called the universe of constructible sets,

is proper (and not a set).

Even Gödel failed to prove that if ZF is consistent, so is

ZF + ¬AC or ZFC + ¬CH. What were the difficulties?

Gödel has showed that ZF can’t prove its own consis-

tency (the, so-called, second incompleteness theorem). In

other words, we can’t have a set model of ZF . In particu-

lar, we can’t have a set model of ZF in which AC or CH,

etc., fails. On the other hand, Gödel also showed that L is

the minimal inner model of ZF , i.e.,

Theorem. If M is a transitive proper class model of ZF

containing all ordinals, then L ⊂ M.

Definition. A class or a set M is called transitive if

∀x(x ∈ M → x ⊂ M).
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Suppose there is a transitive proper class model M of ZF

in which ¬AC or ¬CH holds. Since AC and GCH hold

in L, by the above theorem L 6= M. Since V = L (the

so-called axiom of constructibility, V the universe of sets)

holds in L, we have shown that ZF ` V 6= L. This is

impossible since V = L is consistent with ZF .

So, we can neither build a set model nor a proper class

model of ZF in which ¬AC or ¬CH holds!!

The compactness theorem comes as a saviour. Recall that

a theory T is consistent if and only if all its finite parts are

consistent. So it is sufficient to prove that for any finite set

P of axioms of ZFC, P+¬CH is consistent. The following

theorem becomes quite useful now.

Theorem. (ZFC) For every finite set of axioms P of

ZFC, there is a countable, transitive set M that models P .

In this note, we shall present a technique called forcing,

invented by Paul Cohen (1963), to show that if ZF is con-

sistent, so is ZF + ¬CH or ZF+ some other hypopthesis,

usually implying V 6= L. Since AC is relatively consis-

tent, it is sufficient to prove that if ZFC is consistent, so

is ZFC + ¬CH.
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The proof of the relative consistency of ¬AC is harder.

We shall illustrate the technique by showing the relative

consistency of mainly ¬CH.

One begins with a countable transitive set model M of

a suitable finite part of ZFC and constructs a countable

transitive set N ⊃ M that models P + ¬CH, say. It is

not necessary to specify in advance the finite part of ZFC

which models M . For entire argument to go through, one

will anyway use only finitely many axioms of ZFC. So, it

will be assumed that M is a countable transitive model of

a suitable finite part of ZFC to make entire argument go

through.

In the rest of this note, the statement “M is a countable

transitive model of ZFC” will mean that “M is a countable

transitive model of a suitable finite part of ZFC to make

entire argument go through”.
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Forcing: A curtain raiser.

Collapsing cardinals.

We begin with an example—probably a shocking exam-

ple. Let X be any set. We now attempt to show that “X

is countable.” We want to show that there is a surjection

f : ω → X, where ω = {0, 1, 2, . . .}. Set

P = X<ω,

the set of all functions whose domain is a finite subset of ω

(including the empty subset) and whose range is contained

in X. We define a partial order ≤ on P by

p ≤ q ⇔ p extends q,

p, q ∈ P. Let 1 denotes the empty function (the function

with empty domain). Note that 1 is the largest element

(hence, a maximal element) of P. Elements of P are called

conditions.

Call p and q compatible if

∃r(r ≤ p ∧ r ≤ q).

If p and q are not compatible, we shall call them incompat-

ible and write p ⊥ q.
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A subset D of P is called dense in P if

∀p∃q(q ∈ D ∧ q ≤ p).

For any n ∈ ω, the set

Dn = {p ∈ P : n ∈ domain(p)}

is dense in P (provided, of course, X is non-empty). Simi-

larly, for each x ∈ X,

Dx = {p ∈ P : x ∈ range(p)}

is dense.

Definition. A non-empty subset G of P is called a filter

if

(1) ∀p∀q((p ∈ G ∧ p ≤ q) → q ∈ G), i.e., G is closed

upwards.

(2) Any two elements of G are compatible.

Definition. A filter G on P is called P-generic if for

every dense set D, G ∩D 6= ∅.

If possible, suppose P contains a generic filter G. Then

∪G is a map from from ω onto X. So, in such a case, X is

countable.
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If X is uncountable, a generic filter does not exist. We

are about to present the first idea for forcing. We make an

observation first.

Lemma. Suppose the set of all dense sets is countable.

Then a P-generic filter G exists.

Proof. Let {Dn} be an enumeration of all the dense

sets in P. We define a sequence {pn} in P by induction

as follows. Choose any p0 ∈ D0. Having chosen pn ∈ Dn,

choose a pn+1 ∈ Dn+1 such that pn+1 ≤ pn. Since Dn+1

is dense, such a pn+1 exists. Note that pn’s are pairwise

compatible. Now set

G = {p ∈ P : ∃n(pn ≤ p)}.

Let M be a countable transitive model of ZFC and X ∈

M . Then (P,≤, 1) ∈M . Suppose X is not countable in M .

This means that there is no (partial) function f from ω

onto X that belongs to M . But there is a possibility that

such a function exists in the universe (of sets). Cohen gave

an ingenious method to build a countable transitive model

N ⊃ M of ZFC that contains a generic G. (Since N

is a model of ZFC, this implies that ∪G ∈ N , and so,
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X is countable in N .) More precisely, Cohen showed the

following.

Let M be a countable transitive model of a suitable finite

part of ZFC and X ∈ M uncountable in M . By choosing

the finite set of axioms suitably, we can ensure that (P,≤

, 1) ∈M . SinceM is countable, the set of all dense sets that

belong to M is countable (not in M but in the universe).

Hence, there is a P-generic filter G (overM) in the universe.

Cohen’s method of forcing gives us a countable transitive

set M [G] ⊃ M that is a model of a desired finite part of

ZFC containing G. Further, M [G] and M will have the

same ordinals. So, ∪G ∈ M [G] and witnesses that X is

countable in M [G]. This method of forcing is known as

collapsing cardinals. In the above argument, replacing ω

by any infinite Y ∈ M , we can get a model M [G] ⊃ M in

which |X| ≤ |Y |.
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Ordinals and Cardinals

Continum Hypothesis.

Definition. A set α is called an ordinal number if it is

transitive and if ∈ |α is linear. We shall use ON to denote

the class of all ordinal numbers.

The class of all ordinal numbers are “well-ordered” by ∈.

For ordinals α and β, we shall write α < β if α ∈ β. We

have the following facts:

(1) Exactly one of the following hold:

α < β or α = β or β < α.

(2) If A is a non-empty class of ordinals, then there is a

unique α ∈ A such that for every β ∈ A, α ≤ β.

(3) α < β if and only there is a one-to-one order-preserving

map from α onto an initial segment of β.

Definition. A cardinal number is an ordinal number κ

such that for every ordinal α < κ, |α| < |κ|.

Note that the class of all cardinal numbers are themselves

well-ordered by <. We enumerate the class of all infinite

cardinals by ℵ0 < ℵ1 < ℵ2 < . . . ,.
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We are in a position to explain the collapse of cardinals

now. Let M be any transitive model. o(M) will denote the

set of all ordinal numbers in M and ℵM
0 < ℵM

1 < ℵM
2 < . . . ,

the enumeration of all infinite cardinals in M . Given any

cardinal ℵM
α in M , using the forcing described above we

can get a model M [G] ⊃M in which ℵM
α is countable.

In order to give a model in which CH fails, naturally we

should know all the cardinals in that model.

Definition. If P ∈M , we say that P preserves cardinal-

ities if for every P-generic filter G over M ,

∀β ∈ o(M)((β is a cardinal)M) ⇔ (β is a cardinal)M [G]),

where a filter G on P is called generic over M , if G∩D 6= ∅

for every dense set D that belongs to M .

Definition. Let P ∈M . Then (P has c.c.c.)M if every set

A ⊂ P belonging to M consisting of pairwise incompatible

elements is countable in M .

Theorem. Let P ∈ M and (P has c.c.c.)M . Then P

preserves cardinalities.
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Note that if P preserves cardinalities, then for every generic

extension M [G] of M and for every α ∈ o(M),

ℵM
α = ℵM [G]

α .

Continuum Hypothesis (CH). 2ℵ0 = ℵ1.

Generalised Continuum Hypothesis (GCH). For

every ordinal α, 2ℵα = ℵα+1.

What is required to give a model of ¬CH?

First note that ℵ0 is the first infinite cardinal, ℵ1 is the

first uncountable cardinal, ℵ2 is the second uncountable

cardinal, and so on. But we have already seen that a set

may be uncountable in a model M but countable in a larger

model N . Similarly, an ordinal may be ℵ1 in a model M

but may be countable in a larger model N , or an ordinal

may be ℵ2 in a model M but may be ≤ ℵ1 in a larger model

N , and so on. So, a model N satisfies ¬CH if “in N , there

is a surjection

f : PN(ℵ0) → (ℵ2)
N ,

where PN(ℵ0) stands for all subsets of ℵ0 that are in N and

(ℵ2)
N is the second uncountable cardinal in N .”
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So, to show the relative consistency of ¬CH, one begin

with a suitable countable transitive model M , a suitable

P ∈ M such that (P has c.c.c.)M . Then M and M [G], G

P-generic in M , have the same cardinal numbers. Now P is

so chosen that in every M [G], |P(ℵ0)| > ℵ2.
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Absoluteness.

We have seen that a cardinal in a model may not be so

in a larger model; If N ⊃ M and x ∈ M , P(x)M may be

a proper subset of P(x)N because the larger model N may

contain a subset of x that does not belong to M . On the

other hand, if M and N are transitive and if x ∈ M is an

ordinal in M , it remains so in N . This brings us to the

very important notion of absoluteness.

Definition. Let M be a class and ϕ[x1, · · · , xn] a formula

of ZF . The relativization of ϕ to M, denoted by ϕM, is

defined by induction on the length of ϕ and by replacing

every subformula of the form ∃xψ by ∃x(x ∈ M ∧ ψM).

Definition. A class M is called a model of ZF (or ZFC

or ZFC +GCH) if ZF ` ϕM for every axiom ϕ of ZF (or

ZFC or ZFC +GCH).

Definition. A formula ϕ[x1, · · · , xn] is called absolute

for a class M if

ZF ` ∀x1, · · · , xn ∈ M(ϕ[x1, · · · , xn] ↔ ϕM[x1, · · · , xn]).

A “function,” e.g., x→ ∪x or (x, y) → x× y or (x, y) →

{x, y} or a “relation,” e.g., x ⊂ y or x is a function etc.,
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is called absolute with respect to M if the corresponding

graph is so.

The next few results are quite useful in proving absolute-

ness.

Definition. The smallest set of formulas of ZF contain-

ing all atomic formulas and closed under ∨, ¬ and bounded

quantification ∃x ∈ y · · · , defined by ∃x(x ∈ y ∧ · · · ), is

denoted by ∆0.

Note that if ϕ is a ∆0-formula, so is ∀x ∈ yϕ.

Theorem. Every ∆0 formula is absolute for every tran-

sitive class M.

Theorem If F : V → V is a “function” such that its

graph

{(x, y) ∈ V ×V : y = F (x)}

is a class, then there is a unique “function” G : ON → V

defined by

∀α ∈ ON(G(α) = F (G|α))

such that

{(α,G(α)) : α ∈ ON}
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is a class. (G|α denotes the “restriction” of G on α = {β ∈

ON : β < α}.) Moreover, if F is absolute for a transitive

model M of ZF , so is G.

The next result uses the foundation axiom.

Theorem. If F : A × V → V is a “function” whose

“graph” is a class, then there is a unique G : A → V

defined by

∀x ∈ A[G(x) = F(x,G|({y ∈ A : y ∈ x}))]

whose “graph” is a class. Moreover, if F and A are absolute

for a transitive model M of ZF , so is G.

Remark. Most of the commonly used functions, rela-

tions and constants (with notable exceptions of power

set x → P(x) and cardinals) are absolute with respect

to every transitive model of ZF . This actually means that

there is a finite set of axioms ϕ1, · · · , ϕn of ZF such that

for every transitive model M of ϕ1, · · · , ϕn the concerned

function (or relation or constant) is absolute with respect

to M. Readers are referred to Kunen’s book for this.
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A model in which CH fails.

In this section, we present (without proof) a partially

ordered set P such that forcing with P yields a model in

which CH fails.

Lemma. Let I be an arbitrary set and J countable. Let

P = Pfn<ω(I, J)

denote the set of all partial functions with domain a finite

subset of I and range contained in J . For p, q ∈ P, set

p ≤ q ↔ p extends q.

Then P is c.c.c.

Since one uses only finitely many axioms of ZFC to prove

the above lemma, we have the following result.

Lemma. There is a finite set P of axioms of ZFC such

that for every countable transitive model M of P we have

the following: Let, in M , I be an arbitrary set and J count-

able. Let

P = Pfn<ω(I, J)
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denote the set of all partial functions with domain a finite

subset of I and range contained in J . For p, q ∈ P, set

p ≤ q ↔ p extends q.

Then (P,≤, 1) ∈M and (P is c.c.c.)M .

Theorem. Let M be a countable transitive model of

ZFC. Let κ be an uncountable cardinal of M and

P = Pfn<ω(κ× ℵ0, 2).

Then for every P-generic filter G over M ,

(2ℵ0 ≥ κ)M [G].

Proof. Since M [G] is a model of ZFC and G ∈ M [G],

the function

f = ∪G : κ× ℵ0 −→ 2

belongs to M [G]. Now define F : κ → P(ℵ0) as follows:

for any α < κ,

F (α) = {n < ℵ0 : f(α, n) = 1}.

We show that F is one-to-one to complete the proof. Let

α < β < κ. Consider

Dαβ = {p ∈ P : ∃n(p(α, n) = 0 ∧ p(β, n) = 1)}.
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Since M is a model, by absoluteness, Dαβ ∈M . It is easily

seen thatDαβ is dense in P. Since G is generic, G∩Dαβ 6= ∅.

So, n ∈ F (β) but n 6∈ F (α).
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Definition of M [G]

This is the stage at which we require some patience. We

are going to present some very technical definitions. Once

these concepts are understood and certain facts about them

accepted, the use of forcing becomes relatively pleasant and

easy.

At this stage, it would be helpful to keep in mind that

based on the Zermelo-Fraenkel axioms, the universe of sets

V has the following properties: First each set (x ∈ V) is a

“hereditary set” in the sense that members of any x ∈ V is

again a member of V. Secondly, the foundation axiom says

∀x(x 6= ∅ → ∃y(y ∈ x ∧ ∀z(z ∈ x→ (z = y ∨ z 6∈ y))))

i.e., ∈ is well-founded on every x ∈ V. We can now

picture V as follows: By tranfinite induction, define

V (0) = ∅,

V (α+ 1) = P(V (α))

and for limit λ,

V (λ) = ∪α<λV (α).

One can show (in ZF ) that

V = ∪αV (α),
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i.e.,

ZF ` ∀x∃α(x ∈ V (α)).

For any x ∈ V, we define rank(x) to be the first α such that

x ∈ V (α + 1). Thus rank(∅) = 0 and rank(y) < rank(x) if

y ∈ x. The notion of rank enables us to do induction on

the class of sets.
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P-names.

LetM be a countable transitive model of ZFC, and (P,≤

, 1) ∈M .

Definition. τ is a P-name iff τ is a relation and

∀〈σ, p〉 ∈ τ [σ is a P− name ∧ p ∈ P].

VP will denote the class of all P-names. More precisely,

VP[τ ] is the class defined by the formula

relation(τ) ∧ ∀(σ, p) ∈ τ [VP[σ] ∧ p ∈ P].

As an example note that ∅ is a P-name. If σ, µ are P-

names, so is {〈σ, 1〉, 〈µ, 1〉}. Further, for any set x ∈ V,

we define a P-name x̌, called the canonical name of x, by

induction on rank(x) as follows:

x̌ = {〈y̌, 1〉 : y ∈ x}.

Since M is a model, x̌ ∈ M whenever x ∈ M . In fact, the

restriction of x→ x̌ to any set in M is in M . We can easily

check that ∅̌ = ∅ and {∅}̌ = {〈∅̌, 1〉}. Another important

example of a P-name is

Γ = {〈p̌, p〉 : p ∈ P}.

By the remark made above Γ ∈M .
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Value of P-names in a generic extension.

Definition. Let G be a P-generic filter over M . For each

P-name τ , we define the value of τ , and denote it by τG, by

induction as follows:

τG = {σG : ∃p ∈ G(〈σ, p〉 ∈ τ)}.

It is easy to check that {〈σ, 1〉, 〈µ, 1〉}G = {σG, µG}. Fur-

ther, for all sets x, x̌G = x and ΓG = G.

We set MP = VP ∩M . So, MP is the set of all P-names

that belong to M . Finally, we define

M [G] = {σG : σ ∈MP}.

Any model obtained by forcing is of the form M [G] and is

called a generic extension of M (obtained by forcing with

P). We first record some properties of M [G] that follow

directly from the definition. For instanceM [G] is countable

since M is. M [G] is transitive. Since x̌ ∈ M whenever

x ∈ M and since x̌G = x, M ⊂ M [G]. Since Γ ∈ M and

ΓG = G, G ∈M [G]. Further, o(M) = o(M [G]).

The difficulty arises when we try to determine whether

a particular statement is true in M [G] or not. The only

information that we have is that of the truth in M . Note

that M [G] is described in terms of G which, most often,
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does not belong to M . Thus, the people residing in M do

not know precisely which sets belong to M [G]. But they

have a name for each element in M [G]. We can draw a par-

allel. We prove results on polynomial rings k[X1, · · · , Xn]

by looking at just the coefficients of polynomials, which

belong to the field k.

Suppose we want to see when does M [G] satisfy the pair-

ing axiom. This amounts to showing that whenever σG,

µG belong to M [G], there is a set in M [G] containing both

of these. Now suppose M satisfies the pairing axiom and

some more axioms including comprehension. Then clearly

{〈σ, 1〉, 〈µ, 1〉} ∈MP. But {〈σ, 1〉, 〈µ, 1〉}G = {σG, µG}. So,

by definition, {σG, µG} ∈M [G].

Unfortunately, most often, it is fairly hard to show that a

certain statement is true in M [G]. Now we have arrived at

a stage to describe the deepest observation of Cohen giving

a very powerful and a very successful technique to connect

the truth in M [G] with that in M .
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The Forcing Notion

Theoughout this section we fix a countable transitive

model M of ZFC, a partially ordered set (P,≤, 1) in M ,

a p ∈ P, a formula ϕ[x1, · · · , xn] of ZFC, and P-names σ1,

· · · , σn in M . The following is the single most important

definition in our topic.

Definition We say that P forces ϕ[σ1, · · · , σn], and write

p‖−ϕ[σ1, · · · , σn], if ϕ[(σ1)G, · · · , (σn)G] is true in all those

generic extensions M [G] for which p ∈ G.

We make some very simple observations first. Since 1

belongs to every filter G, if 1 forces ϕ[σ1, · · · , σn], then

ϕ[(σ1)G, · · · , (σn)G] is true in all generic extensions M [G]

of M .

We are making some obvious notational simplification in

the following easy observations.

1. If q‖− ϕ and p ≤ q, then p‖− ϕ

2. p‖− ϕ & p‖− ψ iff p‖− ϕ ∧ ψ.

The observation 1. says that if a fact ϕ is forced by some

condidtion or information, it is also forced by a condidtion

P which has more information than q. We refer the reader

to the book of Kunen ([K]) for further details. There is

precisely one result, but a very deep result, that we need
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to know now. In the result stated below we are following

the notation that we have been using in this section.

The first observation below is the formalization of “truth

in M [G] can be decided in M .” The main contention of the

second statement is that any true statement in M [G] must

be forced by some condition p ∈ G.

Forcing Lemma

(a) To each p ∈ P, ϕ[x1, · · · , xn] and P-names σ1, · · · , σn

we can associate a formula p‖−∗ ϕ[σ1, · · · , σn] such that

p‖− ϕ[σ1, · · · , σn] ⇔ p‖−∗ ϕ[σ1, · · · , σn] is true in M.

(b) For all P-generic G over M

(ϕ[(σ1)G, · · · , (σn)G])M [G] ⇔ ∃p ∈ G[p‖− ϕ[σ1, · · · , σn]].
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Interesting part of the forcing lemma is that we never

need to know what the formula p‖−∗ ϕ[σ1, · · · , σn] is. It is

sufficient to know that p‖−ϕ[σ1, · · · , σn] can be decided in

M in the sense of part (a) of the Forcing Lemma. To verify

ϕ[(σ1)G, · · · , (σn)G] is true in M [G] it is more convenient

to use part (b) of the forcing lemma. Thus almost entire

proof uses very little metamathematics and is almost like

proving any other mathematical theorem.

Using forcing lemma, we can prove, rather easily, that for

every axiom ϕ of ZFC, there exists finitely many axioms

ψ1, · · · , ψn of ZFC such that if we begin with a countable

transitive model M of ψ1, · · · , ψn, then M [G] is a model of

ϕ. This has already been shown by Cohen and so we can

as well assume it.

Difficulties arise only to show that M [G] also satisfies

some other hypothesis such as ¬CH. If we accept the forc-

ing lemma and the broad description of the concepts de-

scribed above, the arguments involved are like usual math-

ematical arguments involving not too much of metamath-

ematics. The real challenge lies in cooking up the right

partially ordered set P.
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To sum up, the forcing prescription for showing the

relative consistency of a statement ϕ is the following.

1. Take any countable transitive model M (called the

ground model) of ZFC. (Since we shall only use the

fact that M is a model of some finitely many axioms

ZFC, there is no harm in pretending that M is a

model of the entire ZFC.)

2. Depending on ϕ, cook up a suitable poset 〈P,≤, 1〉

in M . (This is where the real challenge lies.)

3. Consider the countable set MP of all P-names in M .

4. Take any P-generic filter G over M . Now consider

the countable transitive set M [G], called the generic

extension of M . Pretend that M [G] is a countable

transitive model of ZFC satisfying

(a) G ∈M [G].

(b) o(M) = o(M [G]).

(c) Further, if (P is c.c.c)M , M and M [G] have the

same cardinals.

Now using part (b) of the forcing lemma, check

that ϕ is true in M [G]. To do this, we shall only use

the fact that M [G] is a countable transitive model

of some finitely many axioms of ZFC which we can

assume by beginning with a suitable M . Thus there
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is no harm in pretending that M [G] is a transitive

model of ZFC.
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