PROBLEMS IN COMPLEX ANALYSIS

These problems are not in any particular order. I have collected them from a number of text books. I have provided hints and solutions wherever I considered them necessary. These are problems are meant to be used in a first course on Complex Analysis. Use of measure theory has been minimized.

Updated in November 2012. Thanks to Sourav Ghosh for pointing out several errors in previous version.

Notation: $U = \{z : |z| < 1\}$ and $T = \{z : |z| = 1\}$.Def: f is analytic or holomorphic on an open set if it is differentiable at each point. $H(\Omega)$ is the class of all holomorphic functions on Ω . \xrightarrow{uc} stands for uniform convergence on compact sets.

1. Find a sequence of complex numbers $\{z_n\}$ such that $\sin z_n$ is real for all $n \text{ and } \to \infty$ as $n \to \infty$?

2. At what points is f(z) = |z| differentiable? At what points is $f(z) = |z|^2$ differentiable?

3. If f is a differentiable function from a region Ω in \mathbb{C} into \mathbb{R} prove that f is necessarily a constant.

4. Find all entire functions f such that $f^n(z) = z$ for all z, n being a given positive integer.

5. If f and \overline{f} are both analytic in a region Ω show that they are constants on Ω .

6. If f^2 and $(\bar{f})^5$ are analytic in a region show that f is a constant on that region.

7. If f is analytic in a region Ω and if |f| is a constant on Ω show that f is a constant on Ω .

8. Define $Log(z) = \log |z| + i\theta$ where $-\pi < \theta \le \pi$ and $z = |z| e^{i\theta}$ $(z \ne 0)$. Prove that Log is not continuous on $\mathbb{C} \setminus \{0\}$.

Consider the sequences $\{-1 + i/n\}$ and $\{-1 - i/n\}$.

9. Prove that the function Log defined in above problem is differentiable on $\mathbb{C}\setminus\{x\in\mathbb{R}:x\leq 0\}$. Find its derivative and prove that there is no power series $\sum_{n=0}^{\infty}a_n(z-c)^n$ convergent in $\mathbb{C}\setminus\{x\in\mathbb{R}:x\leq 0\}$ whose sum is Log.

The main part is to verify continuity of *Log*. Differntiability is automatic since its inverse is differentiable. The last part is follows from previous problem and basic facts about power series.

10. Let p be a non-constant polynomial, c > 0 and $\Omega = \{z : |p(z)| < c\}$. Prove that $\partial \Omega = \{z : |p(z)| = c\}$ and that each connected component of Ω contains a zero of p.

If |p(z)| = c and there is no sequence $\{z_n\}$ converging to z with $|p(z_n)| < c$ $\forall n$ then Maximum Modulus Principle is violated. This proves the first assertion. Let C be any component of Ω . If p has no zero in Ω then, since $\partial C \subset \partial \Omega$ we have $|p(z)| \leq c$ and $\left|\frac{1}{p(z)}\right| \leq c$ by Maximum Modulus Principle applied to the region C. Hence p is a constant.

11. Prove that there is no differentiable function f on $\mathbb{C}\setminus\{0\}$ such that $e^{f(z)} = z$ for all $z \in \mathbb{C}\setminus\{0\}$.

If it exists, compare it with Log.

12. Let γ be a piecewise continuously differentiable map : $[0,1] \to \mathbb{C}$ and $h: \gamma^* \to \mathbb{C}$ be continuous(γ^* is the range of γ). Show that $f(z) = \int_{\gamma} \frac{h(\zeta)}{\zeta - z} d\zeta$ defines a holomorphic function on $\mathbb{C} \setminus \gamma^*$.

13. If γ is as in above problem show that the total variation of γ is $\int_{0} |\gamma'(t)| dt$.

14. If p is a polynomial and if the maximum of |p| on a region Ω is attained at an interior point show, without using The Maximum Modulus Principle, that p is a constant.

Compute the integral of $\frac{p(z)}{z-a}$ over a circle with centre *a* contained in Ω .

15. If $f(x + iy) = \sqrt{|xy|}$ show that f is not differntiable at 0 even though Cauchy-Riemann equations are satisfied.

16. Show that $\log \sqrt{x^2 + y^2}$ is a harmonic function on $\mathbb{C} \setminus \{0\}$ which is not the real part of any holomorphic function.

17. If f is holomorphic on Ω and e^f is constant on Ω show that f is constant on Ω .

18. If f is an entire function and $\operatorname{Re} f$ (or $\operatorname{Im} f$) is bounded above or below show that f is constant.

19. Prove that $\frac{|a-b|}{|1-\bar{a}b|} \ge \frac{|a|-|b|}{1-|ab|}$ if either |a| and |b| are both less than 1 or both greater than 1.

20. If $f: U \to U$ is holomorphic show that $\frac{|f(\beta) - f(\alpha)|}{\left|1 - \bar{f}(\beta)f(\alpha)\right|} \leq \frac{|\beta - \alpha|}{\left|1 - \bar{\beta}\alpha\right|}$ for all $\alpha, \beta \in U$.

Let $\phi_a(z) = \frac{z-a}{1-\bar{a}z}$. Apply Schwartz Lemma to $\phi_{f(\beta)} \circ f \circ \phi_{-\beta}$.

21. Prove that a holomorphic function from U into itself has at most one fixed point unless it is the identity map.

Apply Schwartz Lemma to $\phi_a^{-1} \circ f \circ \phi_a$ where a is a fixed point.

22. If f is a bijective bi-holomorphic map of U show that f maps open balls in U onto open balls.

The only bijective bi-holomorphic maps of U are $e^{i\theta}\phi_a$ and these map are compositions of inversions, translations and dilations. $[\phi_a$ is defined in Problem 20)].

23. Let Ω be a region, $f \in C(\Omega)$ and let f^n be holomorphic in Ω for some positive integer n. Show that f is holomorphic in Ω .

Use definition.

24. If f is an entire function such that $|f(z)| \leq 1 + \sqrt{|z|}$ for all $z \in \mathbb{C}$ show that f is a constant.

If f is an entire function such that $|f(z)| \leq M |z|^N$ for |z| sufficiently large (where M is a positive cosnant) show that f is a polynomial.

Consider $\frac{f(z)-f(0)}{z}$ for the first part. For the second part use Liouville's Theorem for N = 0. Let $g(z) = \frac{f(z)-f(0)}{z}$ for $z \neq 0$ and f'(0) for z = 0. Show that g satisfies the same hypothesis as f with N replaced by N - 1.

25. Find the largest open set on which $\int_{0}^{1} \frac{1}{1+tz} dt$ is analytic. Do the same

for
$$\int_{0} \frac{e^{tz}}{1+t^2} dt$$

26. If f and g are holomorphic functions on a region Ω with no zeros such that $\{z: \frac{f'}{f}(z) = \frac{g'}{g}(z)\}$ has a limit point in Ω find a simple relation between f and g.

27. If f is a holomorphic function on a region Ω which is not identically zero show that the zeros of the function form an atmost countable set.

There exist compact sets K_n increasing to Ω : look at distances of points of Ω from $\mathbb{C}\backslash\Omega$.

28. Is Mean Value Theorem valid in the complex case? (i.e., if f is analytic in a convex region and z_1, z_2 are two points in the region can we always find a point ζ on the line segment from z_1 to z_2 such that $f(z_2) - f(z_1) = f'(\zeta)(z_2 - z_1)$?)

29. Let f be holomorphic on a region Ω with no zeros. If there is a holomorphic function h such that $h' = \frac{f'}{f}$ show that f has a holomorphic logarithm on Ω (i.e. there is a holomorphic function H such that $e^H = f$. Show that h need not exist and give sufficient a condition on Ω that ensures existence of h.

30. Prove that a bounded harmonic function on \mathbb{R}^2 is constant.

31. If f is a non-constant entire function such that $|f(z)| \ge M |z|^n$ for $|z| \ge R$ for some $n \in \mathbb{N}$ and some M and R in $(0, \infty)$ show that f is a polynomial whose degree is at least n.

Let $z_1, z_2, ..., z_k$ be the zeros of f in $\{z : |z| \le R\}$. Let $g(z) = \frac{(z-z_1)(z-z_2)...(z-z_k)}{f(z)}$. Then g is an entire function which satisfies an inequality of the type $|g(z)| \le A + B |z|^m$ for all z. Conclude that f must be a rational function, hence a polynomial.

32. If f is an entire function which is not a constant prove that $\max\{|f(z)|: |z| = r\}$ is an increasing function of r which $\to \infty$ as $r \to \infty$.

33. If $f \in C(U \cup T) \cap H(U)$ and f(z) = 0 on $\{e^{i\theta} : \alpha < \theta < b\}$ for some a < b show that f is identically 0.

Consider $f(z)f(ze^{i\phi_1})f(ze^{i\phi_2})...f(ze^{i\phi_k})$ for suitable $\phi_1, \phi_2, ..., \phi_k$

34. True or false: if f and g are entire functions such that f(z)g(z) = 1 for all z then f and g are constants. [What is the answer if f and g are polynomials?]

35. If $f: U \to U$ is holomorphic, $a \in U$ and f(a) = a prove that $|f'(a)| \le 1$. Define ϕ_a as in Problem 20 above and apply Schwartz Lemma to $\phi_a \circ f \circ \phi_{-a}$.

36. The result of Problem 35 holds for any region that is conformally equivalent to U. [A conformal equivalence is a bijective biholomorphic map].

37. According to Riemann Mapping Theorem, any simply connected region other than \mathbb{C} is conformally equivalent to U. Hence, above problem applies to any such region. Is the result valid for \mathbb{C} ?

38. Prove that only entire functions that are one-to-one are of the type f(z) = az + b.

[Let $g(z) = f(\frac{1}{z}), z \in \mathbb{C} \setminus \{0\}$. If g has an essential singularity at 0 then $g(\{z : |z| > 1\})$ is a non-empty open set and hence it must intersect the dense set $g(U \setminus \{0\})$. But this contradicts the fact f (and hence g) is 0ne-to-one. If

g has a removable singularity at 0 then f would be a constant and it cannot be injective. Thus g has a pole at 0 and we can write $g(z) = \frac{h(z)}{z^N}$ in $\mathbb{C}\setminus\{0\}$ where h is entire and N is a positive integer. Now $f(z) = z^N h(\frac{1}{z}), z \in \mathbb{C}\setminus\{0\}$. This yields $|f(z)| \leq M |z^n|$ for |z| sufficiently large and we conclude that f must be a polynomial by Problem 24) above. Since f is one-to-one we see that its derivative is a polynomial with no zeros, hence a constant]

39. Prove that $\{z : 0 < |z| < 1\}$ and $\{z : r < |z| < R\}$ are not conformally equivalent if r > 0.

If ϕ is a holomorphic equivalence then $\frac{1}{\phi}$ extends to a holomorphic map g on U and there is a holomorphic map h on U such that $e^h = g$. Use this to show that there is a holomorphic logarithm on $\{z : r < |z| < R\}$ and get a contradiction by comparing with the principal branch of log.

40. Let $0 < r_1 < R_1$ and $0 < r_2 < R_2$. Prove that $\{z : r_1 < |z| < R_1\}$ and $\{z : r_2 < |z| < R_2\}$ are conformally equivalent $\Leftrightarrow \frac{R_1}{r_1} = \frac{R_2}{r_2}$ [This is standard text book material. Note that all simply connected regions

[This is standard text book material. Note that all simply connected regions other than \mathbb{C} are conformally equivalent to each other, but the result is far from being true for doubly connected regions (like annuli)]

41. Show that if a holomorphic map f maps U into itself it need not have a fixed point in U. Even if it extends to a continuous map of the closure of U onto itself the same conclusion holds.

[Look at ϕ_a of Problem 20]

42. If f is holomorphic on U, continuous on the closure of U and |f(z)| < 1 on T prove that f has at least one fixed point in U. Can it have more than one fixed point?

By Rouche's Theorem it has exactly one fixed point.

43. If f is holomorphic: $U \to U$ and f(0) = 0 and if $\{f_n\}$ is the sequence of iterates of f (*i.e.* $f_1 = f, f_{n+1} = f \circ f_n, n \ge 1$) prove that the sequence $\{f_n\}$ converges uniformly on compact subsets of U to 0 unless f is a rotation.

If f is not a rotation then |f'(0)| < 1. Consider $\sup\{\left|\frac{f(z)}{z}\right| : |z| \le r\}$ where $r = \sup\{|z| : z \in K\}$, K being a given compact subset of U.

44. Let f be a homeomorphism of $\mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\}$ (with the metric induced by the stereographic projection). Assume that f is differntiable at all points of $\mathbb{C} \cup \{\infty\}$ except $f^{-1}\{\infty\}$. Prove that f is a Mobius Transformation.

This is clear if $f^{-1}\{\infty\} = \infty$. Let $f(a) = \infty$ and $f(\infty) = b$. Let $T(z) = \frac{bz+c}{z-a}$ where $c \neq ab$. Consider $f \circ T^{-1}$. Show that this map is entire. Since it is one-to-one it must be a polynomial of degree 1.

45. Prove that the only conformal equivalences : $U \setminus \{0\} \xrightarrow{onto} U \setminus \{0\}$ are rotations.

Prove that such a map extends to a conformal equivalence of U. Hence it must be $\phi_a e^{i\theta}$ for some a and θ .

46. Prove that $\pi \cot \pi z = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^2 - n^2}$ if z is not an integer. Integrate $\frac{\pi \cot \pi \zeta}{\zeta^2 - z^2}$ over the rectangle with vertices $\pm (n + 1/2) \pm ni$.

47. Prove or disprove: $Log(z_1z_2) = Log(z_1) + Log(z_2)$

48. a) Discuss convergence of the following infinite products: $\prod_{n=1}^{\infty} \frac{1}{n^{p}} (p > 0), \prod_{n=1}^{\infty} (1 + \frac{i}{n}), \prod_{n=1}^{\infty} |1 + \frac{i}{n}|.$ b) Prove that $\prod_{n=2}^{\infty} (1 - \frac{1}{n^{2}}) = \frac{1}{2} \text{ and } \prod_{n=0}^{\infty} (1 + z^{2^{n}}) = \frac{1}{1-z} \text{ if } |z| < 1. \text{ [See Problem 51) for } \prod_{n=1}^{\infty} (1 + \frac{i}{n})\text{]}.$ c) $\prod_{n=1}^{\infty} (1 - \frac{1}{p_{n}}) \text{ where } p_{1}, p_{2}, \dots \text{ is the sequence of primes.}$ $[\prod_{n=1}^{N} \frac{1}{(1 - \frac{1}{p_{n}})} = \sum_{j \in A_{N}} \frac{1}{j} \text{ where } A_{N} \text{ is the set of all positive integers whose prime factorizations do not involve primes greater than <math>P_{N}$. Hence the given product diverges. Also, we can conclude that $\sum_{n=1}^{\infty} \frac{1}{p_{N}} = \infty$]. 49. Let $\operatorname{Re}(a_{n}) > 0$ for all n. Prove that $\prod_{n=1}^{\infty} [1 + |1 - a_{n}|]$ converges if and only if $\sum_{n=1}^{\infty} |Log(a_{n})| < \infty$.

50. Prove or disprove the following:

$$\sum_{n=1}^{\infty} |Log(a_n)| < \infty \Leftrightarrow \sum_{n=1}^{\infty} |1 - a_n| < \infty \text{ and } \sum_{n=1}^{\infty} Log(a_n) \text{ is convergent } \Leftrightarrow \sum_{n=1}^{\infty} [1 - a_n] \text{ is convergent.}$$

First part is true: Log(1+z) behaves like z near 0. If $a_n = 1 + \frac{(-1)^n}{\sqrt{n}}i$ then $\sum_{n=1}^{\infty} [1-a_n]$ is convergent but $\sum_{n=1}^{\infty} Log(a_n)$ is not convegent. If $a_n = e^{\frac{(-1)^n}{\sqrt{n}}i}$ then

$$\sum_{n=1}^{\infty} [1-a_n] \text{ is not convergent but } \sum_{n=1}^{\infty} Log(a_n) \text{ is convergent.}$$

51. Prove that $\prod_{n=1}^{\infty} z_n$ converges $\Leftrightarrow \sum Log(z_n)$ converges. Use this to prove

that $\prod_{n=1}^{\infty} (1+i/n)$ is not convergent. For \Rightarrow : w.l.o.g take $z_n = e^{i\theta_n}, -\pi < \theta_n \le \pi$ and assume $e^{i(\theta_1 + \dots + \theta_n)} \to 1$. If $\sum_{k=1}^{N} \theta_n$ is close to $2k_N\pi$ then θ_N is close to $2(k_N - k_{N-1})\pi$ and lies in $(-\pi, \pi]$ so $k_N = k_{N-1}!$

52. Prove that
$$\sin \pi z = \pi z \prod_{n=1}^{\infty} (1 - \frac{z^2}{n^2})$$

 $\sin \pi z = e^{g(z)} z \prod_{n=1} (1 - \frac{z}{n}) e^{z/n}$ for some entire function g. Use Problem 46 find a

to find g.

53. Let
$$B(z) = \prod_{n=1}^{\infty} \frac{|a_n|}{a_n} \frac{a_n - z}{1 - \bar{a}_n z}$$
. Prove that if $0 < |a_n| < 1$ and $\sum_{n=1}^{\infty} [1 - |a_n|] < 1$

 ∞ then the product conveges uniformly on comapct subsets of U and that B(z) is a holomorphic function on this disk with zeros precisely at the points $a_n, n = 1, 2, \ldots$ Prove that $\{a_n\}$ can be chosen so that every point of T is a limit point; prove that T is a natural boundary of B in this case (in the sense B cannot be extended to a holomorphic function on any larger open set.

[Standard text book stuff]

54. Say that a function $f : \mathbb{R} \to \mathbb{R}$ is analytic if for each $a \in \mathbb{R}$ there exists $\delta_a > 0$ such that on $(a - \delta_a, a + \delta_a)$, f has a power series expansion. Show that the zeros of an analytic function on \mathbb{R} have no limit points.

The power series expansion in $(a - \delta_a, a + \delta_a)$ yields a holomorphic function in $B(a, \delta_a)$ whose restriction to $(a - \delta_a, a + \delta_a)$ is f. Fix R and use compactness of [-R, R] to show that there is an open rectangle in \mathbb{C} containing [-R, R] and a holomorphic function on that rectangle whose restriction to [-R, R] is f. Thus, f has at most finitely many zeros in [-R, R].

55. If $f : \mathbb{C} \to \mathbb{C}$ has power series expansion around each point then it has a single power series expansion valid on all of \mathbb{C} . Is it true that if $f : \mathbb{R} \to \mathbb{R}$ has power series expansion around each point then it has a single power series expansion valid on all of \mathbb{R} ?

56. Does there exist an entire function f such that $|f(z)| = |z|^2 e^{\operatorname{Im}(z)}$ for all z? If so, find all such functions. Do the same for $|f(z)| = |z| e^{\operatorname{Im}(z) \operatorname{Re}(z)}$.

57. Does there exist a holomorphic function f on U such that $\{f(\frac{1}{n})\} = \{\frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \ldots\}$, i.e. $f(\frac{1}{n}) = \frac{1}{n}$ if n is even and $f(\frac{1}{n}) = \frac{1}{n+1}$ if n is odd?

58. If the radius of convegence of $\sum_{n=0}^{\infty} a_{n,k}(z-a)^n$ exceeds R for each k and

 $\sum_{n=0}^{\infty} a_{n,k} (z-a)^n \to 0 \text{ uniformly on } \{z : |z-z_0| = r\} \text{ then it converges uniformly on } \{z : |z-z_0| \le r\} \text{ provided } R > r + |z_0 - a|.$

59. Let f be continuous and bounded on $\{z : |z| \leq 1\} \setminus F$ where F is a finite subset of T. If f is holomorphic on U and $|f(z)| \leq M$ on $\partial U \setminus F$ show that $|f(z)| \le M$ on U.

Consider
$$\prod_{j=1}^{n} a_j^2 e^{\epsilon Log(1-\frac{z}{a_j})} f(z)$$
 where $F = \{a_1, a_2, ..., a_k\}.$

60. Let $\Omega = \{z : \operatorname{Re}(z) > 0\}$. If f is continuous on the closure of Ω , holomorphic on Ω and if $|f(z)| \leq 1$ on $\partial \Omega$ does it follow that the same inequality holds on Ω ?.

61. Let $\Omega = \{z : a < \text{Im}(z) < b\}, f \in H(\Omega) \text{ and } f$ be bounded and continuous on the closure of Ω . Prove that if $|f(z)| \leq 1$ on $\partial \Omega$ then the same inequality holds on Ω .

Compose the maps $z \to \pi \frac{z-a}{b-a}, z \to e^z$ and $z \to \frac{z-i}{z+i}$. Apply the result of problem 59. [See also problem #85 below]. Second proof: consider $\frac{1}{i+\epsilon(z-ia)}f(z)$ and apply Maximum Modulus Theorem for the rectangle $\{z : a < \operatorname{Im}(z) < b, \} - R < \operatorname{Re} z < R\}$ with R sufficiently large.

62. Prove that $f(z) = \frac{z}{(1-z)^2}$ is one-to-one on U and find the image of U.

$$f(z) = \frac{1}{(1-z)^2} - \frac{1}{1-z}$$
. First find $\{\frac{1}{1-z} : z \in U\}$. Answer: $\mathbb{C} \setminus (-\infty, -\frac{1}{4}]$.

63. If p and q are polynomials with $\deg(q) > \deg(p) + 1$ prove that the sum of the residues of $\frac{p}{q}$ at all its poles is 0. Integrate over a large circle.

64. Evaluate
$$\int_{\gamma} \frac{1}{(z-2)(2z+1)^2(3z-1)^3} dz$$
 and $\int_{\gamma} \frac{1}{(z-10)(z-\frac{1}{2})^{100}} dz$ where $\gamma(t) = e^{2\pi i t} (0 \le t \le 1)$
Use problem 63.

65. Find the number of zeros of $z^7 + 4z^4 + z^3 + 1$ in U and the annulus $\{1 < |z| < 2\}$.

Apply Rouche's Theorem to $z^7 + 4z^4$ and the given function.

66. Let $p(z) = z^n + c_{n-1}z^{n-1} + \ldots + c_1z + c_0$ and $R = \sqrt{1 + |c_0|^2 + |c_1|^2 + \ldots + |c_{n-1}|^2}$. Prove that all the zeros of p are in $\{z : |z| < R\}$.

Compare with $q(z) = z^n$ (Apply Cauchy-Schwartz).

67. Let $1 < a < \infty$, prove that $z + a - e^z$ has exactly one zero in the left half plane $\{z : \operatorname{Re}(z) < 0\}$.

Let R > 1 + a and let γ be the line segment from -Ri to Ri followed by the semi-circle $|z| = R, \frac{\pi}{2} \leq \arg(z) \leq \frac{3\pi}{2}$. Compare zeros of $z + a - e^z$ with the zeros of z + a inside γ .

68. If 0 < |a| < 1 show that the equation $(z - 1)^n e^z = a$ has exactly n solutions in $\operatorname{Re} z > 0$. Prove that all the roots are simple roots. If $|a| \leq \frac{1}{2^n}$ prove that all the roots are in $\{z : |z - 1| < \frac{1}{2}\}$.

 $|a| < |(z-1)^n e^z|$ if $|z-1| = |a|^{1/n}$ and $(z-1)^n e^z - a$ has no zeros outside the ball $\{z : |z-1| < |a|^{1/n}\}$ and inside the right half plane: $|(z-1)^n e^z| > |a| e^{\operatorname{Re} z} > |a|$; there are no multiple roots because the derivative has no zeros.

69. Prove that $f(z) = 1 + z^2 + z^{2^2} + ... + z^{2^n} + ...$ has U as its natural boundary in the sense it cannot be extended to a holomorphic function on any open which properly contains U.

If θ is a dyadic rational then f is unbounded on the ray $\{re^{i\theta} : 0 < r < 1\}$ since $\left|\sum_{n=m}^{\infty} (re^{2\pi i(k/2^m)})^{2^n}\right| - \left|\sum_{n=0}^{m-1} (re^{2\pi i(k/2^m)})^{2^n}\right| \ge \sum_{n=m}^{\infty} r^{2^n} - m.$

70. If p is a polynomial such that |p(z)| = p(|z|) for all z prove that $p(z) = cz^n$ for some $c \ge 0$ and some $n \in \mathbb{N} \cup \{0\}$.

p has no zeros in $\mathbb{C}\setminus\{0\}$.

0.

71. Prove that above result holds if p is replaced by an entire function. Compute $\frac{1}{2\pi} \int_{0}^{2\pi} |f(re^{i\theta})|^2 d\theta$ in terms of the power series expansion around

72. Prove the two dimensional Mean value Property:

the average of a holomorphic function over an open ball is the value at the centre.

73. Construct a conformal equivalence between the first quadrant and the upper half plane. Also, find a conformal equivalence between U and its intersection with the right half plane.

First part: z^2 ; second part: compose $\frac{1+iz}{i+z}$, z^2 and $\frac{i(i+z)}{i-z}$.

74. Find a conformal equivalence between the sector $\{z \neq 0 : \theta_1 < \arg(z) < \theta_2\}$ with $0 < \theta_1 < \theta_2 < \pi/2$ and U.

Use previous problem and the function z^{α} .

75. Prove that if γ is a closed path in a region Ω and $f \in H(\Omega)$ then $\operatorname{Re}(\int_{\gamma} f(\overline{z}) f'(z) dz) = 0.$ Compute $\frac{d}{dt} |f(\gamma(t))|^2$.

76. Prove or disprove: given any sequence $\{a_n\}$ of complex numbers there is a holomorphic function f in some neighbourhood of 0 such that $f^{(n)}(0) = a_n$ for all n.

77. If f is holomorphic on $\Omega \setminus \{a\}$ prove that $e^{f(z)}$ cannot have a pole at a. If f has an essential singularity at a then so does e^f . Suppose f has a pole of order k at a. If possible, let $|e^{f(z)}| \to \infty$ as $z \to a$. Let $g(z) = f(z)(z-a)^k$. Then Re $\frac{g(z)}{(z-a)^k} \to \infty$ as $z \to a$. Choose θ such that $\alpha = g(a)e^{-i\theta k} \in (-\infty, 0)$. If $z_n = a + \frac{1}{n}e^{i\theta}$ then Re $[n^k \frac{g(z_n)}{g(a)}] \to -\infty$, but Re $[\frac{g(z_n)}{g(a)}] \to 1$ a contradiction.

78. Prove that
$$\int_{0}^{2\pi} \log \left| 1 - e^{i\theta} \right| d\theta = 0.$$
$$\int_{0}^{2\pi} \log \left| 1 - re^{i\theta} \right| d\theta = 0 \text{ for } r \in (0,1) \text{ by Mean Value Theorem for harmonic}$$

functions. Split the integral into integrals over $\{\theta : r < \cos \theta\}$ and $\{\theta : r \ge \cos \theta\}$ and justify interchange of limit (as $r \to 1$) and the integrals. You may need the inequality $\cos \theta \le 1 - \frac{\theta^2}{2} + \frac{\theta^4}{24}$.

79. Use above result to prove Jensen's Formula:

If $f \in H(B(0,R)), f(0) \neq 0, 0 < r < R$ and $\alpha_1, \alpha_2, ..., \alpha_N$ are the zeros of f in $B(0,r)^-$ listed according to multiplicities then $|f(0)| \prod_{n=1}^N \frac{r}{|\alpha_n|} = 2\pi$

$$e^{\frac{1}{2\pi}\int_{0}^{2\pi}\log\left|f(re^{i\theta})\right|d\theta}$$

$$e^{\frac{1}{2\pi}\int_{0}^{2\pi}\log\left|f(re^{i\theta})\right|d\theta}$$

$$\text{Let } g(z) = f(z)\prod_{n=1}^{m}\frac{r^{2}-\bar{a}_{n}z}{r(\alpha_{n}-z)}\prod_{n=m+1}^{N}\frac{\alpha_{n}}{\alpha_{n}-z}. \text{ Prove that } \log|g(0)| = \frac{1}{2\pi}\int_{0}^{2\pi}\log\left|g(re^{i\theta})\right|d\theta.$$

80. Let Ω be an open set containing 0 and $f \in H(\Omega)$. Prove that $f(z) = f(\overline{z})$ for all z with |z| sufficiently small $\Leftrightarrow f^{(n)}(0) \in \mathbb{R}$ for all $n \ge 0$.

81. If $f \in H(U), f(0) = 0, f'(0) \neq 0$ prove that there is no $g \in H(U \setminus \{0\})$ such that $g^2 = f$.

82. If f is an entire function such that $|f(z)| \to \infty$ as $|z| \to \infty$ prove that $|f(z)| \ge c |z|$ for some positive number c for all z with |z| sufficiently large.

Consider $\frac{1}{f(\underline{1})}$

83. Let Ω be a region, $\{f_n\} \subset H(\Omega)$ and assume that $\{f_n\}$ is uniformly bounded on each compact subset of Ω . Let C be the set of points where $\{f_n\}$ is convergent. If this set has a limit point in Ω prove that $\{f_n\}$ converges uniformly on compact subsets of Ω to a holomorphic function.

[The family $\{f_n\}$ is normal. Let $\{f_{n_k}\}$ converge uniformly on compact subsets to f. Then $f \in H(\Omega)$. If g is another subsequential limit of $\{f_n\}$ then f = g at point where $\{f_n(z)\}$ converges. Thus f = g on a set with limit points in Ω

84. Prove or disprove: If Ω is a region, $\{f_n\} \subset H(\Omega), f_n^{(k)}(z) \to 0$ as $n \to \infty$ for each $z \in \Omega$ and each $k \in \{0, 1, 2, ...\}$ then $\{f_n\}$ converges (to 0) uniformly on compact subsets of Ω

This is a trivial consequence of problem #83 above if $\{f_n\}$ is uniformly bounded on each compact subset of Ω . What if this assumption is dropped?]

85. Give an example of a function f which is continuous on a closed strip, holomorphic in the interior, bounded on the boundary but not bounded on the strip! [See also problem #61 above].

 $\cos(\cos z)$

86. Let $u(z) = \text{Im}\left\{\left(\frac{1+z}{1-z}\right)^2\right\}$. Show that u is harmonic in U and $\lim_{r \to 1} u(re^{i\theta}) =$ 0 for all θ . Why doesn't this contradict the Maximum Modulus Principle for harmonic functions?

[Answer to second part: Limit is taken only along radii]

87. If $\phi(|z|)$ is harmonic in the region $\{z : \operatorname{Re}(z) > 0\}$ (ϕ being real valued and "smooth") prove that $\phi(t) \equiv a \log t + b$ for some a and b.

88. Let $f: \overline{U} \to \mathbb{C}$ be a continuous function which is harmonic in U. Prove that f is holomorphic in U if and only if $\int_{-}^{-} f(e^{it})e^{int}dt = 0$ for all positive

integers n.

f is the Poisson integral of its values on the boundary. Replace the Poisson kernel $P_r(t)$ by $\sum_{n=-\infty}^{\infty} r^{|n|} e^{int}$ and interchange the sum and the integral. Note that $\sum_{n=0}^{\theta} c_n \bar{z}^n$ is holomorphic if and only if it is a constant.

89. Let $\Omega = \{z : \operatorname{Re}(z) > 0\}$. If f is bounded and continuous on $\partial\Omega$ show that it is the restriction of a continuous function on $\overline{\Omega}$ which is harmonic in Ω .

Let
$$F(x+iy) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{xf(it)}{x^2+(y-t)^2} dt$$
. Prove that $\int_{-\Delta}^{\Delta} \frac{f(it)}{x+i(y-t)} dt$ is holomorphic

on Ω and it converges to F uniformly on compact subsets of Ω .

90. Prove that the square of a real harmonic function is not harmonic unless it is a constant. When is the product of two real harmonic functions harmonic? Find all holomorphic functions f such that $|f|^2$ is harmonic.

91. If $f: \Omega \to \mathbb{C}$ and f and f^2 are harmonic prove that either f is holomorphic or \overline{f} is holomorphic. Prove the converse.

92. If u is a non-constant harmonic in a region Ω prove that the zeros of the gradient of u in Ω have no limit point.

93. If u is harmonic in a region Ω prove that partial derivatives of u of all orders are harmonic.

94. Let $S = \{x \in \mathbb{R} : a \leq x \leq b\}$. Let Ω be a region containing S. Prove that if $f \in H(\Omega \setminus S) \cap C(\Omega)$ then $f \in H(\Omega)$.

Prove that integral of f over any triangle in Ω is 0.

95. Let $f, f_n(n = 1, 2, ...)$ be holomorphic functions on a region Ω . If $\operatorname{Re}(f_n) \xrightarrow{uc} \operatorname{Re}(f)$ show that $f_n \xrightarrow{uc} f$.

Enough to do this in small balls. Use the formula $\operatorname{Im}[f_n(z)] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \operatorname{Im}[\frac{e^{it}R+z}{e^{it}R-z}] \operatorname{Re} f_n(a+a)$

 $e^{it}R$) dt for $z \in B(a, R)$ if the closure of B(a, R) is contained in Ω . [There is a similar formula for Im[f(z)]].

96. Let $f(z) = \int_{-1}^{1} \frac{1}{t-z} dt, z \in \mathbb{C} \setminus [-1,1]$. Prove that f is holomorphic, its

imaginary part is bounded, but the real part is not. Prove that $\lim_{z\to\infty} zf(z)$

exists and find this limit. Find a bounded non-constant holomorphic function on $\mathbb{C} \setminus [-1, 1]$.

97. Give an example of a region Ω such that Ω^c is infinite and every bounded holomorphic function on Ω is a constant.

Take $\Omega = \mathbb{C} \setminus \{1, 2, ...\}$

Remark: it can be shown that there are non-constant bounded holomorphic functions on $\mathbb{C}\setminus[-1,1]$ but there are no such functions on $\mathbb{C}\setminus K$ if K is a compact subset of \mathbb{R} with Lebesgue measure 0. Thus the complement of the Cantor set gives a region whose complement is uncountable such that every bounded holomorphic function on it is a constant.

98. If Ω is any region contained in $\mathbb{C}\setminus(-\infty, 0]$ show that there exists a bounded non-constant holomorphic function on Ω .

More generally if there is a non-constant holomorphic function ϕ on Ω such that $\phi(\Omega)$ is contained in $\mathbb{C}\setminus(-\infty, 0]$ the same conclusion holds.

Look at $e^{iLog(\phi(z))}$.

99. If Ω is $\mathbb{C}\setminus(-\infty, 0]$ or a horizontal strip or a vertical strip or U^c show that there exist non-constant bounded holomorphic functions on Ω . $[e^{iLog(z)}, e^{iz}, e^z, \frac{1}{z}]$

100. Prove that there is no holomorphic function f on U^c such that $|f(z)| \to \infty$ as $|z| \to 1$.

First assume that f has no zeros and look at $\frac{1}{f(\frac{1}{z})}$. Use Laurent series expansion of $\frac{1}{f(\frac{1}{z})}$. For the general case use the existence of an entire function whose zeros match the zeros of f.

101. Prove that there is no continuous bijection from $\overline{\Omega}$, where $\Omega = \{z : \operatorname{Re}(z) > 0\}$, onto \overline{U} which maps Ω onto U and is holomorphic in Ω .

Write down all holomorphic bijections from Ω onto U and show that each of them extend to continuous functions on $\overline{\Omega}$ uniquely with range properly contained in \overline{U} [In fact the range misses exactly one point].

102. Let Ω be a bounded region, $f \in C(\overline{\Omega}) \cap H(\Omega)$ and assume that |f| is a non-zero constant on $\partial\Omega$. If f is not a constant on Ω show that f has at least one zero in Ω .

103. Let f be a non-constant entire function. Prove that the closure of $\{z : |f(z)| < c\}$ coincides with $\{z : |f(z)| \le c\}$ for all c > 0.

104. Prove that if $f \in H(\Omega), [a, b] \subset \Omega$ (where [a, b] is the line segment from a to b) then $|f(b) - f(a)| \leq |b - a| |f'(\xi)|$ for some $\xi \in [a, b]$. Also prove that $|f(b) - f(a) - (b - a)f'(a)| \le \frac{|b - a|^2}{2} |f''(\eta)|$ for some $\eta \in [a, b]$.

105. Evaluate
$$\int_{\gamma} \frac{z^2 + 1}{z(z^2 + 4)} dz$$
 where $\gamma(t) = re^{2\pi i t} (0 \le t \le 1)$ where $0 < r < 2$.

No computation is needed!

Compute the same integral for r > 2. Use partial fractions for second part.

106. Give an example of a bounded holomorphic function f on $\mathbb{C}\backslash\mathbb{R}$ which cannot be extended to any larger open set.

Take $f(z) = \begin{cases} \frac{1+iz}{1-iz} & \text{if } \operatorname{Im} z > 0\\ \frac{1-iz}{1+iz} & \text{if } \operatorname{Im} z < 0 \end{cases}$ and note that $\lim_{\operatorname{Im} z \to 0} f(z)$ exists only for $\operatorname{Re} z = 0.$

107. If $f \in H(0 < |z| < R)$ and $\int_{0 < x^2 + y^2 < R} |f(x + iy)| dxdy < \infty$ prove that f has either a removable singularity or a pole of order one at 0.

The coefficients $\{a_n\}$ in the Laurent series expansion satisfy $\int r^{n+1} dr |a_n| < 1$ ∞ .

108. In the previous problem if $\int_{0 < x^2 + y^2 < R} |f(x + iy))|^2 dx dy < \infty$ prove that

f has a removable singularity at 0

109. Show that there is no function $f \in H(U) \cap C(\overline{U})$ such that f(z) = $\frac{1}{z} \forall z \in \partial U.$

$$[zf(z) - 1 \in H(U) \cap C(U) \text{ and vanishes on } \partial U].$$

110. If
$$f \in C(U), f_n \in H(U)$$
 and $f_n \to f$ in $L^1(U)$ then $f \in H(U)$.

$$\left[\int_{0}^{1}\int_{-\pi}^{\pi} \left|f_n(re^{i\theta}) - f(re^{i\theta})\right| r dr d\theta \to 0 \text{ and hence } \int_{0}^{\pi} \left|f_{n_k}(re^{i\theta}) - f(re^{i\theta})\right| d\theta - \int_{0}^{1} \int_{0}^{\pi} \left|f_{n_k}(re^{i\theta}) - f(re^{i\theta})\right| d\theta = 0$$

0 for almost all r for some subsequence $\{n_k\}$ of $\{1, 2, ...\}$. We can find a sequence $r_j \uparrow 1$ such that $\int_{-\pi}^{\ddot{r}} \left| f_{n_k}(re^{i\theta}) - f(re^{i\theta}) \right| d\theta \to 0$ for $r = r_1, r_2, \dots$ By Cauchy's

Integral Formula we have $f_n(z) - f_m(z) = \frac{1}{2\pi i} \int \frac{f_n(\zeta) - f_m(\zeta)}{\zeta - z} d\zeta \forall z \in B(0, \alpha/2)$

where $\gamma(t) = \alpha e^{2\pi i t}, 0 \le t \le 1$. It follows easily from this that $\{f_{n_k}\}$ is uniformly

Cauchy on $B(0, \alpha)$. This proves (by Morera's Theorem) that $f \in H(B(0, \alpha))$ and $\alpha \in (0, 1)$ is arbitrary.

111. Any conformal equivalence of $\mathbb{C}\setminus\{0\}$ is of the form cz or of the form $\frac{c}{z}$ where c is a constant.

[This requites the Big Picard's Theorem. Consider the Laurent series expansion $f(z) = \sum_{n=-\infty}^{\infty} c_n z^n$. By Big Picard's Theorem and the fact that f is injective neither f(z) nor $f(\frac{1}{z})$ has an essential singularity at 0. This forces $\sum_{n=-\infty}^{\infty} c_n z^n$ to be a finite sum. Thus, f is a rational function. Since f is holo-

morphic on $\mathbb{C}\setminus\{0\}$, we can write $f(z) = \frac{p(z)}{z^j}$ for some $j \in \{0, 1, 2, ...\}$ and some polynomial p with $p(0) \neq 0$. It follows that its derivative has no zeros in $\mathbb{C}\setminus\{0), i.e.z^j p'(z) - jz^{j-1}p(z)$ is a polynomial with no zeros in $\mathbb{C}\setminus\{0\}$. This implies that $z^j p'(z) - jz^{j-1}p(z) = cz^n$ for some $n \in \{0, 1, 2, ...\}$ and $f'(z) = \frac{cz^n}{z^{2j}} = cz^{n-2j}$. Thus, $f(z) = cz^{k+1}/(k+1)$ where k = n - 2j. [Note that there is holomorphic function on $\mathbb{C}\setminus\{0\}$ whose derivative is $\frac{1}{z}$. Thus, $k \neq -1$]. The fact that f is injective shows that $k + 1 = \pm 1$].

112. If $x_1 > x_2 > x_3 > \dots, \{x_n\} \to 0$ and $f \in H(U)$ with $f(x_n) \in \mathbb{R} \forall n$ then $f^{(k)}(0) \in \mathbb{R} \forall k$.

[Clearly f(0) and f'(0) are real. Now, $f^{(k+1)}(0) = ((k+1)!)(\lim_{t \to 0} \frac{f(t) - [c_0 + c_1 t + c_2 t^2 + ... + c_k t^k]}{t^{k+1}})$ where $c_j = \frac{f^{(j)}(0)}{j!}$. Taking limit along the sequence $\{x_n\}$ we see that $f^{(k+1)}(0) \in$

 \mathbb{R} if $f^{(l)}(0) \in \mathbb{R}$ for $l \leq k$].

113. Let $\{f_n\} \subset H(D)$ where D is an open disc. Assume that $f_n(D) \subset D \setminus \{0\} \forall n$ and that $\lim_{n \to \infty} f_n(a) = 0$ where is the center of D. Then $\lim_{n \to \infty} f_n(z) = 0$ uniformly on compact subsets of D.

[$\{f_n\}$ is normal. If a subsequence converges uniformly on comapct subsets then either the limit has no zeros or it is identically zero].

114. Let $\{u_n\}$ be a sequence of (strictly) positive harmonic functions on an open set Ω such that $\sum u_n = \infty$ at one point. Then the series diverges at every point. Moreover, if it converges at one point it converges uniformly on compact subsets of Ω .

[Apply problem 113) above to $\{\prod_{n=1}^{N} e^{u_n + iv_n}\}$ where v_n is a harmonic conjugate of u_n . Of course, it suffices to prove the result in each closed disc contained in Ω , so existence of harmonic conjugate is guaranteed].

115. Find all limit points of the sequence $\{\frac{1}{n}\sum_{k=1}^{n}k^{ia}\}_{n=1,2,\dots}$ where *a* is a

non-zero real number.

 $\left[\sum_{k=1}^{n} \left(\frac{k}{n}\right)^{ia} \frac{1}{n} \to \int_{0} x^{ia} dx = \frac{1}{1+ia}.$ We claim that the set of limit points of $\{n^{ia}\}$ is precisely the unit circle $\{|z|=1\}$ and this would show that the desired

set is $\{z: |z| = \frac{1}{\sqrt{1+a^2}}\}$. Given $\alpha \in \mathbb{R}$ and $\epsilon > 0$ we need to show the existence of integers *n* and *m* such that $|\alpha - a\log(n) - 2m\pi| < \epsilon$. Equivalently, $\frac{\alpha - 2m\pi}{a} - \frac{\epsilon}{|a|} < \log(n) < \frac{\alpha - 2m\pi}{a} + \frac{\epsilon}{|a|}$. The interval $(e^{\frac{\alpha - 2m\pi}{a} - \frac{\epsilon}{|a|}}, e^{\frac{\alpha - 2m\pi}{a} + \frac{\epsilon}{|a|}})$ has length larger than 1 if $-\frac{m}{a}$ is sufficiently large and so it would contain an integer *n*. Also $e^{\frac{\alpha-2m\pi}{a}-\frac{\epsilon}{|a|}} > 1$ for such m and so n is positive].

116. Let f have an isolated singularity at a point a. Prove that e^{f} cannot have a pole at a.

[If f has a removable singularity the conclusion holds. Suppose f has an essential singularity at a. We claim that $\{e^{f(z)}: 0 < |z-a| < \delta\}$ is dense in \mathbb{C} for each δ . Of course, these implies that e^f does not have a pole at a. We know that $\{f(z): 0 < |z-a| < \delta\}$ is dense in \mathbb{C} for each δ . Let $c \in \mathbb{C} \setminus \{0\}$ and $\epsilon > 0$. Let $e^d = c$ and choose z such that $0 < |z - a| < \delta$ and $|f(z) - d| < \epsilon$. Then $|e^{f(z)} - e^d| < \epsilon [e^{2|d| + \epsilon}]$. This proves the claim. Finally, if f has a pole at a then there is a positive integer m such that $(z-a)^m f(z) = g(z)$ (say) is holomorphic in a neighbourhood of a and $g(a) \neq 0$. Thus, $e^{f(z)} = e^{\frac{g(z)}{(z-a)^m}} =$ $e^{\frac{p(z)}{(z-a)^m}}e^{h(z)}$ near a with h holomorphic near a, p being a polynomial of degree at most m. If $e^{\frac{p(z)}{(z-a)^m}}$ has a removable singularity or a pole then $e^{\frac{p(z)}{(z-a)^m}}(z-a)^k$ would be bounded near a for some integer $k \ge 0$. Put z = a + N where N is a positive integer and note that $e^{\frac{p(z)}{(z-a)^m}}(z-a)^k \to \infty$ as $N \to \infty$. Thus $e^{\frac{p(z)}{(z-a)^m}}$ must have an essential singularity at a so does $e^{\frac{p(z)}{(z-a)^m}}e^{h(z)}$].

117. Let f be holomorphic on U and assume that for each $r \in (0, 1)$, $f(re^{it})$ has a constant argument (i.e. $f(re^{it}) = |f(re^{it})| e^{ia_r}$ where the real number a_r does not depend on t. Show that f is a constant.

[The set $U \setminus \{z : f(z) \in (-\infty, 0]\}$ is open. On this set Log(f) has a constant imaginary part which implies it is a constant. Thus f is a constant on $U \setminus \{z : z \}$ $f(z) \in (-\infty, 0]$. If this open set is non-empty then f is a constant everywhere. If it is empty then Im(f) = 0 on U which implies of course that f is a constant]

118. [based on problem 117] Let $f \in H(\Omega)$ and suppose |f| is harmonic in Ω . Show that f is a constant.

[f and |f|] both have mean value property and this implies that the hypothesis of previous problem is satisfied].

119. Let $f \in H(U), f(U) \subset U, f(0) = 0$ and $f(\frac{1}{2}) = 0$. Show that $|f'(0)| \le \frac{1}{2}$.

Give an example to show that equality may hold. [Let $g = \frac{f}{h}$ where $h(z) = \frac{z-\frac{1}{2}}{1-\frac{1}{2}z} = \frac{2z-1}{2-z}$. Use Maximum Modulus principle to conclude that Schwartz Lemma applies to g. Now

 $|f'(0)| = |h(0)| |g'(0)| \le |h(0)| = \frac{1}{2}$. Equality holds when f = zh(z)

120. Let $f \in H(U), f(U) \subset U, f(0) = 0, f'(0) = 0, f''(0) = 0, \dots, f^{(k)}(0) = 0$ where k is a positive integer. Show that $|f(\frac{1}{2})| \leq \frac{1}{2^k}$ and find a necessary and sufficient condition that $\left|f(\frac{1}{2})\right| = \frac{1}{2^k}$.

[Let $g(z) = \frac{f(z)}{z^k}$. Then $g \in H(U)$ and Maximum Modulus Theorem implies $g(U) \subset U$ (unless g is a constant, in which case $|f(\frac{1}{2})| \leq \frac{1}{2^k}$ with equality holding when the constant has modulus 1). Hence $\left|f(\frac{1}{2})\right| = \left|(\frac{1}{2})^k g(\frac{1}{2})\right| < \frac{1}{2^k}$

unless $f(z) = cz^k$ with $|c| \leq 1$. Equality holds if and only if $f(z) = cz^k$ with |c| = 1].

121. If f and zf(z) are both harmonic then f is analytic. [C-R equations hold]

122. Prove that $f(re^{i\theta}) = \sum_{n=-\infty}^{\infty} r^{|n|} \sin(n\alpha) e^{in\theta}$ is harmonic in U.

 $\left[\sum_{n=1}^{\infty} r^n \sin(n\alpha) e^{in\theta} \text{ is holomorphic}\right]$

123. If $\Omega = \{z : \operatorname{Re}(z) > 0\}$ and f is a bounded holomorphic function on Ω with $f(n) = 0 \forall n \in \mathbb{N}$ show that $f(z) = 0 \forall z \in \Omega$.

[Let $g(z) = f(\frac{1-z}{1+z})$ on U. A well known result (which is an easy consequence of Jansen's Formula) says that the zeros a_1, a_2, \dots of a bounded holomorphic function g on U which is not identically 0 satisfies $\sum [1 - |a_n|] < \infty$. Since $\sum_{i=1}^{n} \frac{|z_{n+1}|^2}{|z_{n+1}|^2} = \infty, g \text{ must vanish identically}].$ 124. Show that there is a holomorphic function f on $\{z : \operatorname{Re}(z) > -1\}$ such that $f(z) = \frac{z^2}{2} - \frac{z^3}{(2)(3)} + \frac{z^4}{(3)(4)} - \dots$ for |z| < 1. [f(z) = (1+z)Log(1+z) - z]105. Consider the end of $z = z^2$

125. Consider the series $z + \frac{z^2}{2} + \frac{z^3}{3} + \dots$ on U and $i\pi - (z-2) + \frac{(z-2)^2}{2} - \frac{(z-2)^3}{3} + \dots$ on $\{z : |z-2| < 1\}$. (These two regions are disjoint). Show that there is a region Ω and a function $f \in H(\Omega)$ such that Ω contains both U and $\{z : |z-2| < 1\}$, $f(z) = z + \frac{z^2}{2} + \frac{z^3}{3} + \dots$ on U and $f(z) = i\pi - (z-2) + \frac{(z-2)^2}{2} - \frac{(z-2)^3}{3} + \dots$ on $\{z : |z-2| < 1\}$.

[Let $\Omega = U \cup \{z : |z-2| < 1\} \cup \{z : \operatorname{Im} z > 0\}, f(z) = Log(1-z)$ on $\Omega \cap \{z : \operatorname{Re} z < 1\}, f(z) = \log(1-z) \text{ on } \Omega \cap \{z : \operatorname{Re} z > 1\} \text{ where } \log(z) = \log(1-z) \text{ on } \Omega \cap \{z : \operatorname{Re} z > 1\}$ $\log |z| + i\theta$ if $z = |z| e^{i\theta}$ with $0 < \theta < 2\pi$, $f(z) = Log(1-z) = \log(1-z)$ on the ray $\{iy : y > 0\}$].

126. Let $f: U \to U$ be holomorphic with f(0) = 0 = f(a) where $a \in U \setminus \{0\}$. Show that $|f'(0)| \leq |a|$.

[Consider $g(z) = \frac{f(z)(1-\bar{a}z)}{z(z-a)}$] 127. Prove that a complex valued function u on a simply connected region Ω is harmonic if and only if it is of the form $f + \overline{g}$ for some $f, g \in H(\Omega)$.

[If part is obvious. For the converse let $u_1 = \operatorname{Re}(u), u_2 = \operatorname{Im}(u)$ and let $u_1 + iv_1, u_2 + iv_2$ be holomorphic. Then $u = f + \overline{g}$ where $f = \frac{u_1 + iv_1 + iu_2 - v_2}{2}, g = \frac{u_1 + iv_1 + iu_2 - v_2}{2}$ $\frac{u_1+iv_1-iu_2+v_2}{2}$]

128. Let $f(z) = z + \frac{1}{z} (z \in \mathbb{C} \setminus \{0\})$. Show that $f(\{z : 0 < |z| < 1\}) = f(\{z : z \in \mathbb{C} \setminus \{0\}\})$. $|z| > 1\} = \mathbb{C} \setminus [-2, 2]$ and that $f(\{z : |z| = 1\}) = [-2, 2]$. Show also that f is conformal equivalence of both the regions $\{z : 0 < |z| < 1\}$ and $\{z : |z| > 1\}$ with $\mathbb{C}\setminus[-2,2]$. Prove that $\{z: |z| > 1\}$ is not simply connected. [How many proofs can you think of?]

129. Show that there is no bounded holomorphic function f on the righthlaf plane which is 0 at the points 1, 2, 3, ... and 1 at the point $\sqrt{2}$. What is the answer if 'bounded' is omitted?

[Let $g(z) = f(\frac{1-z}{1+z})$ for $z \in U$ and note that the zeros $\{\alpha_n\}$ of a non-zero bounded function in $H(\Omega)$ must satisfy the condition $\sum [1 - |\alpha_n|] < \infty$ (as a consequence of Jensen's Theorem)].

130. Prove or disprove: if $\{a_n\}$ has no limit points and $\{c_n\} \subset \mathbb{C}$ then there is an entire function f with $f(a_n) = c_n \forall n$.

[This is true and it follows easily from Mittag Lefler's Theorem].

131. Let Ω be a bounded region, $f \in H(\Omega)$ and $\limsup_{z \to a} |f(z)| \leq M$ for every point a on the boundary of Ω . Show that $|f(z)| \leq M$ for every $z \in \Omega$.

[Let $M_1 = \sup\{|f(z)| : z \in \Omega\}$. (This may be ∞). Let $|f(z_n)| \to M_1$ with

 $\{z_n\} \subset \Omega$. Let $\{z_{n_k}\}$ be a subsequence converging to (say) z. Of course, $z \in \overline{\Omega}$. If $z \in \partial \Omega$ then $\limsup_{k \to \infty} |f(z_{n_k})| \leq M$ by hypothesis and hence $M_1 \leq M$. If $z \in \Omega$ then f is a constant by Maximum Modulus Theorem].

132. Let f be an entire function such that $\frac{f(z)}{z} \to 0$ as $|z| \to \infty$. Show that f is a constant.

133. Let f be an entire function which maps the real axis into itself and the imaginary axis into itself. Show that $f(-z) = -f(z) \forall z \in \mathbb{C}$.

[Let
$$f(z) = \sum_{n=0}^{\infty} a_n z^n, z \in \mathbb{C}$$
. Clearly, $a_n = \frac{f^{(n)}(0)}{n!} \in \mathbb{R} \forall n$. [In fact, $f^{(n)}(x) \in \mathbb{R}$]

 $\mathbb{R} \forall n \forall x \in \mathbb{R}$]. Now $\sum_{n=0}^{\infty} a_n (iy)^n$ is purely imaginary and hence $\sum_{n=0}^{\infty} a_{2n} (-1)^n y^{2n} = 0 \forall y$. Thus, $a_{2n} = 0 \forall n$]

134. Let f be a continuous function : $\mathbb{C} \to \mathbb{C}$ such that $f(z^2 + 2z - 6)$ is an entire function. Show that f is an entire function.

[Let $a \in \mathbb{C}$, $a \neq -7$ and $b^2 + 2b - 6 = a$. In a neighbourhood of b the function $p(z) = z^2 + 2z - 6$ is one-to-one (because $2b + 2 \neq 0$) and the image of this neighbourhood is an open set V.Further, p^{-1} is holomorphic on V. Now $f(z) = (f \circ p) \circ p^{-1}(z) \forall z \in V$ and hence f is differntiable at a.Finally, f has a removable singularity at a. Note that $z^2 + 2z - 6$ can be replaced by any ploynomial; in fact we replace it any entire function p such that $\{p(b) : p'(b) = 0\}$ is isolated].

135. If f and g are entire functions with no common zeros and if h is an entire function show that h = fF + gG for some entire functions F and G.

[Let $\phi = \frac{h}{g}$ on $\mathbb{C}\setminus g^{-1}\{0\}$. Let $a_1, a_2, ...$ be the zeros of f. Let $c_n = \phi(a_n), n \ge 1$. We can find an entire function G such that $G(a_n) = c_n, n \ge 1$ and such that $\phi - c_n$ and $G - c_n$ have zeros of the same order at a_n for each n. It follows that $F = \frac{h - Gg}{f}$ is entire].

136. Show that the series $\sum_{n=1}^{\infty} \frac{z^n}{n}$ converges if $|z| \le 1$ and $z \ne 1$.

[This is a standard result in Fourier series; we will show that $\sum_{n=1}^{\infty} \frac{\cos(nt)}{n}$ and

 $\sum_{n=1}^{\infty} \frac{\sin(nt)}{n} \text{ both converge if } t \neq 0.$ Let $-\pi \leq t \leq \pi, t \neq 0$. Let $a_n = \cos t + \cos(2t) + \dots + \cos(nt), n \geq 1, a_0 = 0$. Then $a_n = \operatorname{Re}[e^{it} + e^{2it} + \dots + e^{int}] = \operatorname{Re} \frac{e^{i(n+1)t} - e^{it}}{e^{it} - 1}$. Thus, $a_n = \frac{\operatorname{Re}[(e^{i(n+1)t} - e^{it})(e^{-it} - 1)]}{|e^{it} - 1|^2} = \frac{\cos(nt) - \cos((n+1)t) - 1 + \cos(t)}{|e^{it} - 1|^2}$ proving that $\{a_n\}$ is bounded. Now $\sum_{n=N_1}^{N_2} \frac{\cos(nt)}{n} = \sum_{n=N_1}^{N_2} \frac{a_n - a_{n-1}}{n}$. This gives $\sum_{n=N_1}^{N_2} \frac{\cos(nt)}{n} = -\frac{a_{N_1-1}}{N_1} + \sum_{j=N_1}^{N_2-1} a_j(\frac{1}{j} - \frac{1}{j+1}) + \frac{a_{N_2}}{N_2}$. This clearly implies convergence of $\sum_{n=1}^{\infty} \frac{\cos(nt)}{n}$. The proof of convegence of $\sum_{n=1}^{\infty} \frac{\sin(nt)}{n}$ uses the same argument with a_n replaced by $\sin(t) + \sin(2t) + \dots + \sin(nt)$].

137. Show that the convergence of $\sum_{n=1}^{\infty} \frac{\sin(nz)}{n}$ implies that $z \in \mathbb{R}$. $\left[\frac{\sin(nx)\cosh(ny)}{n} \to 0 \text{ and } \frac{\cos(nx)\sinh(ny)}{n} \to 0. \text{ If } y \neq 0 \text{ then } \frac{\cosh(ny)}{n} \text{ and } \left| \frac{\sinh(ny)}{n} \right| \to \infty \right].$

138. If $f \in C(\overline{U}) \cap H(U)$ and f is real valued on $T = \partial U$ then f is a constant.

[Maximum modulus principle to e^{if} and e^{-if}]

139. Let $\Omega = \{z : \text{Im}(z) > 0\}$ and $f \in H(\Omega) \cap C(\overline{\Omega})$. If $f(x) = x^4 - 2x^2$ for 0 < x < 1 find f(i).

[One solution is to use Schwartz Reflection Principle. We can extend f to a holomorphic function on $\Omega \cup \Omega_1$ where $\Omega_1 = \{z : 0 < \text{Re } z < 1\}$. It the follows that f and $z^4 - 2z^2$ coincide on a set with limit points and hence $f(z) = z^4 - 2z^2$ on Ω].

140. Let Ω be a region and m denote Lebesgue measure on Ω . If $\{f_n\} \subset H(\Omega) \cap L^2(\Omega)$ and if $\{f_n\}$ converges in $L^2(\Omega)$ to f show that $f \in H(\Omega)$.

[Let
$$B(a,2r) \subset \Omega$$
. Consider $\frac{1}{r_2-r_1} \int_{r_1 \leq |\zeta-a| \leq r_2} f_n(\zeta) \frac{\zeta-a}{|\zeta-a|(\zeta-z)} dm(\zeta)$ where

 $z \in B(a,r)$ and $0 < r_1 < r_2 < r$. We can write this as $\frac{1}{r_2 - r_1} \int_{r_1 - \pi}^{r_2} \int_{r_1 - \pi}^{r_2} f_n(a + r_1) da r_2$

 $\rho e^{it}) \frac{\rho e^{it}}{\rho(a+\rho e^{it}-z)} \rho d\rho dt. \text{ Now } \int_{-\pi}^{\pi} f_n(a+\rho e^{it}) \frac{\rho e^{it}}{(a+\rho e^{it}-z)} dt = (-i) \int_{\gamma} \frac{f_n(\zeta)}{\zeta-z} d\zeta \text{ where}$ $\gamma(t) = a+\rho e^{it}. \text{ By Cauchy's Integral Formula we now see that if } z \in B(a, r_1/2)$

then
$$\frac{1}{r_2 - r_1} \int_{r_1 \le |\zeta - a| \le r_2} f_n(\zeta) \frac{\zeta - a}{|\zeta - a|(\zeta - z)} dm(\zeta) = \frac{1}{r_2 - r_1} \int_{r_1}^{r_2} (-i) f_n(z) d\rho = (-i) f_n(z).$$

Let $h_z(\zeta) = \frac{i}{r_2 - r_1} \frac{\zeta - a}{|\zeta - a|(\zeta - z)|} I_{r_1 \le |\zeta - a| \le r_2}$. We have $f_n(z) = \int f_n(\zeta) h_z(\zeta) dm(\zeta)$. Since $h_z \in L^2(\Omega)$ we get $f_n(z) \to \int f(\zeta) h_z(\zeta) dm(\zeta)$ and hence $f(z) = \int f(\zeta) h_z(\zeta) dm(\zeta)$ a.e. [m]. It suffices therefore to show that $g(z) = \int f(\zeta) h_z(\zeta) dm(\zeta)$ defines a holomorphic function on $B(a, r_1/2)$. But $g(z) = \int \frac{1}{\zeta - z} d\mu(\zeta)$ where $\frac{d\mu}{dm}(\zeta) = f(\zeta) \frac{1}{r_2 - r_1} \frac{\zeta - a}{|\zeta - a|}$ and g has a power series expansion in $B(a, r_1/2)$ by a standard argument].

141. Let Ω be a region containing U and $f \in H(\Omega)$. If |f(z)| = 1 whenever |z| = 1 show that $U \subset f(\Omega)$.

[If f has no zeros then (using Maximum Modulus Theorem to f and $\frac{1}{f}$ we see that f is a constant. Thus $0 \in f(\Omega)$. Now we apply Rouche's Theorem; if $a \in U$ then |f(z) - (f(z) - a)| = |a| < 1 = |f(z)| whenever |z| = 1 and hence f and f - a have the same number of zeros in U. Since f has a zero, so does f - a].

142. Let Ω be a bounded region, $f, g : \Omega \to \mathbb{C}$ be continuous and holomorphic in Ω . If |f(z) - g(z)| < |f(z)| + |g(z)| on $\partial\Omega$ show that f and g have the same number of zeros in Ω .

[This is a well known generalization of Rouche's Theorem. See e.g., "An Introduction To Classical Complex Analysis" by Robert Burckel, Vol. 1, Theorem 8.18, p.265]

143. Let Ω be a bounded region $f: \Omega \to U$ be continuous and $f \in H(\Omega), f$ not a constant. If |f(z)| = 1 whenever $z \in \partial \Omega$ show that $U = f(\Omega)$.

[This is proved by the same argument as the one used in problem 141) above, with Rouche's Theorem replaced by problem 142)].

Problem 148) below says that any continuous function on \mathbb{R} can be approximated uniformly by an entire function [A result of Carleman]. The next 4 problems are required to solve that problem.

144. Given any continuous function $f : \mathbb{R} \to \mathbb{C}$ there is an entire function g such that g has no zeros and $g(x) > |f(x)| \quad \forall x \in \mathbb{R}$.

Consider a series of the type $a + \sum_{n=1}^{\infty} [\frac{z^2}{n+1}]^{k_n}$. This series converges uniffrmly on $\{z : |z| \leq N\}$ if $[\frac{N^2}{n+1}]^{k_n} \leq [\frac{1}{2}]^n$ for $n \geq 2N^2$. This is true if $k_n \geq n$. Thus $h(z) = a + \sum_{n=1}^{\infty} [\frac{z^2}{n+1}]^{k_n}$ defines an entire function provided $k_n \geq n \forall n$. Now, for xreal $h(x) > [\frac{x^2}{j+1}]^{k_n} \geq [\frac{j^2}{j+1}]^{k_n} \geq \max\{|f(y)| : j \leq |y| \leq j+1\}$ for $j \leq |x| \leq j+1$ provided k_n is sufficiently large and $a > \max\{|f(y)| : 0 \leq |y| \leq 1\}$. Take $g = e^h$]. 145. Let $f : \mathbb{R} \to \mathbb{C}$ be continuous. Then we can write f as $\sum_{n=-\infty}^{\infty} f_n(x-n)$ where each f_n is continuous and $f_n(x) = 0$ if $|x| \geq 1$. [Let $f_n(x) = \frac{g(x)f(x+n)}{G(x+n)}$ where $G(x) = \sum_{n=-\infty}^{\infty} g(x-n)$ and g(x) = 1 for

 $|x| \leq \frac{1}{2}, g(x) = 0$ for $|x| \geq 1$ and g is piece-wise linear. If $n - \frac{1}{2} \leq x \leq n + \frac{1}{2}$ then $G(x) \ge g(x-n) = 1$].

146. Let $f : \mathbb{R} \to \mathbb{C}$ be continuous and f(x) = 0 for $|x| \ge 1$. Let $S = \{z : z : z \in \mathbb{N}\}$ $|\operatorname{Re}(z)| > 3$ and $|\operatorname{Re}(z)| > 2 |\operatorname{Im}(z)|$. Given $\epsilon > 0$ we can find an entire function g such that $|f(x) - g(x)| < \epsilon \ \forall x \in \mathbb{R}$ and $|g(z)| < \epsilon \ \forall z \in S$.

[Let $f_n(z) = \frac{n}{\sqrt{2\pi}} \int e^{-n^2(z-t)^2} f(t) dt$. It is easily seen that f_n is entire for

each n. Also, $f_n \to f$ uniformly on $\left[-\frac{3}{2}, \frac{3}{2}\right]$ and $f_n \to 0$ uniformly for $\mathbb{R} \setminus \left[-\frac{3}{2}, \frac{3}{2}\right]$. [See problem 149 below]. Hence $f_n \to \tilde{f}$ uniformly on \mathbb{R} . If $z \in S$ and $|t| \leq 1$ then $\operatorname{Re}[n^2(z-t)^2] = n^2[(x-t)^2 - y^2]$

$$= n^{2} x^{2} \left[1 - \frac{2t}{x} + \frac{t^{2}}{x^{2}} - \frac{y^{2}}{x^{2}}\right] \ge n^{2} x^{2} \left[1 - \frac{2}{|x|} - \left|\frac{y}{x}\right|^{2}\right] \ge n^{2} x^{2} \left[1 - \frac{2}{3} - (\frac{1}{2})^{2}\right] > \frac{3n^{2}}{4}$$

ence $|f_{n}(z)| \le \frac{n}{\sqrt{2\pi}} \int e^{-\frac{3n^{2}}{4}} |f(t)| dt \le \frac{4}{2\pi\sqrt{2\pi}} \int |f(t)| dt$

He $\int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} |J(t)| dt = \frac{1}{3n\sqrt{2\pi}} \int_{-1}^{1} |J(t)| dt$ 147. Let $f : \mathbb{R} \to \mathbb{C}$ be continuous. Then there is an entire function g such that $|f(x) - g(x)| < 1 \quad \forall x \in \mathbb{R}.$

[Write f as $\sum_{n=-\infty}^{\infty} f_n(x-n)$ where each f_n is continuous and $f_n(x) = 0$ if $|x| \ge 0$

1.For each n there is an entire function g_n such that $|f_n(x) - g_n(x)| < 2^{-2-|n|}$ $\forall x \in \mathbb{R}$ and $|g_n(z)| < 2^{-|n|} \ \forall z \in S$. If $|z| \leq N$ and |n| > 3N + 3 then $z - n \in S$ and hence $|g_n(z-n)| < 2^{-|n|}$. This implies that $\sum_{n=1}^{\infty} g_n(x-n)$ converges

uniformly on compact subsets of \mathbb{C} . Let $g(z) = \sum_{n=-\infty}^{\infty} g_n(x-n)$. g is entire.

Also
$$|f(x) - g(x)| \le \sum_{n = -\infty}^{\infty} |g_n(x - n) - f_n(x - n)| < \sum_{n = -\infty}^{\infty} 2^{-2 - |n|} = \frac{3}{4}.$$

148. Let $f: \mathbb{R} \to \mathbb{C}$ and $\eta: \mathbb{R} \to (0, \infty)$ be continuous. Then there is an entire function g such that $|f(x) - g(x)| < \eta(x) \ \forall x \in \mathbb{R}.$

[There is an entire function ϕ with no zeros such that $\phi(x) > \frac{1}{\eta(x)} \quad \forall x \in \mathbb{R}$. There is an entire function g such that $|f(x)\phi(x) - g(x)| < 1 \forall x \in \mathbb{R}$].

149. [Used in problem 146] above]

Let a < b and $f : [a, b] \to \mathbb{C}$ be continuous. Let $f_n(x) = \frac{n}{\sqrt{2\pi}} \int e^{-n^2(x-t)^2} f(t) dt$.

Then $f_n(x) \to f(x)$ uniformly on $[a + \delta, b - \delta]$ and $f_n(x) \to 0$ uniformly on $\mathbb{R} \setminus [a - \delta, b + \delta]$ for each $\delta > 0$.

[Let f be 0 on $\{b+1,\infty)$ and $(-\infty, a-1]$ and linear in [a-1, a] and [b, b+1].

Note that the second part is trivial. Write $f_n(x) - f(x)$ as $\frac{1}{\sqrt{2\pi}} \int_{\sqrt{n(a-x)}}^{\sqrt{n(b-x)}} e^{-u^2} [f(x+x) - f(x)] dx$

$$\begin{aligned} \frac{u}{n} &) - f(x)] du + \frac{1}{\sqrt{2\pi}} \int_{n(a-x)}^{\sqrt{n}(a-x)} e^{-u^2} [f(x+\frac{u}{n}) - f(x)] du \\ &+ \frac{1}{\sqrt{2\pi}} \int_{\sqrt{n}(b-x)}^{n(b-x)} e^{-u^2} [f(x+\frac{u}{n}) - f(x)] du + f(x) [\frac{1}{\sqrt{2\pi}} \int_{n(a-x)}^{n(b-x)} e^{-u^2} du - 1]. \left| f(x+\frac{u}{n}) - f(x) \right| \le \\ \end{aligned}$$

 $\delta/2 \text{ for } u \in \left[\sqrt{n}(b-x),\right] \text{ and } a \leq x \leq b \text{ if } n \geq \text{ some } n_{\delta}. \text{ We may also choose } n_{\delta} \text{ such that } \left| \frac{1}{\sqrt{2\pi}} \int_{0}^{\epsilon\sqrt{n}} e^{-u^{2}} du - 1 \right| < \frac{\delta}{8M} \text{ where } M \text{ is an upper bound for } |f|].$

such that $\left| \frac{1}{\sqrt{2\pi}} \int_{-\epsilon\sqrt{n}} e^{-u} du - 1 \right| < \frac{1}{8M}$ where *M* is an upper bound for |f|].

150. Show that the family of all analytic maps $f: U \to \{z : \operatorname{Re}(z) > 0\}$ with $|f(0)| \leq 1$ is normal.

 $|f(0)| \leq 1$ is normal. $[\text{Let } g(z) = \frac{f(z) - f(0)}{f(z) + f(0)}$. Then $g(U) \subset U$ and Schwartz Lemma gives $|g(z)| \leq |z|$ which gives $|f(z)| \leq \frac{1+|z|}{1-|z|}$]. 151. Let $f \in H(\Omega)$ and f be injective. If $\{z : |z-a| \leq r\} \subset \Omega$ show that

151. Let $f \in H(\Omega)$ and f be injective. If $\{z : |z-a| \le r\} \subset \Omega$ show that $f^{-1}(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{\zeta f'(\zeta)}{f(\zeta)-z} d\zeta \ \forall z \in f(B(a,r)), \text{ where } \gamma(t) = a + re^{2it}, 0 \le t \le 1.$

[Let $B(a, r+\epsilon) \subset \Omega$. Then $\frac{1}{2\pi i} \int_{\gamma} \frac{\zeta f'(\zeta)}{f(\zeta)-z} d\zeta$ equals the residue of the integrand at the sole pole $z_0 = f^{-1}(z)$].

152. If
$$f \in C(\overline{U}) \cap H(U)$$
 show that $f(z) = i \operatorname{Im}(f(0)) + \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} \operatorname{Re} f(e^{it}) dt$

 $\forall z\in U.$

 $[\text{Just observe that } \operatorname{Re} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} \operatorname{Re} f(e^{it}) dt = \operatorname{Re} \int_{-\pi}^{\pi} \{ \operatorname{Re} \frac{e^{it} + z}{e^{it} - z} \} f(e^{it}) dt].$

153. If Ω is simply connected show that for any real harmonic function u on Ω , a harmonic conjugate v of u is given by $v(z) = \text{Im}[u(a) + \int_{\gamma} (\frac{\partial u}{\partial x} - i\frac{\partial u}{\partial y})dz]$ where a is a fixed point of Ω and γ is any path from a to z in Ω .

[Since Ω is simply connected u indeed has a harmonic conjugate. Let $g \in H(\Omega)$ with $\operatorname{Re} g = u$. We may assume that g(a) = u(a). Now $g(z) = g(a) + \int g'(\zeta) d\zeta$ and $g'(z) = \frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y}$ (from definition of derivative and Cauchyrepresentation (representation)). 154. Let Ω be a region and $f, g \in H(\Omega)$. If |f| + |g| attains its maximum on Ω at some point a of Ω then f and g are both constants.

 $[|f(a)| + |g(a)| \ge |f(z)| + |g(z)| \forall z \in \Omega.$ Replace f by $e^{is}f$ and g by $e^{it}g$ where s and t are chosen such that $e^{is}f(a)$ and $e^{it}g(a)$ both belong to $[0,\infty)$. This reduces the proof to the case when f(a) and g(a) both belong to $[0,\infty)$. We now have $f(a)+g(a) \ge |f(z)|+|g(z)| \ge \operatorname{Re} f(z)+\operatorname{Re} g(z) = \operatorname{Re}(f(z)+g(z))).$ Maximum Modulus principle applied to f+g shows that f+g is a constant. Now $f(a) + g(a) \ge |f(z)| + |g(z)| \ge \operatorname{Re} f(z) + \operatorname{Re} g(z) = \operatorname{Re}(f(z) + g(z)) = \operatorname{Re}(f(a) + g(a))$ which implies that equality holds throughout. In particular $|f(z)| = \operatorname{Re}(f(z))$ and $|g(z)| = \operatorname{Re}(g(z)) \forall z].$

155. If f and g are entire functions with $f(n) = g(n) \ \forall n \in \mathbb{N}$ and if $\max\{|f(z)|, |g(z)| \leq e^{c|z|} \text{ for } |z| \text{ sufficiently large with } 0 < c < 1 \text{ show that } f(z) = g(z) \ \forall z \in \mathbb{C}.$ Show that this is false for c = 1.

 $[c = 1 : \text{take } f(z) = \sin(\pi z), g(z) = \sin(2\pi z).$ Now let 0 < c < 1. If the conclusion does not hold then $\exists a \in (0, 1)$ such that $f(a) \neq g(a)$. Let $\phi(z) = f(z + a) - g(z + a) \ \forall z \in \mathbb{C}$. Then $|\phi(z)| \leq c_1 e^{c|z|}$ for |z| sufficiently large. Consider the disk B(0, N - a) where N is an integer > 1. We apply Jensen's Formula to ϕ on this ball. If $\alpha_1, \alpha_2, ..., \alpha_k$ are the zeros of ϕ in the closure of

$$B(0, N-a) \text{ then } |\phi(0)| \prod_{j=1}^{k} \frac{N-a}{|\alpha_j|} = e^{\frac{1}{2\pi} \int \log \left|\phi(N-a)e^{it}\right| dt} \leq e^{\log c_1 + c|N-a|} \text{ for } N$$

sufficiently large. Since $\frac{N-a}{|\alpha_j|} \ge 1 \ \forall j$ we get $|\phi(0)| \prod_{j=1}^N \frac{N-a}{|j-a|} \le c_1 e^{c|N-a|}$. Also,

$$\begin{aligned} |j-a| &= j-a \leq j \text{ so } |\phi(0)| \prod_{j=1}^{|N-a|} \leq c_1 e^{c_1 N - a_1}. \text{ This gives} \\ |\phi(0)|^{1/N} \frac{N-a}{(N!)^{1/N}} \leq c_1^{1/N} e^{c_1 1 - a/N}. \text{ We conclude that } \limsup \log[\frac{N-a}{(N!)^{1/N}}] \leq c. \text{ However, } \frac{(N!)^{1/N}}{e^{-1N!+1/2N}} \to 1 \text{ as } N \to \infty \text{ (by Stirling's Formula) and we get} \\ \limsup \log[\frac{N-a}{e^{-1N!+1/2N}}] \leq c \text{ which says } 1 \leq c, \text{ a contradiction}]. \end{aligned}$$

156. Show that there is a function f in $C(U) \cap H(U)$ whose power series does not converge uniformly on \overline{U} .

[This is a well known result in the theory of Fourier series. In fact, the power series need not even converge at all points of ∂U . See Theorem 1.14, Chapter VIII Trigonometric Series by A. Zygmund].

157. If $\{f_n\} \subset H(\Omega)$ and $\lim_{n \to \infty} f_n(z) = f(z)$ exists $\forall z \in \Omega$ show that there is a dense open subset Ω_0 of Ω such that $f \in H(\Omega_0)$.

[Use Baire Category Theorem]

158. Let $L : H(\Omega) \to H(\Omega)$ be linear and multiplicative, not identically 0. Show that there is a point $c \in \Omega$ such that $L(f) = f(c) \forall f \in H(\Omega)$.

[Let $f \in H(\Omega)$ and c = L(z) (where z stands for the identity map). If $c \notin \Omega$ then we get the contradiction $1 = L(1) = L((z-c)\frac{1}{z-c}) = L((z-c))((L(\frac{1}{z-c})) = L(z-c))$

 $0((L(\frac{1}{z-c})))$. Thus $c \in \Omega$. Let $g(z) = \frac{f(z)-f(c)}{z-c}$ if $z \neq c$ and f'(c) if z = c. Apply L to the identity f(z) - f(c) = (z - c)g(z)].

159. Let Ω be a region and $f \in H(\Omega)$ with $f(z) \neq 0 \quad \forall z \in \Omega$. If f has a holomorphic square root does it follow that it has a holomorphic logarithm? What if it has a holomorphic k - th root for infinitely many positive integers k?

[$\Omega = U \setminus \{0\}, f(z) = z^2$ is a counter-example to the first part. Suppose now that $k_1 < k_2 < \dots$ and $f_j \in H(\Omega)$ with $[f_j(z)]^{k_j} = f(z) \ \forall z \in \Omega, \ \forall j \ge 1$. Then $\frac{f'}{f} = k_j \frac{f'_j}{f_j}$. If γ is any close path in Ω then $\int_{\gamma} \frac{f'_j}{f_j} = k_j \int_{\gamma} \frac{f'_j}{f_j}$. If $\gamma_j(t) = \gamma$

 $f_j(\gamma(t))$, then γ_j is a closed path in \mathbb{C} and $Ind_{\gamma_j}(0) = \frac{1}{2\pi i} \int_{\gamma} \frac{\gamma'_j}{\gamma_j} = \frac{1}{2\pi i} \int_{\gamma} \frac{f'_j}{f_j} = \frac{1}{\gamma_j} \int_{\gamma_j} \frac{f'_j}{f_j$

 $\frac{1}{2\pi i k_j} \int_{\gamma} \frac{f'}{f} \to 0 \text{ as } j \to \infty. \text{ This implies that } \{Ind_{\gamma_j}(0)\} \text{ vanishes eventually and}$

hence that $\frac{1}{2\pi i k_j} \int_{\gamma} \frac{f'}{f} = 0$ for j sufficiently large. We have proved that $\int_{\gamma} \frac{f'}{f} = 0$

for every close path γ in Ω . Hence there exists $h \in H(\Omega)$ such that $\frac{f'}{f} = h'$. Now $(e^{-h}f)' = 0, e^{-h}f$ is a (non-zero) constant and hence f has a holomorphic logarithm.

160. $\lim_{z \to a} \frac{f(z)}{g(z)} = \lim_{z \to a} \frac{f'(z)}{g'(z)}$ if f and g are analytic in some neighbourhood of a, f(a) = g(a) = 0 and $g'(a) \neq 0$.

161. If f and g are analytic in some neighbourhood of $a, |f(z)| \to \infty$ and $|g(z)| \to \infty$ as $z \to a$ then $\lim_{z\to a} \frac{f(z)}{g(z)} = \lim_{z\to a} \frac{f'(z)}{g'(z)}$ provided $\lim_{z\to a} \frac{f'(z)}{g'(z)}$ exists. 162. Let f be an entire function such that |f(z)| = 1 whenever |z| = 1.

162. Let f be an entire function such that |f(z)| = 1 whenever |z| = 1. Show that $f(z) \equiv cz^n$ for some non-negative integer n and some constant c with modulus 1.

[If f has no zeros in U we see that f is a constant. If $\alpha_1, \alpha_2, ..., \alpha_N$ are the zeros of f in $U \setminus \{0\}$ and if 0 is a zero of f of order m (m may be 0) let $B(z) = z^m \frac{z - \alpha_1}{1 - \overline{\alpha_1} z} \frac{z - \alpha_2}{1 - \overline{\alpha_2} z} ... \frac{z - \alpha_N}{1 - \overline{\alpha_N} z}$ and g(z) = f(z)/B(z). Then |f(z)| = 1whenever |z| = 1 and Maximum Modulus Theorem shows g is a constant. Thus $f(z) = cz^m \frac{z - \alpha_1}{1 - \overline{\alpha_1} z} \frac{z - \alpha_2}{1 - \overline{\alpha_2} z} ... \frac{z - \alpha_N}{1 - \overline{\alpha_N} z}$ in U. The two sides must coincide on $\mathbb{C} \setminus \{(\overline{\alpha_j})^{-1} : 1 \leq j \leq N\}$ and we get a contradiction to the fact f is bounded in a neighbourhood of $(\overline{\alpha_j})^{-1}$. This shows that there are no zeros of f other than 0].

164. Let Ω be a region (not necessarily bounded) which is not dense in \mathbb{C} , $f \in C(\overline{\Omega}) \cap H(\Omega), |f(z)| \leq M \quad \forall z \in \partial \Omega$. Suppose f is bounded on Ω . Then $|f(z)| \leq M \quad \forall z \in \Omega$.

[First note that the hypothesis that is bounded on Ω is necessary: $\sin(z)$ is bounded by 1 on the boundary of the upper-half plane but but bounded by 1 in the upper-half plane. Also, the conclusion obviously holds for bounded regions since |f| attains its maximum at some point of $\overline{\Omega}$ in this case.

Since Ω is not dense in \mathbb{C} there is an open ball disjoint from Ω . By translation we may assume that $B(0, \delta) \cap \Omega = \emptyset$. Fix $z_0 \in \Omega$. Let $\epsilon > 0$ and n be a positive integer such that $(|z_0|/\delta)^{1/n} < 1 + \epsilon$. Let $R > \max\{|z_0|, \delta(\frac{M_1}{M})^n\}$ where M_1 is a bound for f on Ω . Then $z_0 \in C$ for some component C of $\Omega \cap B(0, R)$. We now apply Maximum Modulus Principle to the function $\frac{f^n(z)}{z}$ on C. Since the $\partial C \subset \partial(\Omega \cap B(0, R)) \subset \partial\Omega \cup \partial B(0, R)$ we see that $\left|\frac{f^n(z)}{z}\right| \leq \max\{\frac{M_1^n}{R}, \frac{M^n}{\delta}\}$ on ∂C since $B(0, \delta) \cap \Omega = \emptyset$. Thus, by Maximum Modulus Principle we get $|f(z_0)| \leq |z_0|^{1/n} \max\{\frac{M_1}{R^{1/n}}, \frac{M}{\delta^{1/n}}\} = |z_0|^{1/n} \frac{M}{\delta^{1/n}}$ in view of the fact that R > $\delta(\frac{M_1}{M})^n$. Finally, since $(|z_0|/\delta)^{1/n} < 1 + \epsilon$ we get $|f(z_0)| \leq M(1 + \epsilon)$. Since $z_0 \in \Omega$ and $\epsilon > 0$ are arbitrary we are done.

165. In above problem the hypothesis that Ω is not dense can be deleted provided $\Omega \neq \mathbb{C}$.

[Note that the result is obviously false for $\Omega = \mathbb{C}$. Now $\partial \Omega \neq \emptyset$. Let $c \in \partial \Omega$ and consider a small ball $B(c, \rho)$ around c. We may suppose $|f(z)| \leq M + \epsilon$ on $\Omega \cap \partial(B(c, \rho))$. Let $\Omega_1 = \Omega \setminus [B(c, \rho)]^-$. The $|f(z)| \leq M + \epsilon$ on $\partial \Omega_1$ and we can apply above result to Ω_1].

166. If f is an entire function such that |f(z)| = 1 whenever |z| = 1 show that $f(z) = cz^n$ for some $n \ge 0$ and $c \in \mathbb{C}$ with |c| = 1.

[Let *n* be the order of zero 0f *f* at 0 and let $\alpha_1, \alpha_2, ..., \alpha_k$ be the remaining zeros of *f* (if any) in *U*. Let $g(z) = f(z)/\{z^n \prod_{j=1}^k \frac{z-\alpha_j}{1-\overline{\alpha_j}z}\}$. Then |g(z)| = 1

whenever |z| = 1 and g has no zero in U. Maximum Modulus Principle applied to g and $\frac{1}{g}$ shows that g is a constant. We now have an equation of the type $f(z) = cz^n \prod_{i=1}^k \frac{z-\alpha_i}{1-\bar{\alpha_i}z}$ on $\mathbb{C} \setminus \{(\bar{\alpha_j})^{-1} : 1 \leq j \leq k\}$ which contradicts the fact

that f is bounded near $(\overline{\alpha_j})^{-1}$. This says that $\alpha_1, \alpha_2, \ldots, \alpha_k$ 'don't exist' and $f(z) = cz^n$].

167. Let $f \in H(\Omega \setminus \{a, a_1, a_2, ...\})$ where Ω is a region, $a_n \to a, a'_n s$ are distinct points of Ω and $a \in \Omega$. If f has a pole at each a_n show that $f(B(a, \epsilon) \setminus \{a, a_1, a_2, ...\})$ is dense in \mathbb{C} for every $\epsilon > 0$.

[Note that a is not an *isolated* singularity of f and hence the usual theorems on classifiation of singularities do not apply directly. However, a standard argument applies: suppose $f(B(a,\epsilon) \setminus \{a, a_1, a_2, ...\})$ is not dense in \mathbb{C} for some $\epsilon > 0$. Let $B(w_0, \rho)$ be an open ball disjoint from $f(B(a, \epsilon) \setminus \{a, a_1, a_2, ...\})$. Let $g(z) = \frac{1}{f(z) - w_0}$ on $B(a, \epsilon) \setminus \{a, a_1, a_2, ...\}$. First note that $|g(z)| \leq \frac{1}{\rho}$ so g has a removable singularity at each of the points $a_1, a_2,$ After removing these singularities we see that $g \in H(B(a, \epsilon) \setminus \{a\})$ and we can then remove the singularity at a also!. This gives us g in $H(B(a, \epsilon))$ and $g(a_n) = 0$ for all n such that $a_n \in B(a, \epsilon)$ because f has a pole at a_n . But this contradicts the fact that zeros of g are isolated].

168. If f is a rational function such that |f(z)| = 1 whenever |z| = 1 show that $f(z) = cz^n \{\prod_{j=1}^k \frac{z-\alpha_j}{1-\overline{\alpha_j}z}\} / \{\prod_{j=1}^m \frac{z-b_j}{1-\overline{b_j}z}\}$ for some $n \in \mathbb{Z}$ and $a_1, a_2, ..., a_N, b_1, b_2, ..., b_m \in \mathbb{C} \setminus T, c \in \mathbb{C}$ with |c| = 1.

[Assume first that f does not vanish at 0 and that it does not have a pole at 0. Let and let $\alpha_1, \alpha_2, ..., \alpha_k$ be the zeros of f (if any) and $b_1, b_2, ..., b_m$ the poles of f in U. Let $g(z) = f(z) \prod_{j=1}^m \frac{z-b_j}{1-\bar{b_j}z} / \{\prod_{j=1}^k \frac{z-\alpha_j}{1-\bar{\alpha_j}z}\}$. Then |g(z)| = 1 whenever |z| = 1

and g has no zero in \overline{U} . Maximum Modulus Principle applied to g and $\frac{1}{g}$ shows that g is a constant. We now have an equation of the type $f(z) = c\{\prod_{j=1}^{k} \frac{z-\alpha_j}{1-\overline{\alpha_j}z}\}/\{\prod_{j=1}^{m} \frac{z-b_j}{1-\overline{b_j}z}\}$ on $\mathbb{C}\setminus\{(\overline{\alpha_j})^{-1}: 1 \le j \le k\} \cup \{(\overline{b_j})^{-1}: 1 \le j \le m\}$. Zero or pole of f

at 0 is easy to handle].

169. Let f and g be holomorphic on U with g one-to-one and f(0) = g(0) = 0, If $f(U) \subset g(U)$ show that $f(B(0,r)) \subset g(B(0,r))$ for any $r \in (0,1]$.

Let $\Omega = g(U)$. If g is a constant then so is f and there is nothing to prove. Otherwise, Ω is a region. $g^{-1}: \Omega \to U$ is hilomorphic and so is $g^{-1} \circ f: U \to U$. Further, $(g^{-1} \circ f)(0) = 0$. By Schwartz Lemma $|(g^{-1} \circ f)(z)| \leq |z| \forall z \in U$. If |z| < r then $f(z) \in f(U) \subset g(U)$ so we can write f(z) as $g(\zeta)$ for some $\zeta \in U$. Now $|\zeta| = |(g^{-1} \circ f)(z)| \leq |z| < r]$.

170. All injective holomorphic maps from U onto itself are of the type $c \frac{z-a}{1-\bar{a}z}$ with |a| < 1, |c| = 1. Find all m - to - 1 holomorphic maps of U onto itself for a given positive integer m.

They are all of the type $f(z) = c \prod_{j=1}^{m} \frac{z-a_j}{1-\bar{a_j}z}$ with $\{a_1, a_2, ..., a_m\} \subset U(a'_j s)$

not necessarily distinct) and |c| = 1. First note that if f is of this type and $w \in U$ then the equation f(z) = w is a polynomial equation of degree m. It has no root outside U because $|z| \ge 1$ implies $|z - a_j| \ge |1 - \bar{a_j}z|$. Hence f is indeed a m - to - 1 holomorphic map of U onto itself. Now let f be any m - to - 1 holomorphic map of U onto itself. We claim that $|f(z)| \to 1$ as $|z| \to \infty$. Once this claim is established we can apply Maximim Modulus principle to f/g and g/f where $g(z) = \prod_{j=1}^{m} \frac{z - a_j}{1 - \bar{a_j}z}$, $a'_j s$ being the zeros of f counted

according to multiplicities to complete the proof. Suppose the claim is false. Then there exists a sequence $\{z_n\}$ of distinct points in U and $\delta > 0$ such that $|z_n| \to 1$ and $|f(z_n)| \leq 1 - \delta \ \forall n$. We may assume that $f(z_n) \to w$ (say). Since $|w| \leq 1 - \delta$, we see that $w \in U$. Consider the equation f(z) = w. This equation has exactly m solutions by hypothesis. Let $c_1, c_2, ..., c_k$ be the distinct points in $f^{-1}\{w\}$ and let $m_1, m_2, ..., m_k$ be the multiplicities of zeros of f(z) - w at $c_1, c_2, ..., c_k$ respectively. By Theorem 10.30 of Rudin's Real And Complex Analysis there are neighbourhoods $V_1, V_2, ..., V_k$ of $c_1, c_2, ..., c_k$ respectively and one-to-one holomorphic functions $\phi_1, \phi_2, ..., \phi_k$ on these neighbourhoods and integers $n_j, 1 \leq j \leq k$ such that $f(z) = w + [\phi(z)]^{n_j}$ on V_j and such that ϕ maps V_j onto an open abll centered at 0. We may assume that $V_1, V_2, ..., V_k$ are disjoint. Also note that in the Theorem referred to above n_j is the order of zero of f(z) - w at c_j . In other words, $n_j = m_j \ \forall j$. We now get a contradiction by showing that if n is large enough then the equation $f(z) = f(z_n)$ has m solutions in V where $V = V_1 \cup V_2 \cup ... \cup V_k$. Since $z = z_n$ is another solution we get a

contradiction. Indeed, V is a compact subset of U so $z_n \notin V$ if n is large enough.

Let $R = \sup\{|z| : z \in V\}$ and choose n such that $|z_n| > R$, $f(z_n) \neq w$ and $f(z_n) \in f(V_j)$ for each j. [Zeros of f(z) - w are precisely $c_1, c_2, ..., c_k$ and z_n is not one of these points for large n!. Note that $w = f(c_j) \in f(V_j)$ and $f(z_n) \to w$ so $f(z_n) \in f(V_j)$ if n is large enough]. The equation $f(z) = f(z_n)$ has exactly m_j solutions in V_j for each j [see the remark after Theorem 10.30 in Rudin's book]. Thus the number of solutions of $f(z) = f(z_n)$ in V is $m_1 + m_2 + ... + m_k = m$ and the proof is complete.

171. Let Ω_1 and Ω_2 be bounded regions. Let $f: \Omega_1 \to \Omega_2$ be a holomorphic map such that there is no sequence $\{z_n\}$ in Ω_1 converging to a point in $\partial\Omega_1$ such that $\{f(z_n)\}$ converges to a point in Ω_2 . Then there is a positive integer m such that f is m - to - 1 on Ω_1 .

Proof: If $w \in \Omega_2$ then f - w can only have a finite number of zeros in Ω_1 : if it had distinct zeros $z_1, z_2, ...$ then some subsequence $\{z_{n_k}\}$ converges to some $z \in \overline{\Omega_1}$. If $z \in \partial \Omega_1$ then we have a contradiction to the hypothesis since $f(z_{n_k}) = w \ \forall k$. Thus $z \in \Omega_1$ which forces f - w to be a constant and this contradicts the hypothesis again. Let n(w) be the number of zeros of f - w on Ω_1 for each $w \in \Omega_2$. If we show that n is continuous on Ω_2 we can conclude that it is a constant and this completes the proof. Show that $\{w \in \Omega_2 : n(w) = k \text{ is open for each } k$.

172. The condition in Problem 169) above that there is no sequence $\{z_n\}$ in Ω_1 converging to a point in $\partial\Omega_1$ such that $\{f(z_n)\}$ converges to a point in Ω_2 is equivalent to the fact that $f^{-1}(K)$ is compact whenever K is a compact subset of Ω_2 .

Suppose $f^{-1}(K)$ is compact whenever K is a compact subset of Ω_2 . Let $\{z_n\}$ be a sequence in Ω_1 converging to a point z in $\partial\Omega_1$. If $f(z_n) \to w \in \Omega_2$ then $K = \{w, f(z_1, f(z_2), ...\}$ is a compact subset of Ω_2 and $f^{-1}(K)$ contains

the sequence $\{z_n\}$ with no convergent subsequence in Ω_1 . Conversely let the hypothesis of Problem 169 hold and let K be compact in Ω_2 . No subsequence of a sequence $\{z_n\}$ in $f^{-1}(K)$ can have a limit point on $\partial\Omega_1$ which means $f^{-1}(K)$ is a closed (hence compact) subset of Ω_1 .

173. Prove that the analogue of Problem 169) when $\Omega_1 = \Omega_2 = \mathbb{C}$ and $\partial \Omega_1$ is interpreted as (the boundary in \mathbb{C}_{∞} i.e.) $\{\infty\}$ holds. Give an example to show that Problem 169) fails for a general unbounded region Ω_1 .

First part follows from the fact if f is entire and $|f(z)| \to \infty$ as $|z| \to \infty$ then f is a polynomial. For the second part take $\Omega_1 = \Omega_2 = \{z : \text{Im}(z) > 0\}$ and $f(z) = \sin(z)$.

174. Let $f \in H(U), \theta_1 \in \mathbb{R}, \theta_2 \in \mathbb{R}$ and $\left|f(re^{i\theta_1})\right| = |f(0)| = \left|f(re^{i\theta_2})\right|$ for all $r \in (0, 1)$. Show that f is a constant if $\frac{\theta_1 - \theta_2}{2\pi}$ is irrational.

Let $g(z) = \frac{f(\delta e^{i\theta_2} z)}{|f(0)|}$. Note that of f(0) = 0 then there is nothing to prove. Choose $\delta \in (0, 1)$ so small that g has no zeros in U. Since U is simply connected we can write g as e^h for some $h \in H(U)$. Now $\left|g(\frac{r}{\delta}z)\right| = \left|\frac{f(re^{i\theta_2}z)}{|f(0)|}\right| = 1 \quad \forall z \in U$. Also, $\left|g(\frac{r}{\delta}e^{i(\theta_1-\theta_2)}z)\right| = 1 \quad \forall z \in U$. These two equations give $e^{\operatorname{Re}h([\frac{r}{\delta}z])} = 1$ and $e^{\operatorname{Re}h([\frac{r}{\delta}e^{i(\theta_1-\theta_2)}z])} = 1$. That is to say $\operatorname{Re}h([\frac{r}{\delta}z]) = 0 = \operatorname{Re}h([\frac{r}{\delta}e^{i(\theta_1-\theta_2)}z])$ $\forall r \in (0,1)$. Let $\sum_{n=0}^{\infty} a_n z^n$ be the power series expansion of h. From the first equation here we get $\operatorname{Re}(\sum_{n=0}^{\infty} a_n z^n) = 0$ whenever $z \in (0, \frac{\delta}{r})$. In other words

 $\operatorname{Im}(\sum_{n=0}^{\infty} \frac{a_n}{i} z^n) = 0 \text{ whenever } z \in (0, \frac{\delta}{r}). \text{ This implies that } \frac{a_n}{i} \in \mathbb{R} \, \forall n. \text{ The}$

second realtion above yields the fact that $\operatorname{Im}(\sum_{n=0}^{\infty} \frac{a_n}{i} e^{i(\theta_1 - \theta_2)n} z^n) = 0$ whenever $z \in (0, \frac{\delta}{2})$. This gives $\frac{a_n e^{i(\theta_1 - \theta_2)n}}{i} \in \mathbb{P}$ for single pot all the coefficients a_n are 0.

 $z \in (0, \frac{\delta}{r})$. This gives $\frac{a_n e^{i(\theta_1 - \theta_2)n}}{i} \in \mathbb{R} \ \forall n$. Since not all the coefficients a_n are 0 we see that $e^{i(\theta_1 - \theta_2)n} \in \mathbb{R}$ for some n. So $sin[(\theta_1 - \theta_2)n] = 0 \ \forall n$. This imples that $(\theta_1 - \theta_2)$ is a rational multiple of 2π .

175. Suppose $\theta_1 \in \mathbb{R}, \theta_2 \in \mathbb{R}$ and $f \in H(U), |f(re^{i\theta_1})| = |f(0)| = |f(re^{i\theta_2})|$ for all $r \in (0, 1)$ implies that f is a constant. Show that $\frac{\theta_1 - \theta_2}{2\pi}$ is irrational.

[If $\frac{\theta_1 - \theta_2}{2\pi}$ is a rational number $\frac{p}{q}$ $(p, q \in \mathbb{Z})$ let $f(z) = e^{i \sin([ze^{-i\theta_1}]^q)}$]

176. A second order differential equation: let Ω be a convex region and $g \in H(\Omega)$. Show that any holomorphic function f satisfying the differential equation f'' + f = g in Ω can be expressed as $h(z)\sin(z) + \phi(z)\cos(z)$ for suitable $h, \phi \in H(\Omega)$.

Let
$$\xi(z) = f(z) - h(z)\sin(z) - \phi(z)\cos(z)$$
 where $h(z) = c_1 + \int_{[a,z]} g(\zeta)\cos(\zeta)d\zeta$

and
$$\phi(z) = c_2 - \int_{[a,z]} g(\zeta) \sin(\zeta) d\zeta$$
 and c_1, c_2 are chosen such that $f(a) =$

 $h(a)\sin(a)+\phi(a)\cos(a), f'(a) = h(a)\cos(a)-\phi(a)\sin(a).$ [I fact, $c_1 = f(a)\sin(a)+f'(a)\cos(a), c_2 = f(a)\cos(a) - f'(a)\sin(a)$]. Straightforward computation show that $\xi'' + \xi = 0$ and $\xi(a) = 0, \xi'(a) = 0$. The coefficients in the power seires expansion of ξ around a are all zero and hence $\xi \equiv 0$.

177. Show that $U \setminus \{0\}$ is not conformally equivalent to $\{z : 1 < |z| < 2\}$.

If possible let $\phi: U \setminus \{0\} \to \{z: 1 < |z| < 2\}$ be a bijective (bi-) holomorphic map. Since ϕ is bounded it extends to a holomorphic function g on U and its range is contained in $\{z: 1 \leq |z| \leq 2\}$. Since g has no zeros the Maximum Modulus Principle applied to g and $\frac{1}{g}$ shows that $g(0) \in \{z: 1 < |z| < 2\}$. Let $c = \phi^{-1}(g(0))$. Then $0 = \lim_{n \to \infty} \frac{1}{n} = \lim_{n \to \infty} \phi^{-1}(\phi(\frac{1}{n})) = \phi^{-1}(g(0))$ because $\phi(\frac{1}{n}) =$ $g(\frac{1}{n}) \to g(0)$ and ϕ^{-1} is continuous on $\{z: 1 < |z| < 2\}$. This contradicts the fact that $\phi^{-1}(\{z: 1 < |z| < 2\}) \subset U \setminus \{0\}$.

178. Let f be continuous on $\{z : |z| \leq R\}$ and holomorphic on B(0, R). Let $M(r) = \sup\{|f(z)| : |z| = r\}$ and $\phi(r) = \sup\{\operatorname{Re} f(z) : |z| = r\}$ for $0 \leq r \leq R$. Show that $\phi(r) \leq \frac{R-r}{R+r} \operatorname{Re} f(0) + \frac{2r}{R+r} \phi(r)$ and $M(r) \leq \frac{R-r}{R+r} |f(0)| + \frac{2r}{R+r} \phi(r)$ for $0 \leq r \leq R$.

We may assume that $\phi(R) > \operatorname{Re} f(0)$ because $\phi(R) \ge \operatorname{Re} f(0)$ and equality holds only when f is a constant (in which case the desired inequalities hold with equality). Let $g(z) = f(0) - \{\phi(R) - \operatorname{Re} f(0)\}\frac{2z}{1-z}$. This is a conformal equivalence from U onto $\{z : \operatorname{Re}(z) < \phi(R)\}$. [Use the facts that $\frac{1+z}{1-z}$ is a conformal equivalence from U onto $\{\operatorname{Re}(z) > 0\}$ and $\frac{2z}{1-z} = \frac{1+z}{1-z} - 1$ is a conformal equivalence from U onto $\{\operatorname{Re}(z) > 0\}$ and $\frac{2z}{1-z} = 1$ is a conformal equivalence from U onto $\{\operatorname{Re}(z) > -1\}$]. Now $f(B(0,R)) \subset \{z : \operatorname{Re}(z) < \phi(R)\}$. Thus $f(B(0,R)) \subset g(U)$. Writing $f_R(z) = f(Rz)$ we get $f_R(U) \subset g(U)$. We now use Problem 167) above to conclude that $f_R(rU) \subset g(rU)$ for $0 \le r \le 1$. In other words, $|z| \le r \Rightarrow f(z) \in g(B(0, \frac{r}{R}), 0 \le r \le R$. Hence $M(r) \le$ $\sup\{|\zeta| : \zeta \in g(B(0, \frac{r}{R}))\} = \sup\{\left|f(0) - \{\phi(R) - \operatorname{Re} f(0)\}\frac{2z}{1-z}\right| : |z| \le \frac{r}{R}\} \le$ $|f(0)| + \{\phi(R) - \operatorname{Re} f(0)\}\frac{2r/R}{1-r/R}$ which gives $M(r) \le \phi(R)\frac{2r}{R-r} + |f(0)|\frac{R-r}{R+r}$. To prove the inequality $\phi(r) \le \frac{R-r}{R+r}\operatorname{Re} f(0) + \frac{2r}{R+r}\phi(r)$ we write $u(z) = \phi(R) - f(z)$. By Harnack's Inequality we have $\frac{R-|z|}{R+|z|}\operatorname{Re} u(0) \le \operatorname{Re} u(z)$ for $|z| \le R$. This completes the proof.

179. If f is an entire function such that $\operatorname{Re} f(z) \leq B |z|^n$ for $|z| \geq R$ then f is a polynomial of degree at most n.

We have $\phi(r) \leq Br^n$ for $r \geq R$ in the notations of Problem 176). By that problem we get $M(r) \leq \frac{2r-r}{2r+r} |f(0)| + \frac{2r}{2r+r} \phi(r) \leq \frac{1}{3} |f(0)| + \frac{2}{3} Br^n$ and $|f(z)| \leq \frac{1}{3} |f(0)| + \frac{2}{3} B |z|^n$ if $|z| \geq R$. This implies that f is a polynomial of degree at most n.

180. Let Ω be a region and A be a subset of Ω with no limit points in Ω . Show that $\Omega \setminus A$ is a region.

Since A has no limit points it is closed in Ω , so $\Omega \setminus A$ is open in \mathbb{C} . Now fix z_0 in $\Omega \setminus A$ and let $S = \{z \in \Omega : \exists \gamma : [0,1] \to \Omega \text{ with } \gamma(t) \in \Omega \setminus A \text{ for } z_0 \}$ $t < 1, \gamma(0) = z_0, \gamma(1) = z$ and γ is continuous. It is easy to see that S is closed in Ω . To show that it is open in Ω pick $z \in S \setminus \{z_0\}$ and choose a ball $B(z,\delta)$ such that $B(z,\delta)\setminus\{z\}\subset \Omega\setminus A$. Pick any $\zeta\in B(z,\delta)$. Let $\gamma:[0,1]\to\Omega$ be a map with $\gamma(t) \in \Omega \setminus A$ for $t < 1, \gamma(0) = z_0, \gamma(1) = z$ and γ continuous. If $z \notin A$ we can combine γ with the segment $[z, \zeta]$ to conclude that $\zeta \in S$. If $z \in A$ then there exists $t_0 \in [0,1)$ such that $\gamma(t_0) \in B(z,\delta) \setminus \{z\}$. [If this is not true then there would be a discontinuity of γ at $\inf\{t : \gamma(t) = z\}$. Combine γ restricted to $[0, t_0]$ with $[\gamma(t_0), \zeta]$ to see that $\zeta \in S$ if $z \notin [\gamma(t_0), \zeta]$. If $z \in [\gamma(t_0), \zeta]$ let $z_1 = z + \epsilon e^{i(\frac{\pi}{2} + \theta)}$ where θ is the argument of $\zeta - z$ and $0 < \epsilon < \delta$. Note that $z_1 \in B(z, \delta) \setminus \{z\}$ and that the segments $[\gamma(t_0), z_1], [z_1, \zeta]$ are both contained in the convex set $B(z, \delta)$, as well as in $B(z, \delta) \setminus \{z\} \subset (\Omega \setminus A)$. If z is on on eof these segments it is easy to see that the ratio of $\zeta - z$ to $z_1 - z$ is real. However, the definition of z_1 show that these two are orthogonal (i.e. Re[$(\zeta - z)(z_1 - z)^-$] = 0). We may now combine γ restricted to $[0, t_0]$ with the segments $[\gamma(t_0), z_1]$ and $[z_1, \zeta]$ to see that $\zeta \in S$. Finally we prove that z_0 is an interior point of S : any point of a ball $B(z_0, \delta)$ that is contained in $\Omega \setminus A$ can be joined by a continuous arc to z_0 by a single line segment.

181. Show that $\mathbb{C} \setminus (Q \times Q)$ is connected.

We prove a more general result:

Let $A \subset \mathbb{R}^n$ be countable. Then $\mathbb{R}^n \setminus A$ is path connected.

Let $x_0 \in A$. Consider the sets $\{x_0 + tx : t > 0\}$ where ||x|| = 1. These sets are disjoint and hence only countable many of them can intersect A. Similarly $\{y: \|x\| = r\}$ can intersect A for at most countably many positive numbers r. Removing these we get rays and circles disjoint from A and any two points of $\mathbb{R}^n \setminus A$ can be joined by a path consisting of two line segments and an arc of a circle.

182. Prove the formula
$$\int_{-\infty}^{\infty} e^{itx} e^{-x^2/2} dx = \sqrt{2\pi} e^{-t^2/2} (t \in \mathbb{R})$$
 in four different avs.

way

Contour integration: assume that t > 0 and integrate $e^{itx}e^{-x^2/2}$ over the rectangle with vertices -R, R, R+it, -R+it.

Power series method: justify $\int_{-\infty}^{\infty} \sum_{n=0}^{\infty} \frac{i^n t^n x^n}{n!} e^{-x^2/2} dx = \sum_{n=0}^{\infty} \frac{i^n t^n}{n!} \int_{-\infty}^{\infty} x^n e^{-x^2/2} dx$ and compute the integrals $\int_{-\infty}^{\infty} x^n e^{-x^2/2} dx$ for each *n* explicitly.

Using the fact that zeros are isolated: let $\phi(z) = \int_{-\infty}^{\infty} e^{izx} e^{-x^2/2} dx$, show that

 ϕ is entire and compute $\phi(it)$ for real t. This gives the desired identity with t changed to *it* and that is good enough!

Differential equation method: prove that $\phi'(t) = -t\phi(t)$. This and the fact that $\phi(0) = \sqrt{2\pi}$ give $\phi(t) = \sqrt{2\pi}e^{-t^2/2}$. $\begin{vmatrix} 1 & s \\ f & f \end{vmatrix}$

$$\left[\int_{0} \left(\int_{0} e^{iuz} du\right) ds = \frac{e^{iz} - 1 - iz}{i^2 z^2} \text{ and hence } \left|e^{iz} - 1 - iz\right| \le |z|^2 \left|\int_{0} \left(\int_{0} e^{iuz} du\right) ds\right| \le |z|^2 e^{|z|}/2.$$
 This inequality is useful in the last two methods].

183. Prove that $|e^z - 1 - z| \leq \frac{|z|^2}{2}e^{|z|} \quad \forall z \in \mathbb{C} \text{ and } |e^z - 1 - z| \leq \frac{|z|^2}{2} \text{ if } \operatorname{Re}(z) = 0.$ Also show that $|e^z - 1 - z - z^2/2! - \dots - z^n/n!| \leq \frac{|z|^{n+1}}{(n+1)!}e^{|z|} \quad \forall z \in \mathbb{C}.$

$$\int_{0}^{1} \left(\int_{0}^{s} e^{uz} du \right) ds = \int_{0}^{1} \frac{e^{sz} - 1}{z} ds = \frac{1}{z} \left(\frac{e^{z} - 1}{z} - 1 \right) = \frac{e^{z} - 1 - z}{z^{2}}. \text{ Hence } |e^{z} - 1 - z| \le |z|^{2} \left| \int_{0}^{1} \left(\int_{0}^{s} e^{uz} du \right) ds \right| \le |z|^{2} \int_{0}^{1} \left(\int_{0}^{s} e^{u|z|} du \right) ds \le |z|^{2} e^{|z|} \int_{0}^{1} \left(\int_{0}^{s} du \right) ds \text{ and this gives the first inequality. If Re(z) = 0 the } |e^{uz}| = 1 \text{ and we can replace } e^{|z|} \text{ by 1 in above inequalities. For the last part use induction and the fact that } \int_{0}^{1} [e^{tz} - 1 - tz - t^{2}z^{2}/2! - \dots - t^{n}z^{n}/n!] dt = \frac{1}{z} [e^{z} - 1 - z - z^{2}/2! - z^{3}/3! - \dots - z^{n+1}/(n+1)!].$$

Theorem that $\liminf_{|z|\to\infty} |f(z)| \in \{0,\infty\}.$

If $g(z) = f(\frac{1}{z})$ has an essential singularity at 0 then $\{g(z) : 0 < |z| < 1\}$ is dense in \mathbb{C} and this implies $\liminf_{|z|\to\infty} |f(z)| = 0$. If it has a pole or an essential singularity then Problem 24) above shows f is a polynomial.

185. Let Ω be open and $f \in H(\Omega)$ be one-to-one. Let γ be any closed path in Ω and $\Omega_1 = \{z \in \Omega \setminus \gamma^* : Ind_{\gamma}(z) \neq 0\}$. Show that $f^{-1}(w)Ind_{\gamma}(f^{-1}(w)) =$ $\frac{1}{2\pi i} \int \frac{zf'(z)}{f(z)-w} dz \ \forall w \in f(\Omega_1).$

This follows imeditely from Residue Theorem. The integrand has a simple pole at $f^{-1}(w)$ with residue $f^{-1}(w)$! Note that if

$$Ind_{\gamma}(a) = 0 \text{ or } 1 \text{ for any } a \in \mathbb{C} \setminus \gamma^* \text{ then } f^{-1}(w) = \frac{1}{2\pi i} \int_{\gamma} \frac{zf'(z)}{f(z) - w} dz \ \forall w \in \mathbb{C} \setminus \gamma^*$$

 $f(\Omega_1).$

186. Let $f \in H(U \setminus \{0\})$ and assume that f has an essential singularity at 0. Let $f_n(z) = f(\frac{z}{2^n}), n \ge 1, z \in U \setminus \{0\}$. Show that $\{f_n\}$ is not normal in $H(U \setminus \{0\})$.

We can find $\{c_n\}$ such that $|c_{n+1}| < |c_n|, |c_n| \to 0, |c_1| < \frac{1}{4}$ and $\lim_{n \to \infty} f(c_n) = 0$. Let $n_k \in \mathbb{N}$ with $n_k < -\frac{\log|c_k|}{\log 2} \le n_k + 1, k = 1, 2, \dots$ Clearly $n_k \le n_{k+1}$ and $n_k \to \infty$ as $k \to \infty$. Let $z_k = 2^{n_k}c_k$. Then $\frac{1}{4} \le |z_k| < \frac{1}{2}$. Note that $f_{n_k}(z_k) = f(2^{-n_k}z_k) = f(c_k) \to 0$. If possible, let $\{f_n\}$ be normal. Let $f_{n_{k_j}} \stackrel{ucc}{\to} h$. Let M be an upper bound for $\{f_{n_{k_j}}\}$ on $\{z : \frac{1}{4} \le |z_k| \le \frac{1}{2}\}$. If $\zeta \in B(0, \frac{1}{2^{n_{k_1}+1}}) \setminus \{0\}$ then there exists j such that $\frac{1}{2^{n_{k_j}+2}} \le |\zeta| < \frac{1}{2^{n_{k_j}+1}}$. Since $2^{n_{k_j}}\zeta \in \{z : \frac{1}{4} \le |z_k| \le \frac{1}{2}\}$ we get $\left|f_{n_{k_j}}(2^{n_{k_j}}\zeta))\right| \le M$ which means $|f(\zeta)| \le M$. Thus, f is bounded in a neighbourhood of 0 contradicting the hypothesis that f has an essential singularity at 0.

187. Let Ω be an open set in \mathbb{C} such that $\mathbb{C}_{\infty} \setminus \Omega$ is connected. Let γ be closed path in Ω . Show that $Ind_{\gamma}(a) = 0 \ \forall a \in \mathbb{C} \setminus \Omega$.

Remark: some books give a lengthy proof. Here is a simple proof: let $F(\infty) = 0$ and $F(z) = Ind_{\gamma}(a)$ for $a \in \mathbb{C} \setminus \gamma^*$. Then F is an integer valued continuous function on $\mathbb{C}_{\infty} \setminus \gamma^*$. Continuity at ∞ follows from the fact that $\left| \int_{\gamma} \frac{1}{|z| - M} dz \right| \leq \frac{1}{|a| - M} L(\gamma)$ where $L(\gamma)$ is the length of γ and $M = \sup\{|z| : z \in \gamma^*\}$. If $\mathbb{C}_{\infty} \setminus \Omega$ is connected then F is a constant on this set. Since it is 0 at ∞ it is 0 on $\mathbb{C}_{\infty} \setminus \Omega$ as well.

188. If f is an entire function which is not a transaltion show that $f \circ f$ has a fixed point.

Let $g(z) = \frac{f(f(z))-z}{f(z)-z}$. If $f \circ f$ has no fixed point then f also cannot have a fixed point ans g is an entire function with no zeros. Also $g(z) = 1 \Rightarrow f(f(z)) = f(z)$ which implies that f(z) is a fixed point of f and this is a contradiction. Hence, by Picard's Theorem, g is a constant different from both 0 and 1. Let f(f(z)) - z = c[f(z) - z]. From this we have to show that f is a translation. We have f'(f(z))f'(z) - 1 = c[f'(z) - 1] which can be written as f'(z)[f'(f(z)) - c] = 1 - c. (*) If f'(f(z)) = 0 we can replace z by f(z) in (*) to get c = 1, a contradiction. Hence, neither f'(z) nor f'(f(z)) can be 0 for any z. Thus, $f' \circ f$ is an entire function whose range misses 0 and c. Using Picard's Theorem again we conclude that $f' \circ f$ is a constant. By (*) f' is also a constant and hence f(z) = az + b for some constants a and b. But $(f \circ f)(z) = a^2z + ab + b$ has a fixed point unless $a^2 = 1$, i.e. unless a = 1.

189. Show that there is a sequence of polynomials $\{p_n\}$ such that $\lim_{n \to \infty} p_n(z) =$

0 if Im(z) = 01 if Im(z) > 0-1 if Im(z) > 0

Fix n Let $K = \{z : -n \le \operatorname{Re}(z) \le n, \frac{1}{n} \le \operatorname{Im} z \le n\} \cup \{z : -n \le \operatorname{Re}(z) \le n, -n \le \operatorname{Im} z \le -\frac{1}{n}\} \cup \{z : -n \le \operatorname{Re}(z) \le n, \operatorname{Im}(z) = 0\}$. This is a compact subset of the open set $\Omega = \{z : -n - 1 < \operatorname{Re}(z) < n + 1, \frac{1}{2n} < \operatorname{Im} z < n + 1\} \cup \{z : -n - 1 < \operatorname{Re}(z) < n + 1, -n - 1 < \operatorname{Im} z < -\frac{1}{2n}\} \cup \{z : -n - 1 < \operatorname{Re}(z) < n + 1, |\operatorname{Im}(z)| < \frac{1}{3n}\}.$

 $\begin{aligned} &\operatorname{Re}(z) < n+1, |\operatorname{Im}(z)| < \frac{1}{3n} \}. \\ &\operatorname{Let} f \text{ be } 1 \text{ on } \{z: -n-1 < \operatorname{Re}(z) < n+1, \frac{1}{2n} < \operatorname{Im} z < n+1 \}, -1 \text{ on } \\ &\{z: -n-1 < \operatorname{Re}(z) < n+1, -n-1 < \operatorname{Im} z < -\frac{1}{2n} \} \text{ and } 0 \text{ elsewhere. Since } \\ &\mathbb{C}_{\infty} \backslash K \text{ is connected and } f \text{ is holomorphic on } \Omega \text{ we can find a polynomial } p_n \\ &\operatorname{such that} |f(z) - p_n(z)| < \frac{1}{n} \text{ on } K. \end{aligned}$

190. Show that there is a sequence of polynomials $\{p_n\}$ such that $\lim_{n \to \infty} p_n(z) = 0 \quad \forall z \in \mathbb{C}$ but the convergence is not uniform on at least one compact set.

If $\{p_n\}$ is the sequence in Problem 189) then $\{p_n^2 - p_n^4\}$ is a sequence of polynomials converging to 0 pointwise. If this sequence converges uniformly on compact subsets of \mathbb{C} then it is uniformly bounded on each compact set. Since $|p_n^2 - p_n^4| \ge |p_n|^2 [|p_n|^2 - 1]$, the sequence $\{p_n\}$ is also bounded uniformly on compacts. It is therefore a normal sequence and there must be a subsequence that converges ucc to an entire function, a contradiction.

191. If A is bounded in \mathbb{C} then $\mathbb{C}_{\infty} \setminus A$ is connected if and only if $\mathbb{C} \setminus A$ is connected. If A is unbounded and $\mathbb{C} \setminus A$ is connected does it follow that $\mathbb{C}_{\infty} \setminus A$ is connected? If $\mathbb{C}_{\infty} \setminus A$ is connected does it follow that $\mathbb{C} \setminus A$ is connected?

Let $|z| \leq R$ for all $z \in A$. Let $V_R = \{z : |z| > R\}$. If $\mathbb{C} \setminus A$ is connected and $\mathbb{C}_{\infty} \setminus A = E \cup F$ with E and F disjoint open subsets of $\mathbb{C}_{\infty} \setminus A$ let $\infty \in E$.

Then $\mathbb{C}\setminus A = (E\setminus\{\infty\}) \cup F$ which implies that either $F = \emptyset$ or $E = \{\infty\}$. Hence $\{\infty\} = V \cap (\mathbb{C}_{\infty}\setminus A)$ for some open set V in \mathbb{C}_{∞} . But then all complex numbers z with |z| sufficiently large are in $V \cap (\mathbb{C}_{\infty}\setminus A) = \{\infty\}$ which is a contradiction. If $\mathbb{C}_{\infty}\setminus A$ is connected and $\mathbb{C}\setminus A = E \cup F$ with E and F disjoint open subsets of $\mathbb{C}\setminus A$ then $V_R = (V_R \cap E) \cup (V_R \cap F)$ and the connectedness of V_R shows that

either $V_R \cap E = \emptyset$ or $V_R \cap F = \emptyset$. In the first case $V_R \subset F$ which implies that $F \cup \{\infty\}$ is open in \mathbb{C}_{∞} . Since $\mathbb{C}_{\infty} \setminus A = E \cup (F \cup \{\infty\})$ we get $E = \emptyset$. Similarly if $V_R \cap F = \emptyset$ we get $F = \emptyset$.

For the counter-examples consider $\mathbb{C}\setminus\{0\}$ and $\{z : 0 < \operatorname{Re}(z) < 1\}$. To see that $\mathbb{C}_{\infty}\setminus A$ is connected in the second example consider the closures in \mathbb{C}_{∞} of $\{z : 1 \leq \operatorname{Re}(z)\}$ and $\{z : \operatorname{Re}(z) \leq 0\}$.

192. Let Ω be a bounded region, $a \in \Omega$ and $f : \Omega \to \Omega$ be a holomorphic map such that f(a) = a. Show that $|f'(a)| \leq 1$.

Let $\{z : |z-a| \leq r\} \subset \Omega$. Let $M = \sup\{|\zeta| : \zeta \in \Omega\}$. Let $g(z) = \frac{r}{M}f(z) + a$. Then $|g(z) - a| \leq r$ and Open Mapping Theorem implies that g maps B(a,r) into itself. Also $g(a) = (1 + \frac{r}{M})a$. Applying Schwartz Lemma to $h(z) \equiv \frac{g(a+rz)-a}{r}(z \in U)$ we get $|h'(0)| \leq 1 - |a|^2 / M^2$. This gives $|f'(a)| \leq \frac{M}{r}$. Thus |f'(a)| has a bound which depends only on a and Ω and not on f. Now we note that the iterates $f, f \circ f, f \circ f \circ f, \ldots$ satisfy the same hypothesis as f and hence $\sup|f'_n(a)| < \infty$ where f_n denotes the n - th iterate of f. But this means $\sup|f'(a)|^n < \infty$ which means $|f'(a)| \leq 1$.

193. Let $f \in H(U \setminus \{0\})$ and $|f(z)| \leq \log \frac{1}{|z|} \quad \forall z \in U \setminus \{0\}$. Show that f vanishes identically.

 $zf(z) \in H(U \setminus \{0\})$ and $|zf(z)| \leq -|z| \log(|z|) \to 0$ as $z \to 0$. Hence zf(z) has a removable singularity at 0 and the extended function on U vanishes at 0. This says that f has removable singularity at 0. By Maximum Moduls Principle applied to $\{z : |z| \leq 1 - \delta\}$ we get $|f(z)| \leq \log \frac{1}{1-\delta}$ for $|z| \leq 1 - \delta$. Let $\delta \to 0$.

194. Let f be an entire function with $|x||f(x+iy)| \leq 1 \ \forall x, y \in \mathbb{R}$ then $f(z) = 0 \ \forall z \in \mathbb{C}$.

If $x^2 + y^2 = R^2$ and $y \ge 0$ then $R - y = \frac{x^2}{R+y} \le \frac{x^2}{R} \le |x|$ and hence $|x + i(y - R)| |x + i(y + R)| |f(z)| \le 4R$. Changing y to -y we see that the same inequality holds even if y < 0. By Maximum Modulus Principle $|z + Ri| |z - Ri| |f(z)| \le 4R$ for $|z| \le R$. For $|z| \le R/2$ we get $|f(z)| \le \frac{4R}{(R-R/2)^2} = \frac{16}{R}$. Clearly this implies that f is bounded, hence constant. The hypothesis implies that the constant is necessarily 0.

195. Let $f_n: U \to U$ be holomorphic and suppose $f_n(0) \to 1$. Show that $f_n \stackrel{ucc}{\to} 1$.

Since $\{f_n\}$ is normal there is a subsequence $f_{n_j} \stackrel{ucc}{\to} g$ (say). Note that $g \in H(U)$ and g(0) = 1. If g is not a constant then g - 1 has no zeros in some deleted neighbourhood of 0. Let $\delta > 0$ be such that g has no zero on $|z| = \delta$. For $|z| = \delta$ and j sufficiently large we have $|(f_{n_j}(z) - 1) - (g(z) - 1)| < \inf\{|g(z) - 1| : |z| = \delta\}$. Hence $f_{n_j}(z) - 1$ has same number of zeros as g - 1 in $B(0, \delta)$. However g(0) = 1 and $f_{n_j}(z) - 1$ has no zero on $B(0, \delta)$ because $f_{n_j}(U) \subset U!$ This proves that $g(z) = 1 \forall z$ so

 $f_{n_j} \xrightarrow{ucc} 1$. Going to subsequences we conclude that $f_n \xrightarrow{ucc} g$.

196. If $n \in \{3, 4, ...\}$ show that the equation $z^n = 2z - 1$ has a unique solution in U.

Note that $|1+z^n| \leq 1+1 = |-2z|$ on ∂U . If we had strict inequality we could conclude that $z^n - 2z + 1$ and -2z have the same number of zeros in U and that is what we are aiming at. However strict inequality fails at z = 1. We claim that $(1-t)^n < 1-2t$ if t > 0 is sufficiently small. Indeed, by L'Hopital's Rule $\lim_{t\to 0} \frac{(1-2t)-(1-t)^n}{t} = n-2 > 0$. We now have $|z|^n = (1-t)^n < 1-2t = -1+|-2z|$ if |z| = 1 - t. Hence $|1 + z^n| \le 1 + |z^n| < |-2z|$ for |z| = 1 - t. This shows that $1 + z^n - 2z$ and -2z have the same number of zeros in |z| < 1 - t. This holds for all sufficiently small positive numbers t.

197. Show that there are (restrictions to \mathbb{R} of) entire functions which tend to ∞ faster than any given function. More precisely, if $\phi: (0,\infty) \to (0,\infty)$ is any increasing function then there is an entire function f such that $f(x) \ge \phi(x)$ $\forall x \in (0,\infty).$

Let $f(z) = 1 + \sum_{i=1}^{\infty} (\frac{z}{j})^{m_j}$ where $m_1 < m_2 < ...$, Then f is entire. We

choose $m'_j s$ with the additional property $1 + j^{m_j} \ge \phi(((j+1)^2))$. Any number x > 1 lies between j^2 and $(j+1)^2$ for some $j \in \mathbb{N}$ and $f(x) \ge 1 + (\frac{x}{j})^{m_j} \ge 1$ $1 + j^{m_j} \ge \phi(((j+1)^2) \ge \phi(x). \text{ If } \psi(x) = \begin{cases} \phi(x-1) \text{ if } x > 1 \\ 0 \text{ if } 0 < x \le 1 \end{cases} \text{ then } \psi \text{ is a increasing function } : (0,\infty) \to (0,\infty) \text{ and there is an entire function } g \text{ such that } \end{cases}$ $g(x) \ge \psi(x) \ \forall x > 0.$ Let f(z) = g(z+1).

198. Find a necessary and sufficient condition that $A \equiv \{z : |az^2 + bz + c| < c\}$ r is connected.

If a = 0 then A is always connected. Assume $a \neq 0$. We claim that A is connected if and only if $|b^2 - 4ac| < 4r |a|$. Note that $A = \{\zeta - \frac{b}{2a} : |\zeta^2 - \beta| < b < 1\}$ $\frac{r}{|a|}$ where $\beta = \frac{b^2}{4a^2} - \frac{c}{a}$. It suffices to show that $B \equiv \{\zeta : |\zeta^2 - \beta| < \frac{r}{|a|}\}$ is connected if and only if $|b^2 - 4ac| < 4r |a|$ which translates into $|\beta| < \frac{r}{|a|}$. Let $\alpha^2 = \beta. \text{ If } |\beta| \geq \tfrac{r}{|a|} \text{ then the relation } B = [B \cap B(\alpha, \sqrt{\tfrac{r}{|a|}})] \cup [B \cap B(-\alpha, \sqrt{\tfrac{r}{|a|}})]$ shows that B is not connected. If $|\beta| < \frac{r}{|a|}$ then $tz \in B$ whenever $z \in B$ and $0 \le t \le 1$ proving that B is connected.

199. If $z, c_1, c_2, c_3 \in \mathbb{C}$ and $\frac{1}{z-c_1} + \frac{1}{z-c_2} + \frac{1}{z-c_3} = 0$ show that z belongs to the closed triangular region with vertices c_1, c_2, c_3 .

We prove a more general result: if $z, c_1, c_2, ..., c_n \in \mathbb{C}$ and $\frac{1}{z-c_1} + \frac{1}{z-c_2} + ... +$ $\frac{1}{z-c_n} = 0$ we show that z belongs to the convex hull of $c_1, c_2, ..., c_n$. This requires a standard "Separation Theorem": if C is a closed convex set in

 \mathbb{C} and z is a complex number in $\mathbb{C} \setminus C$ then there is a complex number a such that

 $\operatorname{Re}(\overline{a}\zeta) < \operatorname{Re}(\overline{a}z)$ for each $\zeta \in C$. Let C be the convex hull of $c_1, c_2, ..., c_n$. The given equation gives $\frac{1}{\overline{a}z - \overline{a}c_1} + \frac{1}{\overline{a}z - \overline{a}c_2} + ... + \frac{1}{\overline{a}z - \overline{a}c_n} = 0$. If z does not belongs to the convex hull of $c_1, c_2, ..., c_n$ we choose a as above, multiply the numerator and the denominator of each term by the conjugate of the denominator and take real parts on both sides to get a contradiction.

200. Prove the following result of Gauss and Lucas: if p is a polynomial then every zero of p' is in the convex hull of the zeros of p.

We may suppose $p(z) = (z - c_1)(z - c_2)...(z - c_n)$. If p'(z) = 0 then $0 = \frac{p'(z)}{p(z)} = \frac{1}{z - c_1} + \frac{1}{z - c_2} + ... + \frac{1}{z - c_n}$ and previous problem can be applied.

201. Let
$$f \in C(\overline{U}) \cap H(U)$$
. Show that $\int_{-1}^{1} |f(x)|^2 dx \le \int_{0}^{\pi} |f(e^{it})|^2 dt$.

Let γ consist of the line segment from -1 to +1 and the semi-circular arc $\{e^{it}: 0 \le t \le \pi\}$. By Cauchy's Theorem $\int_{\gamma} f(z)f(\overline{z})dz = 0$. Hence $\int_{-1}^{1} |f(x)|^2 dx = -\int_{0}^{\pi} f(e^{it})f(\overline{e^{-it}})ie^{it}dt$. Apply Cauchy-Schwartz inequality.

202. Prove Brouer's Fixed Point Theorem in two dimensions: every continuous map $\phi: \overline{U} \to \overline{U}$ has a fixed point.

 $\begin{array}{l} \text{Suppose not. Let } H(t,s) = \left\{ \begin{array}{l} (e^{2\pi i s} - 2t\phi(e^{2\pi i s})) \text{ is } t \in [0,1/2) \text{ and } s \in [0,1] \\ ((2-2t)e^{2\pi i s} - \phi((2-2t)e^{2\pi i s})) \text{ if } t \in [1/2,1] \text{ and } s \in [0,1] \end{array} \right. \\ \text{This is a continuous function } : [0,1] \times [0,1] \to \mathbb{C} \backslash \{0\}. \text{ Also, } H(0,s) = e^{2\pi i s}, 0 \leq s \leq 1 \text{ and } H(1,s) = -\phi(0), 0 \leq s \leq 1. \end{array}$ This shows that the path $\gamma(s) = e^{2\pi i s}, 0 \leq s \leq 1$ is homotopic to a constant path in $\mathbb{C} \backslash \{0\}.$ This implies that the index of 0 w.r.t. the path $\gamma(s) = e^{2\pi i s}, 0 \leq s \leq 1$ is 0, a contradiction.

203. If $\phi : T \to \mathbb{C} \setminus \{0\}$ is continuous and if $\phi(-z) = -\phi(z) \ \forall z \in T$ show that there is no continuous function g on T such that $g^2 = \phi$.

Consider $h(z) = \frac{g(-z)}{g(z)}$. We have $h^2 = -1$ and h is continuous. This implies $h(z) = i \ \forall z \text{ or } h(z) = -i \ \forall z$. Let us write h(z) = c so the constant c is either i or -i. But then $c^2 = h(-z)h(z) = \frac{g(z)}{g(-z)}\frac{g(-z)}{g(z)} = 1$, a contradiction.

204. Prove that if K is a non-empty compact convex subset of \mathbb{C} then every continuous map $\phi: K \to K$ has a fixed point.

Let $H = \frac{1}{R}K$ where R > 0 is so large that $H \subset \overline{U}$. For each $z \in \overline{U}$ there is a unique point $g(z) \in H$ such that $|g(z) - z| \leq |\zeta - z| \ \forall \zeta \in H$. The existence is an easy consequence of compactness of H. Uniqueness is proved as follows: if $|\zeta_1 - z| \leq |\zeta - z| \ \forall \zeta \in H$ and $|\zeta_2 - z| \leq |\zeta - z| \ \forall \zeta \in H$ then $\left|\frac{\zeta_1 + \zeta_2}{2} - z\right| \leq \frac{|\zeta_1 - z| + |\zeta_2 - z|}{2} \leq |\zeta - z| \ \forall \zeta \in H$ and this holds, in particular for $\zeta = \frac{\zeta_1 + \zeta_2}{2}$ by convexity of H. This implies that $\zeta_1 - z = \lambda(\zeta_2 - z)$ for some $\lambda \geq 0$ and hence ζ_1, ζ_2, z are collinear. The fact that $\left|\frac{\zeta_1 + \zeta_2}{2} - z\right| = \frac{|\zeta_1 - z| + |\zeta_2 - z|}{2}$ forces z to be 'between' ζ_1 and ζ_2 which implies that $z \in H$ by convexity. But then $\zeta_1 = \zeta_2 = z$. We have now proved the existence of a map $g: \overline{U} \to H$ such that $|g(z) - z| \leq |\zeta - z| \ \forall \zeta \in H$. Now define $f: \overline{U} \to \overline{U}$ by $f(z) = \frac{1}{R}\phi(Rg(z))$. Note that g is continuous: if $z_n \to z$ and $g(z_n) \to \zeta_0$ then $|g(z_n) - z_n| \leq |\zeta - z_n| \\ \forall \zeta \in H \ \forall n \text{ implies } |\zeta_0 - z| \leq |\zeta - z| \ \forall \zeta \in H$. But then $g(z) = \zeta_0$, by definition. It follows that f is a continuous map from \overline{U} into itself. By Problem 202) above there is a point $z \in \overline{U}$ such that f(z) = z. But then $\phi(Rg(z)) = Rz$. But $Rg(z) \in RH = K$ so $Rz = \phi(Rg(z)) \in K$ which means $z \in H$. But this implies g(z) = z and we get $\phi(Rz) = Rz$. Since $Rz \in K$ we are done.

205. If $f \in H(B(0,\delta)), f(0) = 0$ and $f(z) \neq 0 \ \forall z \in B(0,\delta) \setminus \{0\}$ show that |f(z)| is not harmonic. (Example: $|z|^n$)

MVP fails.

206. Prove Rado's Theorem

Let Ω be a region, $f \in C(\Omega)$ and $f \in H(\Omega_0)$ where $\Omega_0 = \Omega \setminus f^{-1}\{0\}$. Then $f \in H(\Omega)$

Remark: this problem requires some measure theory and properties of subharmonic functions.

We first prove that Ω_0 is dense in Ω .

Let
$$A = \{z \in \Omega : \int_{B(z,\delta)} \log |f(\zeta)| d\zeta > -\infty \text{ for some } \delta > 0 \text{ with } [B(z,\delta)]^- \subset$$

 Ω and $B = \{z \in \Omega : f \text{ vanishes in some neibourhood of } z\}$. Clearly A and B are disjoint subsets of Ω and B is open. If we show that A is also open we can conclude that one of these sets is Ω . If $B = \Omega$ then $f \in H(\Omega)$ and $f^{-1}\{0\}$ is countable. If $A = \Omega$ then the fact that $\Omega \setminus f^{-1}\{0\}$ is dense in Ω is clear from the

fact that $\int_{B(z,\delta)} \log |f(\zeta)| d\zeta > -\infty \Rightarrow \{\zeta \in B(z,\delta) : f(\zeta) = 0\}$ is a (Lebesgue)

null set. [Of course, $\log |f(\zeta)|$ is bounded above on $B(z, \delta)$ if the closure of this ball is contained in Ω].

It remains to show that A is open. Let $z \in A$ and $\delta > 0$ be such that $\int_{B(z,\delta)} \log |f(\zeta)| d\zeta > -\infty$ and $[B(z,\delta)]^- \subset \Omega$. Let $w \in B(z,\delta)$ and choose r > 0

such that
$$B(w,r) \subset B(z,\delta)$$
. Then $\int_{B(w,r)} \log |f(\zeta)| d\zeta = \int_{B(w,r) \cap \{|f| \le 1\}} \log |f(\zeta)| d\zeta + \int_{B(w,r) \cap \{|f| \le 1\}} \log |f(\zeta)| d\zeta$

 $\int_{B(w,r)\cap\{|f|>1\}} \log |f(\zeta)| \, d\zeta.$ The second term here is non-negative, so it suffices to

show that $\int_{B(w,r)\cap\{|f|\leq 1\}} \log |f(\zeta)| \, d\zeta > -\infty. \text{ Since } -\log |f(\zeta)| \geq 0 \text{ on } B(w,r) \cap \{|f|\leq 1\}$

$$\{|f| \le 1\} \text{ it follows that } \int_{B(w,r) \cap \{|f| \le 1\}} \log |f(\zeta)| \, d\zeta \ge \int_{B(z,\delta) \cap \{|f| \le 1\}} \log |f(\zeta)| \, d\zeta = \int_{B(z,\delta) \cap \{|f| > 1\}} \log |f(\zeta)| \, d\zeta > -\infty \text{ because } \int_{B(z,\delta)} \log |f(\zeta)| \, d\zeta > -\infty \text{ and } \int_{B(z,\delta) \cap \{|f| > 1\}} \log |f(\zeta)| \, d\zeta < \infty.$$

Next we prove the following: Lemma

Let f be continuous on a region containing \overline{U} and suppose $U \setminus f^{-1}\{0\}$ is dense in U. If $f \in H(U \setminus f^{-1}\{0\})$ then Re f is harmonic in .

Grant this Lemma for the moment. We can change U to any open ball whose closure is contained in Ω . It would follow that Re f is harmonic in any ball contained in Ω , hence in Ω . Applying the result to if we see that Im f is also harmonic. The Cauchy-Riemann equations are satisfied on $\Omega \setminus f^{-1}\{0\}$ which is dense in Ω and since the real and imaginary parts of f are C^{∞} functions, the Cauchy_Riemann hold throughout Ω and the proof of Rado's Theorem is complete.

Proof of the lemma:

let u be subharmonic on a region containing \overline{U} . Claim: $u(z) \leq \int_{-\pi}^{\pi} P_r(\theta - t)u(e^{it})dt \ \forall z = re^{i\theta} \in U$. For this let $u_n, n \geq 1$ be continuous functions on ∂U decreasing to u. Let $v_n(z) = \int_{-\pi}^{\pi} P_r(\theta - t)u_n(e^{it})dt \ \forall z = re^{i\theta} \in U, v_n(z) = u_n(z)$ for $z \in \partial U$. Then $v' \in$ are hermonic. Since $u = v_n$ is subharmonic and ≤ 0 on

for $z \in \partial U$. Then $v'_n s$ are harmonic. Since $u - v_n$ is subharmonic and ≤ 0 on

 ∂U we see that $u - v_n \leq 0$ in U and letting $n \to \infty$ we get $u(z) \leq \int_{-\pi}^{\pi} P_r(\theta - u) d\theta$

 $t)u(e^{it})dt \ \forall z = re^{i\theta} \in U$. We apply this result to the subharmonic function $u = \operatorname{Re} f + \epsilon \log |f|$ [Note that the inequality $u(z) \leq \int_{-\pi}^{\pi} P_r(\theta - t)u(e^{it})dt$ holds

if $u(z) = -\infty$, i.e. f(0) = 0. It holds for r sufficiently small if $f(0) \neq 0$. Hence u is subharmonic]. We get

$$\operatorname{Re} f(z) + \epsilon \log |f(z)| \leq \int_{-\pi}^{\pi} P_r(\theta - t) \{\operatorname{Re} f(e^{it}) + \epsilon \log |f(e^{it})|\} dt \; \forall z = re^{i\theta} \in \mathcal{I}$$

U. If $f(z) \neq 0$ we get $\operatorname{Re} f(z) \leq \int_{-\pi}^{-\pi} P_r(\theta - t) \operatorname{Re} f(e^{it}) dt$ by letting $\epsilon \to 0$.

Changing f to -f we get the reverse inequality. By continuity of Re f we see that Re $f(z) = \int_{-\pi}^{\pi} P_r(\theta - t) \operatorname{Re} f(e^{it}) dt \ \forall z = re^{i\theta} \in U$. This proves the lemma.

207. Let $f \in H(\mathbb{C} \setminus \{0\})$ and suppose f does not have an essential singularity at 0. If $f(e^{it}) \in \mathbb{R} \ \forall t \in \mathbb{R}$ show that $f(z) = \frac{p(z)}{z^k}$ for some non-negative integer k and some polynomial p whose degree does not exceed 2k.

Since f has a pole or a removable singularity at 0 we can write $z^k f(z) = \sum_{n=0}^{\infty} a_n z^n \,\forall z \in \mathbb{C}$ for some non-negative integer k. Also, $a_n = \frac{1}{2\pi} \int_{0}^{2\pi} e^{i(k-n)t} f(e^{it}) dt$ $\forall n \ge 0$. By hypothesis, $\bar{a_n} = \frac{1}{2\pi} \int_{0}^{2\pi} e^{-i(k-n)t} f(e^{it}) dt \,\forall n \ge 0$. Now $\int_{0}^{2\pi} e^{-i(k-n)t} f(e^{it}) dt = -i \int_{\gamma} z^{n-k-1} f(z) dz = 0$ for $n \ge 2k+1$ (by Cauch'y Theorem), where $\gamma(t) = e^{it}, 0 \le t \le 2\pi$. Hence $z^k f(z) = \sum_{n=0}^{2k} a_n z^n$.

208 Find a necessary and sufficient condition that $az^2 + bz + c$ (with $a \neq 0$) is one-to-one in U.

If it is one-to-one then 2az + b has no zeros in U which implies $\left|-\frac{b}{2z}\right| \ge 1$ or $|b| \ge 2|a|$. Conversely, if this condition holds then $az^2 + bz + c = aw^2 + bw + c \Rightarrow (z - w)(az + aw + b) = 0$ and this implies that z = w because $|az + aw + b| \ge |b| - |a| |z + w| > |b| - 2 |a| \ge 0$. 209 Let $c_1, c_2, ..., c_n$ be distinct complex numbers. Show that $\sum_{k=1}^n \prod_{j \neq k} \frac{c_j - c_k}{c_j - c_k} = 1$ for all $c \in \mathbb{C}$.

The left side is a polynomial of degree (n-1) which has the vale 1 at each of the points $c_1, c_2, ..., c_n$.

210.

Let μ be a finite positive measure on the Borel subsets of $(0, \infty)$. If $g \in L^{\infty}(\mu)$ and $\int_{0}^{\infty} e^{-x} p(x) g(x) d\mu(x) = 0$ for every polynomial p show that g = 0 a.e. $[\mu]$. Conclude that $\{e^{-x} p(x) : p \text{ is a polynomial}\}$ is dense in $L^{1}(\mu)$.

The second part follows immediately from the first. For the first part let $\phi(z) = \int_{0}^{\infty} e^{-zx} g(x) d\mu(x)$ for $z \in \mathbb{C}$ with $\operatorname{Re}(z) > 0$. A straightforward argument shows that ϕ is analytic in $\{z \in \mathbb{C}: \operatorname{Re}(z) > 0\}$. Further, $\phi^{(n)}(z) = \int_{0}^{\infty} (-x)^n e^{-zx} g(x) d\mu(x)$ for $z \in \mathbb{C}$ and $n \ge 0$. By hypothesis this gives $\phi^{(n)}(1) = 0$

 $\forall n \geq 0.$ It follows that $\phi(z) = 0$ whenever $\operatorname{Re}(Z) > 0.$ In particular $\int_{0}^{\infty} e^{-tx} g(x) d\mu(x) =$

0 if t > 0. The finite positive measures ν_1 and ν_2 defined by $d\nu_1 = g^+ d\mu$ and $d\nu_2 = g^- d\mu$ have the same Laplace transform and hence they are equal. This means $g(x)d\mu(x) = 0$ which is what we wanted to prove.

211.

Let $\Omega = \mathbb{C} \setminus \{0, 1\}$ and $f \in H(\Omega)$. Show that if f is not a constant then it must be one of six specific Mobius transformations. [Proposed and solved by Walter Rudin in Amer. Math. Monthly]

By Picard's Theorem f cannot have an essential singularity at 0 and 1. Also $f(\frac{1}{z})$ cannot have an essential singularity at 0. Thus $p_1(z)p_2(1-z)f(z)$ is an entire function which has a removable singularity or a pole at ∞ for some polynomials p_1 and p_2 . It follows that $f = \frac{p}{q}$ for some polynomials p and qwith no common zeros. Since f does not take the value 0 it follows that p can have zeros only at 0 and 1. Also, q satisfies the same property. Thus p(z) is cz, c(1-z) or cz(1-z) for some constant c. The same is true of q. It is now a routine matter to write down all possibilities for f.