
PROBLEMS IN COMPLEX ANALYSIS

These problems are not in any particular order. I have collected them from a
number of text books. I have provided hints and solutions wherever I considered
them necessary. These are problems are meant to be used in a �rst course on
Complex Analysis. Use of measure theory has been minimized.
Updated in November 2012. Thanks to Sourav Ghosh for pointing out sev-

eral errors in previous version.
Notation: U = fz : jzj < 1g and T = fz : jzj = 1g:Def: f is analytic or

holomorphic on an open set if it is di¤erentiable at each point. H(
) is the
class of all holomorphic functions on 
: uc! stands for uniform convergence on
compact sets.

1. Find a sequence of complex numbers fzng such that sin zn is real for all
n and !1 as n!1?

2. At what points is f(z) = jzj di¤erentiable? At what points is f(z) = jzj2
di¤erentiable?

3. If f is a di¤erentiable function from a region 
 in C into R prove that f
is necessarily a constant.

4. Find all entire functions f such that fn(z) = z for all z, n being a given
positive integer.

5. If f and
_

f are both analytic in a region 
 show that they are constants
on 
:

6. If f2 and (
_

f)5 are analytic in a region show that f is a constant on that
region.

7. If f is analytic in a region 
 and if jf j is a constant on 
 show that f is
a constant on 
:

8. De�ne Log(z) = log jzj + i� where �� < � � � and z = jzj ei� (z 6= 0).
Prove that Log is not continuous on Cnf0g.

Consider the sequences f�1 + i=ng and f�1� i=ng.

9. Prove that the function Log de�ned in above problem is di¤erentiable on
Cnfx 2 R : x � 0g: Find its derivative and prove that there is no power series
1X
n=0

an(z � c)n convergent in Cnfx 2 R : x � 0g whose sum is Log.
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The main part is to verify continuity of Log. Di¤erntiability is automatic
since its inverse is di¤erentiable. The last part is follows from previous problem
and basic facts about power series.

10. Let p be a non-constant polynomial, c > 0 and 
 = fz : jp(z)j < cg:
Prove that @
 = fz : jp(z)j = cg and that each connected component of 

contains a zero of p.
If jp(z)j = c and there is no sequence fzng converging to z with jp(zn)j < c

8n then Maximum Modulus Principle is violated. This proves the �rst assertion.
Let C be any component of 
: If p has no zero in 
 then, since @C � @
 we

have jp(z)j � c and
��� 1
p(z)

��� � c by Maximum Modulus Principle applied to the

region C: Hence p is a constant.
11. Prove that there is no di¤erentiable function f on Cnf0g such that

ef(z) = z for all z 2 Cnf0g:
If it exists, compare it with Log.

12. Let  be a piecewise continuously di¤erentiable map : [0; 1] ! C and

h : � ! C be continuous( � is the range of ). Show that f(z) =
Z


h(�)
��z d�

de�nes a holomorphic function on Cn�.

13. If  is as in above problem show that the total variation of  is

1Z
0

j0(t)j dt:

14. If p is a polynomial and if the maximum of jpj on a region 
 is attained
at an interior point show, without using The Maximum Modulus Principle, that
p is a constant.
Compute the integral of p(z)z�a over a circle with centre a contained in 
.

15. If f(x+ iy) =
p
jxyj show that f is not di¤erntiable at 0 even though

Cauchy-Riemann equations are satis�ed.

16. Show that log
p
x2 + y2 is a harmonic function on Cnf0g which is not

the real part of any holomorphic function.

17. If f is holomorphic on 
 and ef is constant on 
 show that f is constant
on 
:

18. If f is an entire function and Re f (or Im f) is bounded above or below
show that f is constant.

19. Prove that ja�bj
j1�_

abj �
jaj�jbj
1�jabj if either jaj and jbj are both less than 1 or

both greater than 1.
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20. If f : U ! U is holomorphic show that jf(�)�f(�)j���1� _

f(�)f(�)
��� � j���j���1�_

��
��� for all

�; � 2 U .
Let �a(z) =

z�a
1�

_
az
. Apply Schwartz Lemma to �f(�) � f � ��� :

21. Prove that a holomorphic function from U into itself has atmost one
�xed point unless it is the identity map.

Apply Schwartz Lemma to ��1a � f � �a where a is a �xed point.

22. If f is a bijective bi-holomorphic map of U show that f maps open balls
in U onto open balls.
The only bijective bi-holomorphic maps of U are ei��a and these map are

compositions of inversions, translations and dilations.[�a is de�ned in Problem
20)].

23. Let 
 be a region, f 2 C(
) and let fn be holomorphic in 
 for some
positive integer n: Show that f is holomorphic in 
:
Use de�nition.

24. If f is an entire function such that jf(z)j � 1 +
p
jzj for all z 2 C show

that f is a constant.
If f is an entire function such that jf(z)j � M jzjN for jzj su¢ ciently large

( where M is a positive cosnatnt) show that f is a polynomial.

Consider f(z)�f(0)
z for the �rst part. For the second part use Liouville�s

Theorem for N = 0: Let g(z) = f(z)�f(0)
z for z 6= 0 and f 0(0) for z = 0: Show

that g satis�es the same hypotheis as f with N replaced by N � 1:

25. Find the largest open set on which

1Z
0

1
1+tzdt is analytic. Do the same

for

1Z
0

etz

1+t2 dt:

26. If f and g are holomorphic functions on a region 
 with no zeros such
that fz : f

0

f (z) =
g0

g (z)g has a limit point in 
 �nd a simple relation between f
and g.

27. If f is a holomorphic function on a region 
 which is not identically zero
show that the zeros of the function form an atmost countable set.

There exist compact sets Kn increasing to 
 : look at distances of points of

 from Cn
:
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28. Is Mean Value Theorem valid in the complex case? (i.e., if f is analytic in
a convex region and z1; z2 are two points in the region can we always �nd a point
� on the line segment from z1 to z2 such that f(z2)� f(z1) = f 0(�)(z2 � z1)?)

29. Let f be holomorphic on a region 
 with no zeros. If there is a holo-
morphic function h such that h0 = f 0

f show that f has a holomorphic logarithm
on 
 (i.e. there is a holomorphic function H such that eH = f . Show that h
need not exist and give su¢ cient a condition on 
 that ensures existence of h:

30. Prove that a bounded harmonic function on R2 is constant.

31. If f is a non-constant entire function such that jf(z)j � M jzjn for
jzj � R for some n 2 N and someM and R in (0;1) show that f is a polynomial
whose degree is atleast n.
Let z1; z2; :::; zk be the zeros of f in fz : jzj � Rg. Let g(z) = (z�z1)(z�z2):::(z�zk)

f(z) .
Then g is an entire function which satis�es an inequality of the type jg(z)j �
A + B jzjm for all z. Conclude that f must be a rational function, hence a
polynomial.

32. If f is an entire function which is not a constant prove that maxfjf(z)j :
jzj = rg is an increasing function of r which !1 as r !1.

33. If f 2 C(U [ T ) \ H(U) and f(z) = 0 on fei� : � < � < bg for some
a < b show that f is identically 0.

Consider f(z)f(zei�1)f(zei�2):::f(zei�k) for suitable �1; �2; :::; �k

34. True or false: if f and g are entire functions such that f(z)g(z) = 1 for all
z then f and g are constants. [What is the answer if f and g are polynomials?]

35. If f : U ! U is holomorphic, a 2 U and f(a) = a prove that jf 0(a)j � 1:
De�ne �a as in Problem 20 above and apply Schwartz Lemma to �a�f ���a.

36. The result of Problem 35 holds for any region that is conformally equiv-
alent to U . [A conformal equivalence is a bijective biholomorphic map].

37. According to Riemann Mapping Theorem, any simply connected region
other than C is conformally equivalent to U: Hence, above problem applies to
any such region. Is the result valid for C?

38. Prove that only entire functions that are one-to-one are of the type
f(z) = az + b.

[ Let g(z) = f( 1z ); z 2 Cnf0g: If g has an essential singularity at 0 then
g(fz : jzj > 1g) is a non-empty open set and hence it must intersect the dense
set g(Unf0g): But this contradicts the fact f (and hence g) is 0ne-to-one. If
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g has a removable singularity at 0 then f would be a constant and it cannot
be injective. Thus g has a pole at 0 and we can write g(z) = h(z)

zN
in Cnf0g

where h is entire and N is a positive integer. Now f(z) = zNh( 1z ); z 2 Cnf0g:
This yields jf(z)j �M jznj for jzj su¢ ciently large and we conclude that f must
be a polynomial by Problem 24) above. Since f is one-to-one we see that its
derivative is a polynomial with no zeros, hence a constant]
39. Prove that fz : 0 < jzj < 1g and fz : r < jzj < Rg are not conformally

equivalent if r > 0.
If � is a holomorphic equivalence then 1

� extends to a holomorphic map g
on U and there is a holomorphic map h on U such that eh = g. Use this to
show that there is a holomorphic logarithm on fz : r < jzj < Rg and get a
contradiction by comparing with the principal branch of log.

40. Let 0 < r1 < R1 and 0 < r2 < R2. Prove that fz : r1 < jzj < R1g and
fz : r2 < jzj < R2g are conformally equivalent , R1

r1
= R2

r2
[This is standard text book material. Note that all simply connected regions

other than C are conformally equivalent to each other, but the result is far from
being true for doubly connected regions (like annuli)]

41. Show that if a holomorphic map f maps U into itself it need not have
a �xed point in U . Even if it extends to a continuous map of the closure of U
onto itself the same conclusion holds.
[Look at �a of Problem 20]

42. If f is holomorphic on U; continuous on the closure of U and jf(z)j < 1
on T prove that f has at least one �xed point in U . Can it have more than one
�xed point?
By Rouche�s Theorem it has exactly one �xed point.

43. If f is holomorphic : U ! U and f(0) = 0 and if ffng is the sequence
of iterates of f (i:e:f1 = f; fn+1 = f � fn; n � 1) prove that the sequence ffng
converges uniformly on compact subsets of U to 0 unless f is a rotation:

If f is not a rotation then jf 0(0)j < 1: Consider supf
��� f(z)z ��� : jzj � rg where

r = supfjzj : z 2 Kg; K being a given compact subset of U .

44. Let f be a homeomorphism of C1 = C[ f1g (with the metric induced
by the stereographic projection). Assume that f is di¤erntiable at all points of
C [ f1g except f�1f1g. Prove that f is a Mobius Transformation.
This is clear if f�1f1g =1: Let f(a) =1 and f(1) = b: Let T (z) = bz+c

z�a
where c 6= ab. Consider f � T�1. Show that this map is entire. Since it is
one-to-one it must be a polynomial of degree 1.

45. Prove that the only conformal equivalences : Unf0g onto! Unf0g are
rotations.
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Prove that such a map extends to a conformal equivalence of U . Hence it
must be �ae

i� for some a and �.

46. Prove that � cot�z = 1
z +

1X
n=1

2z
z2�n2 if z is not an integer.

Integrate � cot��
�2�z2 over the rectangle with vertices �(n+ 1=2)� ni:

47. Prove or disprove: Log(z1z2) = Log(z1) + Log(z2)

48.
a) Discuss convergence of the following in�nite products:
1Y
n=1

1
np (p > 0);

1Y
n=1

(1 + i
n );

1Y
n=1

��1 + i
n

�� :
b) Prove that

1Y
n=2

(1 � 1
n2 ) =

1
2 and

1Y
n=0

(1 + z2
n

) = 1
1�z if jzj < 1. [See

Problem 51) for
1Y
n=1

(1 + i
n )].

c)
1Y
n=1

(1� 1
pn
) where p1; p2; ::: is the sequence of primes.

[
NY
n=1

1
(1� 1

pn
)
=
X
j2AN

1
j where AN is the set of all positive integers whose prime

factorizations do not involve primes greater than PN : Hence the given product

diverges. Also, we can conclude that
1X
n=1

1
pN
=1].

49. Let Re(an) > 0 for all n. Prove that
1Y
n=1

[1 + j1� anj] converges if and

only if
1X
n=1

jLog(an)j <1.

50. Prove or disprove the following:
1X
n=1

jLog(an)j < 1 ,
1X
n=1

j1� anj < 1 and
1X
n=1

Log(an) is convergent ,

1X
n=1

[1� an] is convergent.

First part is true: Log(1+ z) behaves like z near 0. If an = 1+
(�1)np

n
i then

1X
n=1

[1�an] is convergent but
1X
n=1

Log(an) is not convegent. If an = e
(�1)np

n
i then
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1X
n=1

[1� an] is not convergent but
1X
n=1

Log(an) is convergent.

51. Prove that
1Y
n=1

zn converges ,
X

Log(zn) converges. Use this to prove

that
1Y
n=1

(1 + i=n) is not convergent.

For ): w.l.o.g take zn = ei�n ;�� < �n � � and assume ei(�1+:::+�n) ! 1: If
NX
k=1

�n is close to 2kN� then �N is close to 2(kN � kN�1)� and lies in (��; �] so

kN = kN�1!

52. Prove that sin�z = �z

1Y
n=1

(1� z2

n2 )

sin�z = eg(z)z

1Y
n=1

(1 � z
n )e

z=n for some entire function g. Use Problem 46

to �nd g.

53. Let B(z) =
1Y
n=1

janj
an

an�z
1�

_
anz
. Prove that if 0 < janj < 1 and

X
[1�janj] <

1 then the product conveges uniformly on comapct subsets of U and that
B(z) is a holomorphic function on this disk with zeros precisely at the points
an; n = 1; 2; :::. Prove that fang can be chosen so that every point of T is a
limit point; prove that T is a natural boundary of B in this case (in the sense
B cannot be extended to a holomorphic function on any larger open set.
[Standard text book stu¤]

54. Say that a function f : R ! R is analytic if for each a 2 R there exists
�a > 0 such that on (a� �a; a+ �a), f has a power series expansion. Show that
the zeros of an analytic function on R have no limit points.
The power series expansion in (a� �a; a+ �a) yields a holomorphic function

in B(a; �a) whose restriction to (a� �a; a+ �a) is f . Fix R and use compactness
of [�R;R] to show that there is an open rectangle in C containing [�R;R] and a
holomorphic function on that rectangle whose restriction to [�R;R] is f . Thus,
f has atmost �nitely many zeros in [�R;R]:

55. If f : C ! C has power series expansion around each point then it has
a single power series expansion valid on all of C: Is it true that if f : R ! R
has power series expansion around each point then it has a single power series
expansion valid on all of R?

1
1+x2
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56. Does there exist an entire function f such that jf(z)j = jzj2 eIm(z) for all
z? If so, �nd all such functions. Do the same for jf(z)j = jzj eIm(z) Re(z).

57. Does there exist a holomorphic function f on U such that ff( 1n )g =
f 12 ;

1
2 ;

1
4 ;

1
4 ; :::g; i.e. f(

1
n ) =

1
n if n is even and f(

1
n ) =

1
n+1 if n is odd?

58. If the radius of convegence of
1X
n=0

an;k(z � a)n exceeds R for each k and

1X
n=0

an;k(z�a)n ! 0 uniformly on fz : jz � z0j = rg then it converges uniformly

on fz : jz � z0j � rg provided R > r + jz0 � aj :

59. Let f be continuous and bounded on fz : jzj � 1gnF where F is a �nite
subset of T . If f is holomorphic on U and jf(z)j � M on @UnF show that
jf(z)j �M on U .

Consider
kY
j=1

a2je
�Log(1� z

aj
)
f(z) where F = fa1; a2; :::; akg:

60. Let 
 = fz : Re(z) > 0g. If f is continuous on the closure of 
;
holomorphic on 
 and if jf(z)j � 1 on @
 does it follow that the same inequality
holds on 
?.

61. Let 
 = fz : a < Im(z) < bg; f 2 H(
) and f be bounded and
continuous on the closure of 
. Prove that if jf(z)j � 1 on @
 then the same
inequality holds on 
:

Compose the maps z ! � z�ab�a ; z ! ez and z ! z�i
z+i : Apply the result of

problem 59. [See also problem #85 below].
Second proof: consider 1

i+�(z�ia)f(z) and apply MaximumModulus Theorem
for the rectangle fz : a < Im(z) < b; g � R < Re z < Rg with R su¢ ciently
large.

62. Prove that f(z) = z
(1�z)2 is one-to-one on U and �nd the image of U .

f(z) = 1
(1�z)2 �

1
1�z : First �nd f

1
1�z : z 2 Ug: Answer: Cn(�1;�

1
4 ]:

63. If p and q are polynomials with deg(q) > deg(p)+ 1 prove that the sum
of the residues of pq at all its poles is 0.
Integrate over a large circle.

64. Evaluate
Z


1
(z�2)(2z+1)2(3z�1)3 dz and

Z


1
(z�10)(z� 1

2 )
100 dz where (t) =

e2�it(0 � t � 1)
Use problem 63.
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65. Find the number of zeros of z7 + 4z4 + z3 + 1 in U and the annulus
f1 < jzj < 2g.
Apply Rouche�s Theorem to z7 + 4z4 and the given function.

66. Let p(z) = zn+cn�1z
n�1+:::+c1z+c0 andR =

q
1 + jc0j2 + jc1j2 + :::+ jcn�1j2.

Prove that all the zeros of p are in fz : jzj < Rg.
Compare with q(z) = zn (Apply Cauchy-Schwartz).

67. Let 1 < a < 1. prove that z + a � ez has exactly one zero in the left
half plane fz : Re(z) < 0g.
Let R > 1 + a and let  be the line segment from �Ri to Ri followed by

the semi-circle jzj = R; �2 � arg(z) �
3�
2 . Compare zeros of z + a� e

z with the
zeros of z + a inside .

68. If 0 < jaj < 1 show that the equation (z � 1)nez = a has exactly n
solutions in Re z > 0. Prove that all the roots are simple roots. If jaj � 1

2n

prove that all the roots are in fz : jz � 1j < 1
2g.

jaj < j(z � 1)nezj if jz � 1j = jaj1=n and (z � 1)nez � a has no zeros outside
the ball fz : jz � 1j < jaj1=ng and inside the right half plane: j(z � 1)nezj >
jaj eRe z > jaj; there are no multiple roots because the derivative has no zeros.

69. Prove that f(z) = 1 + z2 + z2
2

+ ::: + z2
n

+ ::: has U as its natural
boundary in the sense it cannot be extended to a holomorphic function on any
open which properly contains U .
If � is a dyadic rational then f is unbounded on the ray frei� : 0 < r < 1g

since

�����
1X
n=m

(re2�i(k=2
m))2

n

������
�����
m�1X
n=0

(re2�i(k=2
m))2

n

����� �
1X
n=m

r2
n �m:

70. If p is a polynomial such that jp(z)j = p(jzj) for all z prove that
p(z) = czn for some c � 0 and some n 2 N [ f0g:

p has no zeros in Cnf0g:

71. Prove that above result holds if p is replaced by an entire function.

Compute 1
2�

2�Z
0

��f(rei�)��2 d� in terms of the power series expansion around
0.

72. Prove the two dimensional Mean value Property:
the average of a holomorphic function over an open ball is the value at the

centre.

73. Construct a conformal equivalence between the �rst quadrant and the
upper half plane. Also, �nd a conformal equivalence between U and its inter-
section with the right half plane.
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First part: z2; second part: compose 1+iz
i+z ; z

2 and i(i+z)
i�z :

74. Find a conformal equivalence between the sector fz 6= 0 : �1 < arg(z) <
�2g with 0 < �1 < �2 < �=2 and U .
Use previous problem and the function z�.

75. Prove that if  is a closed path in a region 
 and f 2 H(
) then

Re(

Z


_

f(z)f 0(z)dz) = 0:

Compute d
dt jf((t))j

2
:

76. Prove or disprove: given any sequence fang of complex numbers there
is a holomorphic function f in some neighbourhood of 0 such that f (n)(0) = an
for all n.

77. If f is holomorphic on 
nfag prove that ef(z) cannot have a pole at a.
If f has an essential singularity at a then so does ef . Suppose f has a pole

of order k at a. If possible, let
��ef(z)��!1 as z ! a. Let g(z) = f(z)(z � a)k:

Then Re g(z)
(z�a)k ! 1 as z ! a. Choose � such that � = g(a)e�i�k 2 (�1; 0).

If zn = a+ 1
ne

i� then Re[nk g(zn)g(a) ]! �1; but Re[ g(zn)g(a) ]! 1 a contradiction.

78. Prove that

2�Z
0

log
��1� ei��� d� = 0:

2�Z
0

log
��1� rei��� d� = 0 for r 2 (0; 1) by Mean Value Theorem for harmonic

functions. Split the integral into integrals over f� : r < cos �g and f� : r � cos �g
and justify interchange of limit (as r ! 1) and the integrals. You may need the
inequality cos � � 1� �2

2 +
�4

24 .

79. Use above result to prove Jensen�s Formula:
If f 2 H(B(0; R)); f(0) 6= 0; 0 < r < R and �1; �2; :::; �N are the ze-

ros of f in B(0; r)� listed according to multiplicities then jf(0)j
NY
n=1

r
j�nj =

e

1
2�

2�Z
0

logjf(rei�)jd�
. Also prove Jensen�s inequality: log jf(0)j � 1

2�

2�Z
0

log
��f(rei�)�� d�.

Let g(z) = f(z)
mY
n=1

r2�
_
anz

r(�n�z)

NY
n=m+1

�n
�n�z . Prove that log jg(0)j =

1
2�

2�Z
0

log
��g(rei�)�� d�.
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80. Let 
 be an open set containing 0 and f 2 H(
). Prove that
_

f(z) = f(
_
z)

for all z with jzj su¢ ciently small , f (n)(0) 2 R for all n � 0.

81. If f 2 H(U); f(0) = 0; f 0(0) 6= 0 prove that there is no g 2 H(Unf0g)
such that g2 = f .

82. If f is an entire function such that jf(z)j ! 1 as jzj ! 1 prove that
jf(z)j � c jzj for some positive number c for all z with jzj su¢ ciently large.

Consider 1
f( 1z )

83. Let 
 be a region, ffng � H(
) and assume that ffng is uniformly
bounded on each compact subset of 
. Let C be the set of points where ffng is
convergent. If this set has a limit point in 
 prove that ffng converges uniformly
on compact subsets of 
 to a holomorphic function.

[ The family ffng is normal. Let ffnkg converge uniformly on compact
subsets to f: Then f 2 H(
). If g is another subsequential limit of ffng then
f = g at point where ffn(z)g converges. Thus f = g on a set with limit points
in 
]

84. Prove or disprove: If 
 is a region, ffng � H(
); f
(k)
n (z)! 0 as n!1

for each z 2 
 and each k 2 f0; 1; 2; :::g then ffng converges (to 0) uniformly
on compact subsets of 

[ This is a trivial consequence of problem #83 above if ffng is uniformly

bounded on each compact subset of 
. What if this assumption is dropped?]

85. Give an example of a function f which is continuous on a closed strip,
holomorphic in the interior, bounded on the boundary but not bounded on the
strip! [See also problem #61 above].
cos(cos z)

86. Let u(z) = Imf( 1+z1�z )
2g. Show that u is harmonic in U and lim

r!1
u(rei�) =

0 for all �. Why doesn�t this contradict the Maximum Modulus Principle for
harmonic functions?
[Answer to second part: Limit is taken only along radii]

87. If �(jzj) is harmonic in the region fz : Re(z) > 0g (� being real valued
and "smooth") prove that �(t) � a log t+ b for some a and b.

88. Let f :
_
U ! C be a continuous function which is harmonic in U . Prove

that f is holomorphic in U if and only if

�Z
��

f(eit)eintdt = 0 for all positive

integers n.

11



f is the Poisson integral of its values on the boundary. Replace the Poisson

kernel Pr(t) by
1X

n=�1
rjnjeint and interchange the sum and the integral. Note

that
�X

n=0

cn
_
z
n
is holomorphic if and only if it is a constant.

89. Let 
 = fz : Re(z) > 0g. If f is bounded and continuous on @
 show
that it is the restriction of a continuous function on

_

 which is harmonic in 
.

Let F (x + iy) = 1
�

1Z
�1

xf(it)
x2+(y�t)2 dt. Prove that

�Z
��

f(it)
x+i(y�t)dt is holomorphic

on 
 and it converges to F uniformly on compact subsets of 
.

90. Prove that the square of a real harmonic function is not harmonic unless
it is a constant. When is the product of two real harmonic functions harmonic?
Find all holomorphic functions f such that jf j2 is harmonic.

91. If f : 
! C and f and f2 are harmonic prove that either f is holomor-
phic or

_

f is holomorphic. Prove the converse.

92. If u is a non-constant harmonic in a region 
 prove that the zeros of the
gradient of u in 
 have no limit point.

93. If u is harmonic in a region 
 prove that partial derivatives of u of all
orders are harmonic.

94. Let S = fx 2 R : a � x � bg. Let 
 be a region containing S. Prove
that if f 2 H(
nS) \ C(
) then f 2 H(
).

Prove that integral of f over any triangle in 
 is 0.

95. Let f; fn(n = 1; 2; :::) be holomorphic functions on a region 
. If
Re(fn)

uc! Re(f) show that fn
uc! f .

Enough to do this in small balls. Use the formula Im[fn(z)] = 1
2�

�Z
��

Im[ e
itR+z
eitR�z ] Re fn(a+

eitR)dt for z 2 B(a;R) if the closure of B(a;R) is contained in 
. [There is a
similar formula for Im[f(z)]].

96. Let f(z) =

1Z
�1

1
t�zdt; z 2 Cn[�1; 1]. Prove that f is holomorphic, its

imaginary part is bounded, but the real part is not. Prove that lim
z!1

zf(z)

12



exists and �nd this limit. Find a bounded non-constant holomorphic function
on Cn[�1; 1].

97. Give an example of a region 
 such that 
c is in�nite and every bounded
holomorphic function on 
 is a constant.

Take 
 = Cnf1; 2; :::g
Remark: it can be shown that there are non-constant bounded holomorphic

functions on Cn[�1; 1] but there are no such functions on CnK if K is a compact
subset of R with Lebesgue measure 0. Thus the complement of the Cantor
set gives a region whose complement is uncountable such that every bounded
holomorphic function on it is a constant.

98. If 
 is any region contained in Cn(�1; 0] show that there exists a
bounded non-constant holomorphic function on 
:

More generally if there is a non-constant holomorphic function � on 
 such
that �(
) is contained in Cn(�1; 0] the same conclusion holds.
Look at eiLog(�(z)).

99. If 
 is Cn(�1; 0] or a horizontal strip or a vertical strip or U c show
that there exist non-constant bounded holomorphic functions on 
.
[eiLog(z); eiz; ez; 1z ]

100. Prove that there is no holomorphic function f on U c such that jf(z)j !
1 as jzj ! 1:
First assume that f has no zeros and look at 1

f( 1z )
. Use Laurent series

expansion of 1
f( 1z )

. For the general case use the existence of an entire function

whose zeros match the zeros of f .

101. Prove that there is no continuous bijection from
_

 , where 
 = fz :

Re(z) > 0g; onto
_
U which maps 
 onto U and is holomorphic in 
:

Write down all holomorphic bijections from 
 onto U and show that each
of them extend to continuous functions on

_

 uniquely with range properly con-

tained in
_
U [In fact the range misses exactly one point].

102. Let 
 be a bounded region, f 2 C(
_

 )\H(
) and assume that jf j is a

non-zero constant on @
. If f is not a constant on 
 show that f has atleast
one zero in 
:

103. Let f be a non-constant entire function. Prove that the closure of
fz : jf(z)j < cg coincides with fz : jf(z)j � cg for all c > 0:

13



104. Prove that if f 2 H(
); [a; b] � 
 (where [a; b] is the line segment from
a to b) then jf(b)� f(a)j � jb� aj jf 0(�)j for some � 2 [a; b]: Also prove that
jf(b)� f(a)� (b� a)f 0(a)j � jb�aj2

2

���f 00(�)��� for some � 2 [a; b].
105. Evaluate

Z


z2+1
z(z2+4)dz where (t) = re2�it(0 � t � 1) where 0 < r < 2:

No computation is needed!
Compute the same integral for r > 2.
Use partial fractions for second part.

106. Give an example of a bounded holomorphic function f on CnR which
cannot be extended to any larger open set.

Take f(z) =
� 1+iz

1�iz if Im z > 0
1�iz
1+iz if Im z < 0

and note that lim
Im z!0

f(z) exists only for

Re z = 0:

107. If f 2 H(0 < jzj < R) and
Z

0<x2+y2<R

jf(x+ iy)j dxdy <1 prove that

f has either a removable singularity or a pole of order one at 0.

The coe¤cients fang in the Laurent series expansion satisfy
RZ
0

rn+1dr janj <

1:
108. In the previous problem if

Z
0<x2+y2<R

jf(x+ iy))j2 dxdy <1 prove that

f has a removable singularity at 0.

109. Show that there is no function f 2 H(U) \ C(
�
U) such that f(z) =

1
z8z 2 @U:

[zf(z)� 1 2 H(U) \ C(
�
U) and vanishes on @U ].

110. If f 2 C(U); fn 2 H(U) and fn ! f in L1(U) then f 2 H(U):

[

1Z
0

�Z
��

��fn(rei�)� f(rei�)�� rdrd� ! 0 and hence

�Z
��

��fnk(rei�)� f(rei�)�� d� !
0 for almost all r for some subsequence fnkg of f1; 2; :::g:We can �nd a sequence

rj " 1 such that
�Z

��

��fnk(rei�)� f(rei�)�� d� ! 0 for r = r1; r2; :::. By Cauchy�s

Integral Formula we have fn(z) � fm(z) =
1
2�i

Z


fn(�)�fm(�)
��z d�8z 2 B(0; �=2)

where (t) = �e2�it; 0 � t � 1: It follows easily from this that ffnkg is uniformly

14



Cauchy on B(0; �): This proves (by Morera�s Theorem) that f 2 H(B(0; �))
and � 2 (0; 1) is arbitrary.
111. Any conformal equivalence of Cnf0) is of the form cz or of the form c

z
where c is a constant.
[ This requites the Big Picard�s Theorem. Consider the Laurent series ex-

pansion f(z) =
1X

n=�1
cnz

n: By Big Picard�s Theorem and the fact that f is

injective neither f(z) nor f( 1z ) has an essential singularity at 0: This forces
1X

n=�1
cnz

n to be a �nite sum. Thus, f is a rational function : Since f is holo-

morphic on Cnf0); we can write f(z) = p(z)
zj for some j 2 f0; 1; 2; :::g and

some polynomial p with p(0) 6= 0: It follows that its derivative has no ze-
ros in Cnf0); i:e:zjp0(z) � jzj�1p(z) is a polynomial with no zeros in Cnf0):
This implies that zjp0(z) � jzj�1p(z) = czn for some n 2 f0; 1; 2; :::g and
f 0(z) = czn

z2j = czn�2j : Thus, f(z) = czk+1=(k+1) where k = n� 2j: [Note that
there is holomorphic function on Cnf0) whose derivative is 1

z . Thus, k 6= �1].
The fact that f is injective shows that k + 1 = �1].
112. If x1 > x2 > x3 > :::; fxng ! 0 and f 2 H(U) with f(xn) 2 R8n then

f (k)(0) 2 R8k:
[Clearly f(0) and f 0(0) are real. Now, f (k+1)(0) = ((k+1)!)(lim

t!0

f(t)�[c0+c1t+c2t2+:::+cktk]
tk+1

)

where cj =
f(j)(0)
j! : Taking limit along the sequence fxng we see that f (k+1)(0) 2

R if f (l)(0) 2 R for l � k].
113. Let ffng � H(D) where D is an open disc. Assume that fn(D) �

Dnf0g8n and that lim
n!1

fn(a) = 0 where is the center ofD. Then lim
n!1

fn(z) = 0

uniformly on compact subsets of D:
[ ffng is normal. If a subsequence converges uniformly on comapct subsets

then either the limit has no zeros or it is identically zero].
114. Let fung be a sequence of (strictly) positive harmonic functions on an

open set 
 such that
X

un =1 at one point. Then the series diverges at every
point. Moreover, if it converges at one point it converges uniformly on compact
subsets of 
:

[ Apply problem 113) above to f
NY
n=1

eun+ivng where vn is a harmonic conju-

gate of un: Of course, it su¢ ces to ptove the result in each closed disc contained
in 
; so existence of harmonic conjugate is guaranteed].

115. Find all limit points of the sequence f 1n
nX
k=1

kiagn=1;2;::: where a is a

non-zero real number.

[
nX
k=1

( kn )
ia 1
n !

1Z
0

xiadx = 1
1+ia : We claim that the set of limit points of

fniag is precisely the unit circle fjzj = 1g and this would show that the desired
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set is fz : jzj = 1p
1+a2

g: Given � 2 R and � > 0 we need to show the existance
of integers n and m such that j�� a log(n)� 2m�j < �: Equivalently, ��2m�a �
�
jaj < log(n) < ��2m�

a + �
jaj : The interval (e

��2m�
a � �

jaj ; e
��2m�

a + �
jaj ) has length

larger than 1 if �m
a is su¢ ciently large and so it would contain an integer n:

Also e
��2m�

a � �
jaj > 1 for such m and so n is positive].

116. Let f have an isolated singularity at a point a. Prove that ef cannot
have a pole at a.
[ If f has a removable singularity the conclusion holds. Suppose f has an

essential singularity at a. We claim that fef(z) : 0 < jz � aj < �g is dense in
C for each �. Of course, these implies that ef does not have a pole at a. We
know that ff(z) : 0 < jz � aj < �g is dense in C for each �. Let c 2 Cnf0g and
� > 0: Let ed = c and choose z such that 0 < jz � aj < � and jf(z)� dj < �:
Then

��ef(z) � ed�� < �[e2jdj+�]: This proves the claim. Finally, if f has a pole
at a then there is a positive integer m such that (z � a)mf(z) = g(z) (say) is

holomorphic in a neighbourhood of a and g(a) 6= 0. Thus, ef(z) = e
g(z)

(z�a)m =

e
p(z)

(z�a)m eh(z) near a with h holomorphic near a; p being a polynomial of degree

at most m. If e
p(z)

(z�a)m has a removable singulairty or a pole then e
p(z)

(z�a)m (z�a)k
would be bounded near a for some integer k � 0: Put z = a+N where N is a

positive integer and note that e
p(z)

(z�a)m (z � a)k ! 1 as N ! 1: Thus e
p(z)

(z�a)m

must have an essential singularity at a so does e
p(z)

(z�a)m eh(z) ]:
117. Let f be holomorphic on U and assume that for each r 2 (0; 1); f(reit)

has a constant argument (i.e. f(reit) =
��f(reit)�� eiar where the real number ar

does not depend on t. Show that f is a constant.
[ The set Unfz : f(z) 2 (�1; 0]g is open. On this set Log(f) has a constant

imaginary part which implies it is a constant. Thus f is a constant on Unfz :
f(z) 2 (�1; 0]g: If this open set is non-empty then f is a constant everywhere.
If it is empty then Im(f) = 0 on U which implies of course that f is a constant]
118. [ based on problem 117)] Let f 2 H(
) and suppose jf j is harmonic in


: Show that f is a constant.
[f and jf j both have mean value property and this implies that the hypothesis

of previous problem is satis�ed].
119. Let f 2 H(U); f(U) � U; f(0) = 0 and f( 12 ) = 0: Show that jf

0(0)j � 1
2 :

Give an example to show that equality may hold.

[ Let g = f
h where h(z) =

z� 1
2

1� 1
2 z
= 2z�1

2�z : Use Maximum Modulus principle

to conclude that Schwartz Lemma applies to g: Now
jf 0(0)j = jh(0)j jg0(0)j � jh(0)j = 1

2 : Equality holds when f = zh(z)]
120. Let f 2 H(U); f(U) � U; f(0) = 0; f 0(0) = 0; f 00(0) = 0:::,f (k)(0) = 0

where k is a positive integer: Show that
��f( 12 )�� � 1

2k
and �nd a necessary and

su¢ cient condition that
��f( 12 )�� = 1

2k
:

[ Let g(z) = f(z)
zk
: Then g 2 H(U) and Maximum Modulus Theorem implies

g(U) � U (unless g is a constant, in which case
��f( 12 )�� � 1

2k
with equality

holding when the constant has modulus 1). Hence
��f( 12 )�� = ��( 12 )kg( 12 )�� < 1

2k
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unless f(z) = czk with jcj � 1: Equality holds if and only if f(z) = czk with
jcj = 1]:
121. If f and zf(z) are both harmonic then f is analytic.
[C-R equations hold]

122. Prove that f(rei�) =
1X

n=�1
rjnj sin(n�)ein� is harmonic in U .

[
1X
n=0

rn sin(n�)ein� is holomorphic]

123. If 
 = fz : Re(z) > 0g and f is a bounded holomorphic function on 

with f(n) = 08n 2 N show that f(z) = 08z 2 
:
[Let g(z) = f( 1�z1+z ) on U . A well known result (which is an easy consequence

of Jansen�s Formula) says that the zeros a1; a2; ::: of a bounded holomorphic
function g on U which is not identically 0 satis�es

X
[1 � janj] < 1 . SinceX

[1�
��� 1�n1+n

���] =1; g must vanish identically].
124. Show that there is a holomorphic function f on fz : Re(z) > �1g such

that f(z) = z2

2 �
z3

(2)(3) +
z4

(3)(4) � ::: for jzj < 1:
[f(z) = (1 + z)Log(1 + z)� z]
125. Consider the series z+ z2

2 +
z3

3 +::: on U and i��(z�2)+
(z�2)2
2 � (z�2)3

3 +
::: on fz : jz � 2j < 1g: (These two regions are disjoint). Show that there is a
region 
 and a function f 2 H(
) such that 
 contains both U and fz : jz � 2j <
1g, f(z) = z + z2

2 +
z3

3 + ::: on U and f(z) = i�� (z � 2) + (z�2)2
2 � (z�2)3

3 + :::
on fz : jz � 2j < 1g:
[ Let 
 = U [ fz : jz � 2j < 1g [ fz : Im z > 0g; f(z) = Log(1 � z) on


 \ fz : Re z < 1g; f(z) = log(1 � z) on 
 \ fz : Re z > 1g where log(z) =
log jzj+ i� if z = jzj ei� with 0 < � < 2�; f(z) = Log(1� z) = log(1� z) on the
ray fiy : y > 0g]:
126. Let f : U ! U be holomorphic with f(0) = 0 = f(a) where a 2 Unf0g:

Show that jf 0(0)j � jaj :
[ Consider g(z) = f(z)(1��

az)
z(z�a) ]

127. Prove that a complex valued function u on a simply connected region


 is harmonic if and only if it is of the form f +
�
g for some f; g 2 H(
):

[ If part is obvious. For the converse let u1 = Re(u); u2 = Im(u) and let

u1+ iv1; u2+ iv2 be holomorphic. Then u = f+
�
g where f = u1+iv1+iu2�v2

2 ; g =
u1+iv1�iu2+v2

2 ]
128. Let f(z) = z + 1

z (z 2 Cnf0g): Show that f(fz : 0 < jzj < 1g) = f(fz :
jzj > 1g = Cn[�2; 2] and that f(fz : jzj = 1g) = [�2; 2]: Show also that f is
conformal equivalence of both the regions fz : 0 < jzj < 1g)and fz : jzj > 1g
with Cn[�2; 2]: Prove that fz : jzj > 1g is not simply connected. [How many
proofs can you think of?]
129. Show that there is no bounded holomorphic function f on the right-

hlaf plane which is 0 at the points 1; 2; 3; ::: and 1 at the point
p
2: What is the

answer if �bounded�is omitted?
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[Let g(z) = f( 1�z1+z ) for z 2 U and note that the zeros f�ng of a non-zero
bounded function in H(
) must satisfy the condition

X
[1 � j�nj] < 1 (as a

consequence of Jensen�s Theorem)].
130. Prove or disprove: if fang has no limit points and fcng � C then there

is an entire function f with f(an) = cn8n:
[ This is true and it follows easily from Mittag Le�er�s Theorem].
131. Let 
 be a bounded region, f 2 H(
) and lim sup

z!a
jf(z)j �M for every

point a on the boundary of 
:Show that jf(z)j �M for every z 2 
:
[ Let M1 = supfjf(z)j : z 2 
g: (This may be 1). Let jf(zn)j ! M1 with

fzng � 
: Let fznkg be a subsequence converging to (say) z: Of course, z 2
�

:

If z 2 @
 then lim sup
k!1

jf(znk)j �M by hypothesis and hence M1 �M: If z 2 


then f is a constant by Maximum Modulus Theorem].
132. Let f be an entire function such that f(z)z ! 0 as jzj ! 1: Show that

f is a constant.
133. Let f be an entire function which maps the real axis into itself and

the imaginary axis into itself. Show that f(�z) = �f(z)8z 2 C:

[Let f(z) =
1X
n=0

anz
n; z 2 C: Clearly, an = f(n)(0)

n! 2 R8n: [In fact, f (n)(x) 2

R8n8x 2 R]: Now
1X
n=0

an(iy)
n is purely imaginary and hence

1X
n=0

a2n(�1)ny2n =

08y: Thus, a2n = 08n]
134. Let f be a continuous function : C ! C such that f(z2 + 2z � 6) is

an entire function. Show that f is an entire function.
[Let a 2 C; a 6= �7 and b2 + 2b � 6 = a: In a neighbourhood of b the

function p(z) = z2 + 2z � 6 is one-to-one (because 2b + 2 6= 0)and the image
of this neighbourhood is an open set V:Further, p�1 is holomorphic on V: Now
f(z) = (f � p) � p�1(z)8z 2 V and hence f is di¤erntiable at a:Finally, f
has a removable singularity at a. Note that z2 + 2z � 6 can be replaced by any
ploynomial; in fact we replace it any entire function p such that fp(b) : p0(b) = 0g
is isolated]:
135. If f and g are entire functions with no common zeros and if h is an

entire function show that h = fF + gG for some entire functions F and G:
[Let � = h

g on Cng
�1f0g: Let a1; a2; ::: be the zeros of f: Let cn = �(an); n �

1: We can �nd an entire function G such that G(an) = cn; n � 1 and such that
�� cn and G� cn have zeros of the same order at an for each n: It follows that
F = h�Gg

f is entire].

136. Show that the series
1X
n=1

zn

n converges if jzj � 1 and z 6= 1:

[This is a standard result in Fourier series; we will show that
1X
n=1

cos(nt)
n and
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1X
n=1

sin(nt)
n both converge if t 6= 0:

Let �� � t � �; t 6= 0: Let an = cos t + cos(2t) + ::: + cos(nt); n �
1; a0 = 0: Then an = Re[eit + e2it + ::: + eint] = Re e

i(n+1)t�eit
eit�1 : Thus, an =

Re[(ei(n+1)t�eit)(e�it�1)]
jeit�1j2 = cos(nt)�cos((n+1)t)�1+cos(t)

jeit�1j2 proving that fang is bounded.

Now
N2X

n=N1

cos(nt)
n =

N2X
n=N1

an�an�1
n : This gives

N2X
n=N1

cos(nt)
n = �aN1�1

N1
+

N2�1X
j=N1

aj(
1
j�

1
j+1 )+

aN2
N2

: This clearly implies convergence of
1X
n=1

cos(nt)
n : The proof of conveg-

ence of
1X
n=1

sin(nt)
n uses the same argument with an replaced by sin(t)+sin(2t)+

:::+ sin(nt)]:

137. Show that the convergence of
1X
n=1

sin(nz)
n implies that z 2 R:

[ sin(nx) cosh(ny)
n ! 0 and cos(nx) sinh(ny)

n ! 0: If y 6= 0 then cosh(ny)
n and��� sinh(ny)n

���!1].

138. If f 2 C(
�
U) \ H(U) and f is real valued on T = @U then f is a

constant.
[ Maximum modulus principle to eif and e�if ]

139. Let 
 = fz : Im(z) > 0g and f 2 H(
) \ C(
�

): If f(x) = x4 � 2x2 for

0 < x < 1 �nd f(i):
[One solution is to use Schwartz Re�ection Principle. We can extend f to a

holomorphic function on 
 [ 
1 where 
1 = fz : 0 < Re z < 1g: It the follows
that f and z4�2z2 coincide on a set with limit points and hence f(z) = z4�2z2
on 
]:
140. Let 
 be a region and m denote Lebesgue measure on 
: If ffng �

H(
) \ L2(
) and if ffng converges in L2(
) to f show that f 2 H(
):

[ Let B(a; 2r) � 
: Consider 1
r2�r1

Z
r1�j��aj�r2

fn(�)
��a

j��aj(��z)dm(�) where

z 2 B(a; r) and 0 < r1 < r2 < r: We can write this as 1
r2�r1

r2Z
r1

�Z
��

fn(a +

�eit) �eit

�(a+�eit�z)�d�dt: Now

�Z
��

fn(a + �eit) �eit

(a+�eit�z)dt = (�i)
Z


fn(�)
��z d� where

(t) = a+ �eit: By Cauchy�s Integral Formula we now see that if z 2 B(a; r1=2)

then 1
r2�r1

Z
r1�j��aj�r2

fn(�)
��a

j��aj(��z)dm(�) =
1

r2�r1

r2Z
r1

(�i)fn(z)d� = (�i)fn(z):
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Let hz(�) = i
r2�r1

��a
j��aj(��z)Ir1�j��aj�r2 : We have fn(z) =

Z
fn(�)hz(�)dm(�):

Since hz 2 L2(
) we get fn(z)!
Z
f(�)hz(�)dm(�) and hence f(z) =

Z
f(�)hz(�)dm(�)

a.e. [m]: It su¢ ces therefore to show that g(z) =
Z
f(�)hz(�)dm(�) de�nes a

holomorphic function on B(a; r1=2): But g(z) =
Z

1
��zd�(�) where

d�
dm (�) =

f(�) 1
r2�r1

��a
j��aj and g has a power series expansion in B(a; r1=2) by a standard

argument].

141. Let 
 be a region containing
�
U and f 2 H(
): If jf(z)j = 1 whenever

jzj = 1 show that U � f(
):
[ If f has no zeros then (using Maximum Modulus Theorem to f and 1

f we
see that f is a constant. Thus 0 2 f(
): Now we apply Rouche�s Theorem; if
a 2 U then jf(z)� (f(z)� a)j = jaj < 1 = jf(z)j whenever jzj = 1 and hence
f and f � a have the same number of zeros in U: Since f has a zero, so does
f � a].

142. Let 
 be a bounded region, f; g :
�

! C be continuous and holomorphic

in 
: If jf(z)� g(z)j < jf(z)j+ jg(z)j on @
 show that f and g have the same
number of zeros in 
:
[This is a well known generalization of Rouche�s Theorem. See e.g., "An In-

troduction To Classical Complex Analysis" by Robert Burckel, Vol. 1, Theorem
8.18, p.265]

143. Let 
 be a bounded region f :
�

!

�
U be continuous and f 2 H(
); f

not a constant: If jf(z)j = 1 whenever z 2 @
 show that U = f(
):
[ This is proved by the same argument as the one used in problem 141)

above, with Rouche�s Theorem replaced by problem 142)].
Problem 148) below says that any continuous function on R can be approx-

imated uniformly by an entire function [ A result of Carleman]. The next 4
problems are required to solve that problem.
144. Given any continuous fucntion f : R! C there is an entire function g

such that g has no zeros and g(x) > jf(x)j 8x 2 R:

Consider a series of the type a+
1X
n=1

[ z
2

n+1 ]
kn : This series converges unifrmly

on fz : jzj � Ng if [ N2

n+1 ]
kn � [ 12 ]

n for n � 2N2: This is true if kn � n: Thus

h(z) = a+
1X
n=1

[ z
2

n+1 ]
kn de�nes an entire function provided kn � n 8n. Now, for x

real h(x) > [ x
2

j+1 ]
kn � [ j

2

j+1 ]
kn � maxfjf(y)j : j � jyj � j+1g for j � jxj � j+1

provided kn is su¢ ciently large and a > maxfjf(y)j : 0 � jyj � 1g: Take g = eh].

145. Let f : R! C be continuous. Then we can write f as
1X

n=�1
fn(x� n)

where each fn is continuous and fn(x) = 0 if jxj � 1:
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[ Let fn(x) =
g(x)f(x+n)
G(x+n) where G(x) =

1X
n=�1

g(x � n) and g(x) = 1 for

jxj � 1
2 ; g(x) = 0 for jxj � 1 and g is piece-wise linear. If n � 1

2 � x � n + 1
2

then G(x) � g(x� n) = 1].
146. Let f : R ! C be continuous and f(x) = 0 for jxj � 1: Let S = fz :

jRe(z)j > 3 and jRe(z)j > 2 jIm(z)j _g. Given � > 0 we can �nd an entire function
g such that jf(x)� g(x)j < � 8x 2 R and jg(z)j < � 8z 2 S:

[Let fn(z) = np
2�

1Z
�1

e�n
2(z�t)2f(t)dt: It is easily seen that fn is entire for

each n. Also, fn ! f uniformly on [� 3
2 ;

3
2 ] and fn ! 0 uniformly for Rn[� 3

2 ;
3
2 ]:

[See problem 149 below]. Hence fn ! f uniformly on R: If z 2 S and jtj � 1
then Re[n2(z � t)2] = n2[(x� t)2 � y2]
= n2x2[1� 2t

x +
t2

x2 �
y2

x2 ] � n2x2[1� 2
jxj �

�� y
x

��2] � n2x2[1� 2
3 � (

1
2 )
2] > 3n2

4 :

Hence jfn(z)j � np
2�

1Z
�1

e�
3n2

4 jf(t)j dt � 4
3n
p
2�

1Z
�1

jf(t)j dt]

147. Let f : R ! C be continuous. Then there is an entire fucntion g such
that jf(x)� g(x)j < 1 8x 2 R:

[Write f as
1X

n=�1
fn(x�n) where each fn is continuous and fn(x) = 0 if jxj �

1:For each n there is an entire function gn such that jfn(x)� gn(x)j < 2�2�jnj
8x 2 R and jgn(z)j < 2�jnj 8z 2 S: If jzj � N and jnj > 3N + 3 then z � n 2 S

and hence jgn(z � n)j < 2�jnj: This implies that
1X

n=�1
gn(x � n) converges

uniformly on compact subsets of C: Let g(z) =
1X

n=�1
gn(x � n). g is entire.

Also jf(x)� g(x)j �
1X

n=�1
jgn(x� n)� fn(x� n)j <

1X
n=�1

2�2�jnj = 3
4 :

148. Let f : R ! C and � : R ! (0;1) be continuous. Then there is an
entire function g such that jf(x)� g(x)j < �(x) 8x 2 R:
[There is an entire function � with no zeros such that �(x) > 1

�(x) 8x 2 R:
There is an entire function g such that jf(x)�(x)� g(x)j < 18x 2 R]:
149. [Used in problem 146) above]

Let a < b and f : [a; b]! C be continuous. Let fn(x) = np
2�

bZ
a

e�n
2(x�t)2f(t)dt:

Then fn(x) ! f(x) uniformly on [a + �; b � �] and fn(x) ! 0 uniformly on
Rn[a� �; b+ �] for each � > 0:
[ Let f be 0 on fb+1;1) and (�1; a�1] and linear in [a�1; a] and [b; b+1]:
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Note that the second part is trivial. Write fn(x)�f(x) as 1p
2�

p
n(b�x)Z

p
n(a�x)

e�u
2

[f(x+

u
n )� f(x)]du+

1p
2�

p
n(a�x)Z

n(a�x)

e�u
2

[f(x+ u
n )� f(x)]du

+ 1p
2�

n(b�x)Z
p
n(b�x)

e�u
2

[f(x+u
n )�f(x)]du+f(x)[

1p
2�

n(b�x)Z
n(a�x)

e�u
2

du�1]:
��f(x+ u

n )� f(x)
�� �

�=2 for u 2 [
p
n(b� x); ] and a � x � b if n � some n�: We may also choose n�

such that

������� 1p
2�

�
p
nZ

��
p
n

e�u
2

du� 1

������� < �
8M where M is an upper bound for jf j]:

150. Show that the family of all analytic maps f : U ! fz : Re(z) > 0g with
jf(0)j � 1 is normal.
[Let g(z) = f(z)�f(0)

f(z)+
�
f(0)

: Then g(U) � U and Schwartz Lemma gives jg(z)j � jzj

which gives jf(z)j � 1+jzj
1�jzj ].

151. Let f 2 H(
) and f be injective. If fz : jz � aj � rg � 
 show that

f�1(z) = 1
2�i

Z


�f 0(�)
f(�)�zd� 8z 2 f(B(a; r)); where (t) = a+ re2it; 0 � t � 1:

[ Let B(a; r+�) � 
: Then 1
2�i

Z


�f 0(�)
f(�)�zd� equals the residue of the integrand

at the sole pole z0 = f�1(z)]:

152. If f 2 C(
�
U)\H(U) show that f(z) = i Im(f(0))+ 1

2�

�Z
��

eit+z
eit�z Re f(e

it)dt

8z 2 U .

[ Just observe that Re

�Z
��

eit+z
eit�z Re f(e

it)dt = Re

�Z
��

fRe eit+zeit�zgf(e
it)dt].

153. If 
 is simply connected show that for any real harmonic function u on


; a harmonic conjugate v of u is given by v(z) = Im[u(a) +

Z


(@u@x � i@u@y )dz]

where a is a �xed point of 
 and  is any path from a to z in 
:
[Since 
 is simply connected u indeed has a harmonic conjugate. Let g 2

H(
) with Re g = u: We may assume that g(a) = u(a): Now g(z) = g(a) +Z


g0(�)d� and g0(z) = @u
@x � i@u@y (from de�nition of derivative and Cauchy-

Riemann equations)].
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154. Let 
 be a region and f; g 2 H(
): If jf j+ jgj attains its maximum on

 at some point a of 
 then f and g are both constants.
[ jf(a)j + jg(a)j � jf(z)j + jg(z)j 8z 2 
: Replace f by eisf and g by eitg

where s and t are chosen such that eisf(a) and eitg(a) both belong to [0;1):
This reduces the proof to the case when f(a) and g(a) both belong to [0;1):
We now have f(a)+g(a) � jf(z)j+ jg(z)j � Re f(z)+Re g(z) = Re(f(z)+g(z)):
Maximum Modulus principle applied to f + g shows that f + g is a constant.
Now f(a) + g(a) � jf(z)j + jg(z)j � Re f(z) + Re g(z) = Re(f(z) + g(z)) =
Re(f(a) + g(a)) which implies that equality holds throughout. In particular
jf(z)j = Re(f(z)) and jg(z)j = Re(g(z)) 8z]:
155. If f and g are entire functions with f(n) = g(n) 8n 2 N and if

maxfjf(z)j ; jg(z)j � ecjzj for jzj su¢ ciently large with 0 < c < 1 show that
f(z) = g(z) 8z 2 C: Show that this is false for c = 1:
[c = 1 : take f(z) = sin(�z); g(z) = sin(2�z): Now let 0 < c < 1: If the

conclusion does not hold then 9 a 2 (0; 1) such that f(a) 6= g(a): Let �(z) =
f(z + a) � g(z + a) 8z 2 C: Then j�(z)j � c1e

cjzj for jzj su¢ ciently large.
Consider the disk B(0; N � a) where N is an integer > 1: We apply Jensen�s
Formula to � on this ball. If �1; �2; :::; �k are the zeros of � in the closure of

B(0; N � a) then j�(0)j
kY
j=1

N�a
j�j j = e

1
2�

�Z
��

logj�(N�a)eitjdt
� elog c1+cjN�aj for N

su¢ ciently large. Since N�a
j�j j � 1 8j we get j�(0)j

NY
j=1

N�a
jj�aj � c1e

cjN�aj: Also,

jj � aj = j � a � j so j�(0)j
NY
j=1

N�a
jj�aj � c1e

cjN�aj: This gives

j�(0)j1=N N�a
(N !)1=N

� c
1=N
1 ecj1�a=N j: We conclude that lim sup log[ N�a

(N !)1=N
] �

c: However, (N !)1=N

e�1N1+1=2N ! 1 as N ! 1 (by Stirling�s Formula) and we get
lim sup log[ N�a

e�1N1+1=2N ] � c which says 1 � c, a contradiction].

156. Show that there is a function f in C(
�
U) \ H(U) whose power series

does not converge uniformly on
�
U:

[ This is a well known result in the theory of Fourier series. In fact, the power
series need not even converge at all points of @U: See Theorem 1.14, Chapter
VIII Trigonometric Series by A. Zygmund].
157. If ffng � H(
) and lim

n!1
fn(z) = f(z) exists 8 z 2 
 show that there

is a dense open subset 
0 of 
 such that f 2 H(
0):
[Use Baire Category Theorem]
158. Let L : H(
) ! H(
) be linear and mulitplicative, not identically 0.

Show that there is a point c 2 
 such that L(f) = f(c) 8 f 2 H(
):
[ Let f 2 H(
) and c = L(z) ( where z stands for the identity map). If c =2 


then we get the contradiction 1 = L(1) = L((z�c) 1
z�c ) = L((z�c))((L( 1

z�c )) =
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0((L( 1
z�c )): Thus c 2 
: Let g(z) =

f(z)�f(c)
z�c if z 6= c and f 0(c) if z = c: Apply

L to the identity f(z)� f(c) = (z � c)g(z)]:
159. Let 
 be a region and f 2 H(
) with f(z) 6= 0 8z 2 
: If f has a

holomorphic square root does it follow that it has a holomorphic logarithm?
What if it has a holomorphic k� th root for in�nitely many positive integers k?
[ 
 = Unf0g; f(z) = z2 is a counter-example to the �rst part. Suppose

now that k1 < k2 < :::: and fj 2 H(
) with [fj(z)]kj = f(z) 8z 2 
; 8j � 1:

Then f 0

f = kj
f 0j
fj
: If  is any close path in 
 then

Z


f 0

f = kj

Z


f 0j
fj
: If j(t) =

fj((t)); then j is a closed path in C and Indj (0) =
1
2�i

Z


0j
j
= 1

2�i

Z


f 0j
fj
=

1
2�ikj

Z


f 0

f ! 0 as j !1: This implies that fIndj (0)g vanishes eventually and

hence that 1
2�ikj

Z


f 0

f = 0 for j su¢ ciently large. We have proved that
Z


f 0

f = 0

for every close path  in 
: Hence there exists h 2 H(
) such that f 0

f = h0:

Now (e�hf)0 = 0; e�hf is a (non-zero) constant and hence f has a holomorphic
logarithm.
160. lim

z!a

f(z)
g(z) = lim

z!a

f 0(z)
g0(z) if f and g are analytic in some neighbourhood of

a; f(a) = g(a) = 0 and g0(a) 6= 0:

161. If f and g are analytic in some neighbourhood of a; jf(z)j ! 1 and
jg(z)j ! 1 as z ! a then lim

z!a

f(z)
g(z) = lim

z!a

f 0(z)
g0(z) provided limz!a

f 0(z)
g0(z) exists.

162. Let f be an entire function such that jf(z)j = 1 whenever jzj = 1:
Show that f(z) � czn for some non-negative integer n and some constant c
with modulus 1:
[ If f has no zeros in U we see that f is a constant. If �1; �2; :::; �N are

the zeros of f in Unf0g and if 0 is a zero of f of order m (m may be 0)
let B(z) = zm z��1

1� �
�1z

z��2
1� �
�2z

::: z��N
1� �
�Nz

and g(z) = f(z)=B(z): Then jf(z)j = 1

whenever jzj = 1 and Maximum Modulus Theorem shows g is a constant. Thus

f(z) = czm z��1
1� �
�1z

z��2
1� �
�2z

::: z��N
1� �
�Nz

in U: The two sides must coincide on Cnf( ��j)
�1 : 1 � j � Ng and we get a contradiction to the fact f is bounded in a
neighbourhood of (

�
�j)

�1: This shows that there are no zeros of f other than
0]:
164. Let 
 be a region (not necessarily bounded) which is not dense in C,

f 2 C(
�

) \ H(
); jf(z)j � M 8z 2 @
: Suppose f is bounded on 
: Then

jf(z)j �M 8z 2 
:
[ First note that the hypothesis that is bounded on 
 is necessary: sin(z) is

bounded by 1 on the boundary of the upper-half plane but but bounded by 1 in
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the upper-half plane. Also, the conclusion obviously holds for bounded regions

since jf j attains its maximum at some point of
�

 in this case.

Since 
 is not dense in C there is an open ball disjoint from 
. By translation
we may assume that B(0; �) \
 = ;: Fix z0 2 
: Let � > 0 and n be a positive
integer such that (jz0j =�)1=n < 1 + �: Let R > maxfjz0j ; �(M1

M )ng where M1 is
a bound for f on 
: Then z0 2 C for some component C of 
 \ B(0; R): We
now apply Maximum Modulus Principle to the function fn(z)

z on C: Since the

@C � @(
 \ B(0; R)) � @
 [ @B(0; R) we see that
��� fn(z)z

��� � maxfM
n
1

R ; M
n

� g
on @C since B(0; �) \ 
 = ;: Thus, by Maximum Modulus Principle we get
jf(z0)j � jz0j1=nmaxf M1

R1=n ;
M
�1=n

g = jz0j1=n M
�1=n

in view of the fact that R >

�(M1

M )n: Finally, since (jz0j =�)1=n < 1 + � we get jf(z0)j � M(1 + �): Since
z0 2 
 and � > 0 are arbitrary we are done.
165. In above problem the hypothesis that 
 is not dense can be deleted

provided 
 6= C:
[ Note that the result is obviously false for 
 = C: Now @
 6= ;: Let c 2 @


and consider a small ball B(c; �) around c. We may suppose jf(z)j �M + � on

 \ @(B(c; �)): Let 
1 = 
n[B(c; �)]�: The jf(z)j �M + � on @
1 and we can
apply above result to 
1]:

166. If f is an entire function such that jf(z)j = 1 whenever jzj = 1 show
that f(z) = czn for some n � 0 and c 2 C with jcj = 1:
[ Let n be the order of zero 0f f at 0 and let �1; �2; ; ; ; ; �k be the remain-

ing zeros of f (if any) in U: Let g(z) = f(z)=fzn
kY
j=1

z��j
1� �
�jz
g: Then jg(z)j = 1

whenever jzj = 1 and g has no zero in
�
U: Maximum Modulus Principle applied

to g and 1
g shows that g is a constant. We now have an equation of the type

f(z) = czn
kY
j=1

z��j
1� �
�jz

on Cnf( ��j)�1 : 1 � j � kg which contradicts the fact

that f is bounded near (
�
�j)

�1: This says that �1; �2; ; ; ; ; �k �don�t exist�and
f(z) = czn]:

167. Let f 2 H(
nfa; a1; a2; :::g) where 
 is a region, an ! a; a0ns are dis-
tinct points of 
 and a 2 
: If f has a pole at each an show that f(B(a; �)nfa; a1; a2; :::g)
is dense in C for every � > 0:
[ Note that a is not an isolated singularity of f and hence the usual theo-

rems on classi�ation of singularities do not apply directly. However, a standard
argument applies: suppose f(B(a; �)nfa; a1; a2; :::g) is not dense in C for some
� > 0: Let B(w0; �) be an open ball disjoint from f(B(a; �)nfa; a1; a2; :::g): Let
g(z) = 1

f(z)�w0 on B(a; �)nfa; a1; a2; :::g: First note that jg(z)j �
1
� so g has

a removable singularity at each of the points a1; a2; :::: After removing these
singularities we see that g 2 H(B(a; �)nfag) and we can then remove the sin-
gularity at a also!. This gives us g in H(B(a; �)) and g(an) = 0 for all n such
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that an 2 B(a; �) because f has a pole at an: But this contradicts the fact that
zeros of g are isolated].

168. If f is a rational function such that jf(z)j = 1 whenever jzj = 1 show

that f(z) = cznf
kY
j=1

z��j
1� �
�jz
g= f

mY
j=1

z�bj

1�
�
bjz

g for some n 2 Z and a1; a2; :::; aN ; b1; b2; ::; bm 2

CnT; c 2 C with jcj = 1:
[ Assume �rst that f does not vanish at 0 and that it does not have a pole at

0: Let and let �1; �2; ; ; ; ; �k be the zeros of f (if any) and b1; b2; ::; bm the poles of

f in U: Let g(z) = f(z)
mY
j=1

z�bj

1�
�
bjz

=f
kY
j=1

z��j
1� �
�jz
g: Then jg(z)j = 1 whenever jzj = 1

and g has no zero in
�
U: Maximum Modulus Principle applied to g and 1

g shows

that g is a constant. We now have an equation of the type f(z) = cf
kY
j=1

z��j
1� �
�jz
g=

f
mY
j=1

z�bj

1�
�
bjz

gon Cnf( ��j)�1 : 1 � j � kg [ f(
�
bj)

�1 : 1 � j � mg: Zero or pole of f

at 0 is easy to handle]:

169. Let f and g be holomorphic on U with g one-to-one and f(0) = g(0) =
0; If f(U) � g(U) show that f(B(0; r)) � g(B(0; r)) for any r 2 (0; 1]:

Let 
 = g(U): If g is a constant then so is f and there is nothing to prove.
Otherwise, 
 is a region. g�1 : 
! U is hilomorphic and so is g�1 �f : U ! U .
Further, (g�1 � f)(0) = 0: By Schwartz Lemma

��(g�1 � f)(z)�� � jzj 8z 2 U: If
jzj < r then f(z) 2 f(U) � g(U) so we can write f(z) as g(�) for some � 2 U:
Now j�j =

��(g�1 � f)(z)�� � jzj < r]:

170. All injective holomorphic maps from U onto itself are of the type c z�a
1��

az

with jaj < 1; jcj = 1: Find all m� to� 1 holomorphic maps of U onto itself for
a given positive integer m:

They are all of the type f(z) = c
mY
j=1

z�aj
1��
ajz

with fa1; a2; ::; amg � U (a0js

not necessarily distinct) and jcj = 1: First note that if f is of this type and
w 2 U then the equation f(z) = w is a polynomail equation of degree m.

It has no root outside U because jzj � 1 implies jz � aj j �
���1� �

ajz
��� : Hence

f is indeed a m � to � 1 holomorphic map of U onto itself. Now let f be
any m � to � 1 holomorphic map of U onto itself. We claim that jf(z)j ! 1
as jzj ! 1: Once this claim is established we can apply Maximim Modulus

principle to f=g and g=f where g(z) =
mY
j=1

z�aj
1��
ajz

; a0js being the zeros of f counted
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according to multiplicities to complete the proof. Suppose the claim is false.
Then there exists a sequence fzng of distinct points in U and � > 0 such that
jznj ! 1 and jf(zn)j � 1 � � 8n: We may assume that f(zn) ! w (say).
Since jwj � 1 � �; we see that w 2 U: Consider the equation f(z) = w: This
equation has exactly m solutions by hypothesis. Let c1; c2; :::; ck be the distinct
points in f�1fwg and let m1;m2; :::;mk be the multiplicities of zeros of f(z)�w
at c1; c2; :::; ck respectively. By Theorem 10.30 of Rudin�s Real And Complex
Analysis there are neighbourhoods V1; V2; :::; Vk of c1; c2; :::; ck respectively and
one-to-one holomorphic functions �1; �2; :::; �k on these neighbourhoods and
integers nj ; 1 � j � k such that f(z) = w + [�(z)]nj on Vj and such that �
maps Vj onto an open abll centered at 0: We may assume that V1; V2; :::; Vk are
disjoint. Also note that in the Theorem referred to above nj is the order of zero
of f(z) � w at cj : In other words, nj = mj 8j: We now get a contradiction by
showing that if n is large enough then the equation f(z) = f(zn) hasm solutions
in V where V = V1 [ V2 [ ::: [ Vk: Since z = zn is another solution we get a

contradiction. Indeed,
�
V is a compact subset of U so zn =2 V if n is large enough.

Let R = supfjzj : z 2
�
V g and choose n such that jznj > R; f(zn) 6= w and

f(zn) 2 f(Vj) for each j: [ Zeros of f(z)�w are precisely c1; c2; :::; ck and zn is
not one of these points for large n!: Note that w = f(cj) 2 f(Vj) and f(zn)! w
so f(zn) 2 f(Vj) if n is large enough]. The equation f(z) = f(zn) has exactlymj

solutions in Vj for each j [see the remark after Theorem 10.30 in Rudin�s book].
Thus the number of solutions of f(z) = f(zn) in V is m1 +m2 + :::+mk = m
and the proof is complete.

171. Let 
1 and 
2 be bounded regions. Let f : 
1 ! 
2 be a holomorphic
map such that there is no sequence fzng in 
1 converging to a point in @
1
such that ff(zn)g converges to a point in 
2: Then there is a positive integer
m such that f is m� to� 1 on 
1:
Proof: If w 2 
2 then f � w can only have a �nite number of zeros in


1 : if it had distinct zeros z1; z2; ::: then some subsequence fznkg converges

to some z 2
�

1: If z 2 @
1 then we have a contradiction to the hypotheisis

since f(znk) = w 8k: Thus z 2 
1 which forces f �w to be a constant and this
contradicts the hypothesis again. Let n(w) be the number of zeros of f � w on

1 for each w 2 
2: If we show that n is continuous on 
2 we can conclude that
it is a constant and this completes the proof. Show that fw 2 
2 : n(w) = k is
open for each k:

172. The condition in Problem 169) above that there is no sequence fzng
in 
1 converging to a point in @
1 such that ff(zn)g converges to a point in

2 is equivalent to the fact that f�1(K) is compact whenever K is a compact
subset of 
2:

Suppose f�1(K) is compact whenever K is a compact subset of 
2: Let
fzng be a sequenec in 
1 converging to a point z in @
1: If f(zn) ! w 2 
2
then K = fw; f(z1; f(z2); :::g is a compact subset of 
2 and f�1(K) contains
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the sequence fzng with no convergent subsequence in 
1. Conversely let the
hypothesis of Problem 169 hold and letK be compact in 
2. No subsequence of
a sequence fzng in f�1(K) can have a limit point on @
1 whcih means f�1(K)
is a closed (hence compact) subset of 
1:

173. Prove that the analogue of Problem 169) when 
1 = 
2 = C and @
1
is interpreted as (the boundary in C1 i.e.) f1g holds. Give an example to
show that Problem 169) fails for a general unbouded region 
1:

First part follows from the fact if f is entire and jf(z)j ! 1 as jzj ! 1
then f is a polynomial. For the second part take 
1 = 
2 = fz : Im(z) > 0g
and f(z) = sin(z):

174. Let f 2 H(U); �1 2 R; �2 2 R and
��f(rei�1)�� = jf(0)j = ��f(rei�2)�� for

all r 2 (0; 1): Show that f is a constant if �1��22� is irrational.

Let g(z) = f(�ei�2z)
jf(0)j : Note that of f(0) = 0 then there is nothing to prove.

Choose � 2 (0; 1) so small that g has no zeros in U: Since U is simply connected
we can write g as eh for some h 2 H(U): Now

��g( r� z)�� = ��� f(rei�2z)jf(0)j

��� = 1 8z 2 U:
Also,

��g( r� ei(�1��2)z)�� = 1 8z 2 U: These two equations give eReh([
r
� z]) = 1

and eReh([
r
� e

i(�1��2)z]) = 1: That is to say Reh([ r� z]) = 0 = Reh([
r
� e
i(�1��2)z])

8r 2 (0; 1): Let
1X
n=0

anz
n be the power series expansion of h : From the �rst

equation here we get Re(
1X
n=0

anz
n) = 0 whenever z 2 (0; �r ): In other words

Im(
1X
n=0

an
i z

n) = 0 whenever z 2 (0; �r ): This implies that
an
i 2 R 8n: The

second realtion above yields the fact that Im(
1X
n=0

an
i e

i(�1��2)nzn) = 0 whenever

z 2 (0; �r ): This gives
ane

i(�1��2)n

i 2 R 8n: Since not all the coe¢ cients an are 0
we see that ei(�1��2)n 2 R for some n: So sin[(�1 � �2)n] = 0 8n: This imples
that (�1 � �2) is a rational multiple of 2�:

175. Suppose �1 2 R; �2 2 R and f 2 H(U);
��f(rei�1)�� = jf(0)j = ��f(rei�2)��

for all r 2 (0; 1) implies that f is a constant. Show that �1��22� is irrational.

[ If �1��22� is a rational number p
q (p; q 2 Z) let f(z) = ei sin([ze

�i�1 ]q)]

176. A second order di¤erential equation: let 
 be a convex region and
g 2 H(
): Show that any holomorphic function f satifying the di¤erential
equation f 00 + f = g in 
 can be expressed as h(z) sin(z) + �(z) cos(z) for
suitable h; � 2 H(
):
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Let �(z) = f(z)�h(z) sin(z)��(z) cos(z) where h(z) = c1+

Z
[a;z]

g(�) cos(�)d�

and �(z) = c2 �
Z
[a;z]

g(�) sin(�)d� and c1; c2 are chosen such that f(a) =

h(a) sin(a)+�(a) cos(a); f 0(a) = h(a) cos(a)��(a) sin(a): [ I fact, c1 = f(a) sin(a)+
f 0(a) cos(a); c2 = f(a) cos(a)� f 0(a) sin(a)]. Straightforward computation show
that �00 + � = 0 and �(a) = 0; �0(a) = 0: The coe¢ cients in the power seires
expansion of � around a are all zero and hence � � 0:

177. Show that Unf0g is not conformally equivalent to fz : 1 < jzj < 2g:

If possible let � : Unf0g ! fz : 1 < jzj < 2g be a bijective (bi-) holomorphic
map. Since � is bounded it extends to a holomorphic function g on U and its
range is contained in fz : 1 � jzj � 2g: Since g has no zeros the Maximum
Modulus Principle applied to g and 1

g shows that g(0) 2 fz : 1 < jzj < 2g: Let
c = ��1(g(0)): Then 0 = lim

n

1
n = lim

n
��1(�( 1n )) = ��1(g(0)) because �( 1n ) =

g( 1n ) ! g(0) and ��1 is continuous on fz : 1 < jzj < 2g: This contradicts the
fact that ��1(fz : 1 < jzj < 2g) � Unf0g:

178. Let f be continuous on fz : jzj � Rg and holomorphic on B(0; R): Let
M(r) = supfjf(z)j : jzj = rg and �(r) = supfRe f(z) : jzj = rg for 0 � r � R:
Show that �(r) � R�r

R+r Re f(0)+
2r
R+r�(r) and M(r) �

R�r
R+r jf(0)j+

2r
R+r�(r) for

0 � r � R:

We may assume that �(R) > Re f(0) because �(R) � Re f(0) and equality
holds only when f is a constant (in which case the desired inequalities hold
with equality). Let g(z) = f(0) � f�(R) � Re f(0)g 2z

1�z : This is a conformal
equivalence from U onto fz : Re(z) < �(R)g: [Use the facts that 1+z

1�z is a con-
formal equivalence from U onto fRe(z) > 0g and 2z

1�z =
1+z
1�z � 1 is a conformal

equivalence from U onto fRe(z) > �1g]: Now f(B(0; R)) � fz : Re(z) < �(R)g:
Thus f(B(0; R)) � g(U): Writing fR(z) = f(Rz) we get fR(U) � g(U): We
now use Problem 167) above to conclude that fR(rU) � g(rU) for 0 � r � 1:
In other words, jzj � r ) f(z) 2 g(B(0; rR ); 0 � r � R: Hence M(r) �
supfj�j : � 2 g(B(0; rR ))g = supf

���f(0)� f�(R)� Re f(0)g 2z
1�z

��� : jzj � r
Rg �

jf(0)j+ f�(R)�Re f(0)g 2r=R
1�r=R which gives M(r) � �(R) 2r

R�r + jf(0)j
R�r
R+r : To

prove the inequality �(r) � R�r
R+r Re f(0)+

2r
R+r�(r) we write u(z) = �(R)�f(z):

By Harnack�s Inequality we have R�jzjR+jzj Reu(0) � Reu(z) for jzj � R: This com-
pletes the proof.

179. If f is an entire function such that Re f(z) � B jzjn for jzj � R then f
is a polynomial of degree at most n:
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We have �(r) � Brn for r � R in the notations of Problem 176). By
that problem we get M(r) � 2r�r

2r+r jf(0)j +
2r
2r+r�(r) �

1
3 jf(0)j +

2
3Br

n and
jf(z)j � 1

3 jf(0)j +
2
3B jzj

n if jzj � R: This implies that f is a polynomial of
degree at most n:

180. Let 
 be a region and A be a subset of 
 with no limit points in 
:
Show that 
nA is a region.

Since A has no limit points it is closed in 
; so 
nA is open in C: Now
�x z0 in 
nA and let S = fz 2 
 : 9 : [0; 1] ! 
 with (t) 2 
nA for
t < 1; (0) = z0; (1) = z and  is continuous}. It is easy to see that S is
closed in 
. To show that it is open in 
 pick z 2 Snfz0g and choose a ball
B(z; �) such that B(z; �)nfzg � 
nA: Pick any � 2 B(z; �): Let  : [0; 1] ! 

be a map with (t) 2 
nA for t < 1; (0) = z0; (1) = z and  continuous.
If z =2 A we can combine  with the segment [z; �] to conclude that � 2 S:
If z 2 A then there exists t0 2 [0; 1) such that (t0) 2 B(z; �)nfzg: [ If this
is not true then there would be a discontinuity of  at infft : (t) = zg].
Combine  restricted to [0; t0] with [(t0); �] to see that � 2 S if z =2 [(t0); �]:
If z 2 [(t0); �] let z1 = z + �ei(

�
2+�) where � is the argument of � � z and

0 < � < �: Note that z1 2 B(z; �)nfzg and that the segments [(t0); z1]; [z1; �]
are both contained in the convex set B(z; �), as well as in B(z; �)nfzg � (
nA):
[ If z is on on eof these segments it is easy to see that the ratio of �� z to z1� z
is real. However, the de�nition of z1 show that these two are orthogonal (i.e.
Re[ (�� z) (z1� z)�] = 0). We may now combine  restricted to [0; t0] with the
segments [(t0); z1] and [z1; �] to see that � 2 S: Finally we prove that z0 is an
interior point of S : any point of a ball B(z0; �) that is contained in 
nA can
be joined by a continuous arc to z0 by a single line segment.

181. Show that Cn(Q�Q) is connected.

We prove a more general result:
Let A � Rn be countable. Then RnnA is path connected.

Let x0 2 A: Consider the sets fx0 + tx : t > 0g where kxk = 1: These sets
are disjoint and hence only countable many of them can intersect A: Similarly
fy : kxk = rg can intersect A for at most countably many positive numbers r:
Removing these we get rays and circles disjoint from A and any two points of
RnnA can be joined by a path consisting of two line segments and an arc of a
circle.

182. Prove the formula

1Z
�1

eitxe�x
2=2dx =

p
2�e�t

2=2(t 2 R) in four di¤erent

ways.

Contour integration: assume that t > 0 and integrate eitxe�x
2=2 over the

rectangle with vertices �R;R;R+ it;�R+ it:
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Power series method: justify

1Z
�1

1X
n=0

intnxn

n! e�x
2=2dx =

1X
n=0

intn

n!

1Z
�1

xne�x
2=2dx

and compute the integrals

1Z
�1

xne�x
2=2dx for each n explicitly.

Using the fact that zeros are isolated: let �(z) =

1Z
�1

eizxe�x
2=2dx; show that

� is entire and compute �(it) for real t: This gives the desired identity with t
changed to it and that is good enough!
Di¤erential equation method: prove that �0(t) = �t�(t): This and the fact

that �(0) =
p
2� give �(t) =

p
2�e�t

2=2:

[

1Z
0

(

sZ
0

eiuzdu)ds = eiz�1��iz
i2z2 and hence

��eiz � 1� iz�� � jzj2
������
1Z
0

(

sZ
0

eiuzdu)ds

������ �
jzj2 ejzj=2: This inequality is useful in the lsat two methods].

183. Prove that jez � 1� zj � jzj2
2 ejzj 8z 2 C and jez � 1� zj � jzj2

2 if

Re(z) = 0: Also show that
��ez � 1� z � z2=2!� :::� zn=n!�� � jzjn+1

(n+1)!e
jzj 8z 2 C:

1Z
0

(

sZ
0

euzdu)ds =

1Z
0

esz�1
z ds = 1

z (
ez�1
z � 1) = ez�1�z

z2 : Hence jez � 1� zj �

jzj2
������
1Z
0

(

sZ
0

euzdu)ds

������ � jzj2
1Z
0

(

sZ
0

eujzjdu)ds � jzj2 ejzj
1Z
0

(

sZ
0

du)ds and this gives

the �rst inequality. If Re(z) = 0 the jeuzj = 1 and we can replace ejzj by 1 in

above inequalities. For the last part use induction and the fact that

1Z
0

[etz�1�

tz� t2z2=2!� :::� tnzn=n!]dt = 1
z [e

z�1�z�z2=2!�z3=3!� :::�zn+1=(n+1)!]:
184. Let f be a non-constant entire function. Show without using Picard�s

Theorem that lim inf
jzj!1

jf(z)j 2 f0;1g:

If g(z) = f( 1z ) has an essential singularity at 0 then fg(z) : 0 < jzj < 1g is
dense in C and this implies lim inf

jzj!1
jf(z)j = 0. If it has a pole or an essential

singularity then Problem 24) above shows f is a polynomial.

185. Let 
 be open and f 2 H(
) be one-to-one. Let  be any closed path
in 
 and 
1 = fz 2 
n� : Ind(z) 6= 0g: Show that f�1(w)Ind(f�1(w)) =
1
2�i

Z


zf 0(z)
f(z)�wdz 8w 2 f(
1):
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This follows imeditely from Residue Theorem. The integrand has a simple
pole at f�1(w) with residue f�1(w)! Note that if

Ind(a) = 0 or 1 for any a 2 Cn� then f�1(w) = 1
2�i

Z


zf 0(z)
f(z)�wdz 8w 2

f(
1):
186. Let f 2 H(Unf0g) and assume that f has an essential singularity

at 0: Let fn(z) = f( z2n ); n � 1; z 2 Unf0g: Show that ffng is not normal in
H(Unf0g):

We can �nd fcng such that jcn+1j < jcnj ; jcnj ! 0; jc1j < 1
4 and lim

n!1
f(cn) =

0: Let nk 2 N with nk < � logjckj
log 2 � nk + 1; k = 1; 2; :::. Clearly nk � nk+1 and

nk ! 1 as k ! 1: Let zk = 2nkck: Then 1
4 � jzkj <

1
2 : Note that fnk(zk) =

f(2�nkzk) = f(ck) ! 0: If possible, let ffng be normal. Let fnkj
ucc! h: Let M

be an upper bound for ffnkj g on fz :
1
4 � jzkj � 1

2g: If � 2 B(0; 1

2
nk1

+1 )nf0g
then there exists j such that 1

2
nkj

+2 � j�j < 1

2
nkj

+1 : Since 2
nkj � 2 fz : 14 � jzkj

� 1
2g we get

���fnkj (2nkj �))��� � M which means jf(�)j � M: Thus, f is bounded

in a neighbourhood of 0 contradicting the hypothesis that f has an essential
singularity at 0:

187. Let 
 be an open set in C such that C1n
 is connected. Let  be
closed path in 
: Show that Ind(a) = 0 8a 2 Cn
:

Remark: some books give a lengthy proof. Here is a simple proof: let
F (1) = 0 and F (z) = Ind(a) for a 2 Cn�: Then F is an integer valued
continuous function on C1n�: Continuity at 1 follows from the fact that������
Z


1
z�adz

������ � 1
jaj�ML() where L() is the length of  and M = supfjzj : z 2

�g: If C1n
 is connected then F is a constant on this set. Since it is 0 at 1
it is 0 on C1n
 as well.

188. If f is an entire function which is not a transaltion show that f � f has
a �xed point.

Let g(z) = f(f(z))�z
f(z)�z : If f � f has no �xed point then f also cannot have

a �xed point ans g is an entire function with no zeros. Also g(z) = 1 )
f(f(z)) = f(z) which implies that f(z) is a �xed point of f and this is a
contradiction. Hence, by Picard�s Theorem, g is a constant di¤erent from both
0 and 1. Let f(f(z))� z = c[f(z)� z]: From this we have to show that f is a
translation. We have f 0(f(z))f 0(z) � 1 = c[f 0(z) � 1] which can be written as
f 0(z)[f 0(f(z))� c] = 1� c: (�) If f 0(f(z)) = 0 we can replace z by f(z) in (�)
to get c = 1; a contradiction. Hence, neither f 0(z) nor f 0(f(z)) can be 0 for any
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z: Thus, f 0 � f is an entire function whose range misses 0 and c: Using Picard�s
Theorem again we conclude that f 0 �f is a constant. By (�) f 0 is also a constant
and hence f(z) = az+b for some constants a and b: But (f �f)(z) = a2z+ab+b
has a �xed point unless a2 = 1; i.e. unless a = 1:

189. Show that there is a sequence of polynomials fpng such that lim
n!1

pn(z) =8<: 0 if Im(z) = 0
1 if Im(z) > 0
�1 if Im(z) > 0
Fix n Let K = fz : �n � Re(z) � n; 1n � Im z � ng [ fz : �n � Re(z) �

n;�n � Im z � � 1
ng [ fz : �n � Re(z) � n; Im(z) = 0g: This is a compact

subset of the open set 
 = fz : �n � 1 < Re(z) < n + 1; 12n < Im z <
n + 1g [ fz : �n � 1 < Re(z) < n + 1;�n � 1 < Im z < � 1

2ng [ fz : �n � 1 <
Re(z) < n+ 1; jIm(z)j < 1

3ng:
Let f be 1 on fz : �n � 1 < Re(z) < n + 1; 12n < Im z < n + 1g;�1 on

fz : �n � 1 < Re(z) < n + 1;�n � 1 < Im z < � 1
2ng and 0 elsewhere. Since

C1nK is connected and f is holomorphic on 
 we can �nd a polynomial pn
such that jf(z)� pn(z)j < 1

n on K:

190. Show that there is a sequence of polynomials fpng such that lim
n!1

pn(z) =

0 8z 2 C but the convergence is not uniform on at least one compact set.

If fpng is the sequence in Problem 189) then fp2n � p4ng is a sequence of
polynomials converging to 0 pointwise. If this sequence converges uniformly on
compact subsets of C then it is uniformly bounded on each compact set. Since��p2n � p4n�� � jpnj2 [jpnj2 � 1]; the sequence fpng is also bounded uniformly on
compacts. It is therefore a normal sequence and there must be a subsequence
that converges ucc to an entire function, a contradiction.

191. If A is bounded in C then C1nA is connected if and only if CnA is
connected. If A is unbounded and CnA is connected does it follow that C1nA
is connected? If C1nA is connected does it follow that CnA is connected?

Let jzj � R for all z 2 A: Let VR = fz : jzj > Rg: If CnA is connected
and C1nA = E [ F with E and F disjoint open subsets of C1nA let 1 2 E:

Then CnA = (Enf1g)[F which implies that either F = ; or E = f1g: Hence
f1g = V \ (C1nA) for some open set V in C1: But then all complex numbers
z with jzj su¢ ciently large are in V \ (C1nA) = f1g which is a contradiction.
If C1nA is connected and CnA = E [F with E and F disjoint open subsets of
CnA then VR = (VR \ E) [ (VR \ F ) and the connectedness of VR shows that

either VR \ E = ; or VR \ F = ;: In the �rst case VR � F which implies that
F [ f1g is open in C1: Since C1nA = E [ (F [ f1g) we get E = ;: Similarly
if VR \ F = ; we get F = ;:
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For the counter-examples consider Cnf0g and fz : 0 < Re(z) < 1g: To see
that C1nA is connected in the second example consider the closures in C1 of
fz : 1 � Re(z)g and fz : Re(z) � 0g:

192. Let 
 be a bounded region, a 2 
 and f : 
 ! 
 be a holomorphic
map such that f(a) = a: Show that jf 0(a)j � 1:

Let fz : jz � aj � rg � 
: Let M = supfj�j : � 2 
g: Let g(z) =
r
M f(z) + a: Then jg(z)� aj � r and Open Mapping Theorem implies that g
maps B(a; r) into itself. Also g(a) = (1 + r

M )a: Applying Schwartz Lemma to

h(z) � g(a+rz)�a
r (z 2 U) we get jh0(0)j � 1� jaj2 =M2: This gives jf 0(a)j � M

r :
Thus jf 0(a)j has a bound which depends only on a and 
 and not on f: Now
we note that the iterates f; f � f; f � f � f; ::: satisfyu the same hypothesis as f
and hence sup

n
jf 0n(a)j < 1 where fn denotes the n � th iterate of f . But this

means sup
n
jf 0(a)jn <1 which means jf 0(a)j � 1:

193. Let f 2 H(Unf0g) and jf(z)j � log 1
jzj 8z 2 Unf0g: Show that f

vanishes identically.
zf(z) 2 H(Unf0g) and jzf(z)j � � jzj log(jzj) ! 0 as z ! 0: Hence zf(z)

has a removable singularity at 0 and the extended function on U vanishes at 0:
This says that f has removable singularity at 0: By Maximum Moduls Principle
applied to fz : jzj � 1� �g we get jf(z)j � log 1

1�� for jzj � 1� �: Let � ! 0:

194. Let f be an entire function with jxj jf(x+ iy)j � 1 8x; y 2 R then
f(z) = 0 8z 2 C:

If x2 + y2 = R2 and y � 0 then R � y = x2

R+y �
x2

R � jxj and hence
jx+ i(y �R)j jx+ i(y +R)j jf(z)j � 4R: Changing y to �y we see that the same
inequality holds even if y < 0: ByMaximumModulus Principle jz +Rij jz �Rij jf(z)j �
4R for jzj � R: For jzj � R=2 we get jf(z)j � 4R

(R�R=2)2 =
16
R : Clearly this implies

that f is bounded, hence constant. The hypothesis implies that the constant is
necessarily 0:

195. Let fn : U ! U be holomorphic and suppose fn(0) ! 1: Show that
fn

ucc! 1:

Since ffng is normal there is a subsequence fnj
ucc! g (say). Note that

g 2 H(U) and g(0) = 1: If g is not a constant then g � 1 has no zeros in
some deleted neighbourhood of 0: Let � > 0 be such that g has no zero on
jzj = �: For jzj = � and j su¢ ciently large we have

��(fnj (z)� 1)� (g(z)� 1)�� <
inffjg(z)� 1j : jzj = �g: Hence fnj (z) � 1 has same number of zeros as g � 1
in B(0; �): However g(0) = 1 and fnj (z) � 1 has no zero on B(0; �) because
fnj (U) � U ! This proves that g(z) = 1 8z so

fnj
ucc! 1: Going to subsequences we conclude that fn

ucc! g:
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196. If n 2 f3; 4; :::g show that the equation zn = 2z � 1 has a unique
solution in U:

Note that j1 + znj � 1 + 1 = j�2zj on @U: If we had strict inequality we
could conclude that zn�2z+1 and �2z have the same number of zeros in U and
that is what we are aiming at. However strict inequality fails at z = 1:We claim
that (1� t)n < 1� 2t if t > 0 is su¢ ciently small. Indeed, by L�Hopital�s Rule
lim
t!0

(1�2t)�(1�t)n
t = n�2 > 0:We now have jzjn = (1�t)n < 1�2t = �1+ j�2zj

if jzj = 1� t: Hence j1 + znj � 1+ jznj < j�2zj for jzj = 1� t: This shows that
1 + zn � 2z and �2z have the same number of zeros in jzj < 1 � t: This holds
for all su¢ ciently small positive numbers t:

197. Show that there are (restrictions to R of) entire functions which tend
to 1 faster than any given function. More precisely, if � : (0;1) ! (0;1) is
any increasing function then there is an entire function f such that f(x) � �(x)
8x 2 (0;1):

Let f(z) = 1 +

1X
j=1

( zj )
mj where m1 < m2 < :::; Then f is entire. We

choose m0
js with the additional property 1 + jmj � �(((j + 1)2): Any number

x > 1 lies between j2 and (j + 1)2 for some j 2 N and f(x) � 1 + (xj )
mj �

1 + jmj � �(((j + 1)2) � �(x): If  (x) =
�
�(x� 1) if x > 1
0 if 0 < x � 1 then  is a

increasing function : (0;1)! (0;1) and there is an entire function g such that
g(x) �  (x) 8x > 0: Let f(z) = g(z + 1):

198. Find a necessary and su¢ cient condition that A � fz :
��az2 + bz + c�� <

rg is connected.

If a = 0 then A is always connected. Assume a 6= 0: We claim that A is
connected if and only if

��b2 � 4ac�� < 4r jaj : Note that A = f� � b
2a :

���2 � ��� <
r
jajg where � =

b2

4a2 �
c
a : It su¢ ces to show that B � f� :

���2 � ��� < r
jajg is

connected if and only if
��b2 � 4ac�� < 4r jaj which translates into j�j < r

jaj : Let

�2 = �: If j�j � r
jaj then the relation B = [B \B(�;

q
r
jaj )][ [B \B(��;

q
r
jaj )]

shows that B is not connected. If j�j < r
jaj then tz 2 B whenever z 2 B and

0 � t � 1 proving that B is connected.

199. If z; c1;c2; c3 2 C and 1
z�c1 +

1
z�c2 +

1
z�c3 = 0 show that z belongs to

the closed triangular region with vertices c1;c2; c3:
We prove a more general result: if z; c1;c2; :::; cn 2 C and 1

z�c1 +
1

z�c2 + :::+
1

z�cn = 0 we show that z belongs to the convex hull of c1;c2; :::; cn:
This requires a standard "Seperation Theorem": if C is a closed convex set in

C and z is a complex number in CnC then there is a complex number a such that
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Re(
�
a�) < Re(

�
az) for each � 2 C: Let C be the convex hull of c1;c2; :::; cn.The

given equation gives 1
�
az��

ac1
+ 1

�
az��

ac2
+ :::+ 1

�
az��

acn
= 0: If z does not belongs

to the convex hull of c1;c2; :::; cn we choose a as above, multiply the numerator
and the denominator of each term by the conjugate of the denominator and take
real parts on both sides to get a contradiction.

200. Prove the following result of Gauss and Lucas: if p is a polynomial then
every zero of p0 is in the convex hull of the zeros of p:

We may suppose p(z) = (z � c1)(z � c2):::(z � cn): If p0(z) = 0 then 0 =
p0(z)
p(z) =

1
z�c1 +

1
z�c2 + :::+

1
z�cn and previous problem can be applied.

201. Let f 2 C(
�
U) \H(U): Show that

1Z
�1

jf(x)j2 dx �
�Z
0

��f(eit)��2 dt:
Let  consist of the line segment from �1 to +1 and the semi-circular arc

feit : 0 � t � �g: By Cauchy�s Theorem
Z


f(z)

�

f(
�
z)dz = 0:Hence

1Z
�1

jf(x)j2 dx =

�
�Z
0

f(eit)
�

f(e�it)ieitdt: Apply Cauchy-Schwartz inequality.

202. Prove Brouer�s Fixed Point Theorem in two dimensions: every contin-

uous map � :
�
U !

�
U has a �xed point.

Suppose not. LetH(t; s) =
�

(e2�is � 2t�(e2�is)) is t 2 [0; 1=2) and s 2 [0; 1]
((2� 2t)e2�is � �((2� 2t)e2�is)) if t 2 [1=2; 1] and s 2 [0; 1] :

This is a continuous function : [0; 1] � [0; 1] ! Cnf0g: Also, H(0; s) =
e2�is; 0 � s � 1 and H(1; s) = ��(0); 0 � s � 1: This shows that the path
(s) = e2�is; 0 � s � 1 is homotopic to a constant path in Cnf0g: This implies
that the index of 0 w.r.t. the path (s) = e2�is; 0 � s � 1 is 0; a contradiction.

203. If � : T ! Cnf0g is continuous and if �(�z) = ��(z) 8z 2 T show
that there is no continuous function g on T such that g2 = �:

Consider h(z) = g(�z)
g(z) : We have h

2 = �1 and h is continuous. This implies
h(z) = i 8z or h(z) = �i 8z: Let us write h(z) = c so the constant c is either i
or �i: But then c2 = h(�z)h(z) = g(z)

g(�z)
g(�z)
g(z) = 1; a contradiction.

204. Prove that if K is a non-empty compact convex subset of C then every
continuous map � : K ! K has a �xed point.
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Let H = 1
RK where R > 0 is so large that H �

�
U: For each z 2

�
U

there is a unique point g(z) 2 H such that jg(z)� zj � j� � zj 8� 2 H: The
existence is an easy consequence of compactness of H: Uniqueness is proved
as follows: if j�1 � zj � j� � zj 8� 2 H and j�2 � zj � j� � zj 8� 2 H then��� �1+�22 � z

��� � j�1�zj+j�2�zj
2 � j� � zj 8� 2 H and this holds, in particular for

� = �1+�2
2 by convexity of H: This implies that �1�z = �(�2�z) for some � � 0

and hence �1; �2; z are colinear. The fact that
��� �1+�22 � z

��� = j�1�zj+j�2�zj
2 forces

z to be �between��1 and �2 which implies that z 2 H by convexity. But then

�1 = �2 = z: We have now proved the existence of a map g :
�
U ! H such that

jg(z)� zj � j� � zj 8� 2 H: Now de�ne f :
�
U !

�
U by f(z) = 1

R�(Rg(z)): Note
that g is continuous: if zn ! z and g(zn) ! �0 then jg(zn)� znj � j� � znj
8� 2 H 8n implies j�0 � zj � j� � zj 8� 2 H: But then g(z) = �0, by de�nition.

It follows that f is a continuous map from
�
U into itself. By Problem 202) above

there is a point z 2
�
U such that f(z) = z: But then �(Rg(z)) = Rz: But

Rg(z) 2 RH = K so Rz = �(Rg(z)) 2 K which means z 2 H: But this implies
g(z) = z and we get �(Rz) = Rz: Since Rz 2 K we are done.

205. If f 2 H(B(0; �)); f(0) = 0 and f(z) 6= 0 8z 2 B(0; �)nf0g show that
jf(z)j is not harmonic. (Example: jzjn)

MVP fails.

206. Prove Rado�s Theorem
Let 
 be a region, f 2 C(
) and f 2 H(
0) where 
0 = 
nf�1f0g: Then

f 2 H(
)
Remark: this problem requires some measure theory and properties of sub-

harmonic functions.

We �rst prove that 
0 is dense in 
:

Let A = fz 2 
 :
Z

B(z;�)

log jf(�)j d� > �1 for some � > 0 with [B(z; �)]� �


g and B = fz 2 
 : f vanishes in some neibourhood of zg: Clearly A and B
are disjoint subsets of 
 and B is open. If we show that A is also open we can
conclude that one of these sets is 
: If B = 
 then f 2 H(
) and f�1f0g is
countable: If A = 
 then the fact that 
nf�1f0g is dense in 
 is clear from the

fact that
Z

B(z;�)

log jf(�)j d� > �1 ) f� 2 B(z; �) : f(�) = 0g is a (Lebesgue)

null set. [Of course, log jf(�)j is bounded above on B(z; �) if the closure of this
ball is contained in 
]:
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It remains to show that A is open. Let z 2 A and � > 0 be such thatZ
B(z;�)

log jf(�)j d� > �1 and [B(z; �)]� � 
. Let w 2 B(z; �) and choose r > 0

such thatB(w; r) � B(z; �): Then
Z

B(w;r)

log jf(�)j d� =
Z

B(w;r)\fjf j�1g

log jf(�)j d�+

Z
B(w;r)\fjf j>1g

log jf(�)j d�: The second term here is non-negative, so it su¢ ces to

show that
Z

B(w;r)\fjf j�1g

log jf(�)j d� > �1: Since � log jf(�)j � 0 on B(w; r)\

fjf j � 1g it follows that
Z

B(w;r)\fjf j�1g

log jf(�)j d� �
Z

B(z;�)\fjf j�1g

log jf(�)j d� =

Z
B(z;�)

log jf(�)j d��
Z

B(z;�)\fjf j>1g

log jf(�)j d� > �1 because
Z

B(z;�)

log jf(�)j d� >

�1 and
Z

B(z;�)\fjf j>1g

log jf(�)j d� <1:

Next we prove the following:
Lemma

Let f be continuous on a region containing
�
U and suppose Unf�1f0g is

dense in U . If f 2 H(Unf�1f0g) then Re f is harmonic in :

Grant this Lemma for the moment. We can change U to any open ball whose
closure is contained in 
: It would follow that Re f is harmonic in any ball
contained in 
; hence in 
: Applying the result to if we see that Im f is also
harmonic. The Cauchy-Riemann equations are satis�ed on 
nf�1f0g which
is dense in 
 and since the real and imaginary parts of f are C1 functions,
the Cauchy_Riemann hold throughout 
 and the proof of Rado�s Theorem is
complete.
Proof of the lemma:

let u be subharmonic on a region containing
�
U: Claim: u(z) �

�Z
��

Pr(� �

t)u(eit)dt 8z = rei� 2 U: For this let un; n � 1 be continuous functions on @U

decreasing to u: Let vn(z) =

�Z
��

Pr(� � t)un(e
it)dt 8z = rei� 2 U; vn(z) = un(z)

for z 2 @U: Then v0ns are harmonic. Since u � vn is subharmonic and � 0 on
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@U we see that u � vn � 0 in U and letting n ! 1 we get u(z) �
�Z

��

Pr(� �

t)u(eit)dt 8z = rei� 2 U: We apply this result to the subharmonic function

u = Re f + � log jf j [ Note that the inequality u(z) �
�Z

��

Pr(�� t)u(eit)dt holds

if u(z) = �1; i.e. f(0) = 0: It holds for r su¢ ciently small if f(0) 6= 0: Hence
u is subharmonic]. We get

Re f(z) + � log jf(z)j �
�Z

��

Pr(� � t)fRe f(eit) + � log
��f(eit)��gdt 8z = rei� 2

U: If f(z) 6= 0 we get Re f(z) �
�Z

��

Pr(� � t)Re f(eit)dt by letting � ! 0:

Changing f to �f we get the reverse inequality. By continuity of Re f we see

that Re f(z) =

�Z
��

Pr(� � t)Re f(eit)dt 8z = rei� 2 U: This proves the lemma.

207. Let f 2 H(Cnf0g) and suppose f does not have an essential singularity
at 0: If f(eit) 2 R 8t 2 R show that f(z) = p(z)

zk
for some non-negative integer

k and some polynomial p whose degree does not exceed 2k:

Since f has a pole or a removable singularity at 0 we can write zkf(z) =
1X
n=0

anz
n 8z 2 C for some non-negative integer k::Also, an = 1

2�

2�Z
0

ei(k�n)tf(eit)dt

8n � 0: By hypothesis, �an = 1
2�

2�Z
0

e�i(k�n)tf(eit)dt 8n � 0:Now
2�Z
0

e�i(k�n)tf(eit)dt =

�i
Z


zn�k�1f(z)dz = 0 for n � 2k + 1 (by Cauch�y Theorem), where (t) =

eit; 0 � t � 2�: Hence zkf(z) =
2kX
n=0

anz
n:

208 Find a necessary and su¢ cient condition that az2 + bz + c (with a 6= 0)
is one-to-one in U:

If it is one-to-one then 2az + b has no zeros in U which implies
��� b

2z

�� � 1
or jbj � 2 jaj : Conversely, if this condition holds then az2 + bz + c = aw2 +
bw + c ) (z � w)(az + aw + b) = 0 and this implies that z = w because
jaz + aw + bj � jbj � jaj jz + wj > jbj � 2 jaj � 0:
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209 Let c1; c2; :::; cn be distinct complex numbers. Show that
nX
k=1

Y
j 6=k

cj�c
cj�ck =

1 for all c 2 C:

The left side is a polynomial of degree (n� 1) which has the vale 1 at each
of the points c1; c2; :::; cn:

210.
Let � be a �nite positive measure on the Borel subsets of (0;1): If g 2 L1(�)

and

1Z
0

e�xp(x)g(x)d�(x) = 0 for every polynomial p show that g = 0 a.e. [�]:

Conclude that fe�xp(x) : p is a polynomialg is dense in L1(�):

The second part follows immediately from the �rst. For the �rst part let

�(z) =

1Z
0

e�zxg(x)d�(x) for z 2 C with Re(z) > 0: A straightforward argu-

ment shows that � is analytic in fz 2 C: Re(z) > 0g: Further, �(n)(z) =
1Z
0

(�x)ne�zxg(x)d�(x) for z 2 C and n � 0: By hypothesis this gives �(n)(1) = 0

8n � 0: It follows that �(z) = 0 whenever Re(Z) > 0: In particular
1Z
0

e�txg(x)d�(x) =

0 if t > 0. The �nite positive measures �1 and �2 de�ned by d�1 = g+d� and
d�2 = g�d� have the same Laplace transform and hence they are equal. This
means g(x)d�(x) = 0 which is what we wanted to prove.

211.

Let 
 = Cnf0; 1g and f 2 H(
): Show that if f is not a constant then it
must be one of six speci�c Mobius transformations. [Proposed and solved by
Walter Rudin in Amer. Math. Monthly]

By Picard�s Theorem f cannot have an essential singularity at 0 and 1:
Also f( 1z ) cannot have an essential singularity at 0: Thus p1(z)p2(1� z)f(z) is
an entire function which has a removable singularity or a pole at 1 for some
polynomials p1 and p2: It follows that f =

p
q for some polynomials p and q

with no common zeros. Since f does not take the value 0 it follows that p can
have zeros only at 0 and 1. Also, q satis�es the same property. Thus p(z) is
cz; c(1� z) or cz(1� z) for some constant c: The same is true of q: It is now a
routine matter to write down all possibilities for f:
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