PROBLEMS IN COMPLEX ANALYSIS

These problems are not in any particular order. I have collected them from a number of text books. I have provided hints and solutions wherever I considered them necessary. These are problems are meant to be used in a first course on Complex Analysis. Use of measure theory has been minimized.

Updated in September 2012. Thanks to Sourav Ghosh for pointing out several errors in previous version.

Notation: $U = \{z : |z| < 1\}$ and $T = \{z : |z| = 1\}$.Def: f is analytic or holomorphic on an open set if it is differentiable at each point. $H(\Omega)$ is the class of all holomorphic functions on Ω . \xrightarrow{uc} stands for uniform convergence on compact sets.

1. Find a sequence of complex numbers $\{z_n\}$ such that $\sin z_n$ is real for all $n \text{ and } \to \infty$ as $n \to \infty$?

2. At what points is f(z) = |z| differentiable? At what points is $f(z) = |z|^2$ differentiable?

3. If f is a differentiable function from a region Ω in \mathbb{C} into \mathbb{R} prove that f is necessarily a constant.

4. Find all entire functions f such that $f^n(z) = z$ for all z, n being a given positive integer.

5. If f and \overline{f} are both analytic in a region Ω show that they are constants on Ω .

6. If f^2 and $(\bar{f})^5$ are analytic in a region show that f is a constant on that region.

7. If f is analytic in a region Ω and if |f| is a constant on Ω show that f is a constant on Ω .

8. Define $Log(z) = \log |z| + i\theta$ where $-\pi < \theta \le \pi$ and $z = |z| e^{i\theta}$ $(z \ne 0)$. Prove that Log is not continuous on $\mathbb{C} \setminus \{0\}$.

9. Prove that the function Log defined in above problem is differentiable on $\mathbb{C}\setminus\{x\in\mathbb{R}:x\leq 0\}$. Find its derivative and prove that there is no power series $\sum_{n=0}^{\infty}a_n(z-c)^n$ convergent in $\mathbb{C}\setminus\{x\in\mathbb{R}:x\leq 0\}$ whose sum is Log.

10. Let p be a non-constant polynomial, c > 0 and $\Omega = \{z : |p(z)| < c\}$. Prove that $\partial \Omega = \{z : |p(z)| = c\}$ and that each connected component of Ω contains a zero of p.

11. Prove that there is no differentiable function f on $\mathbb{C}\setminus\{0\}$ such that $e^{f(z)} = z$ for all $z \in \mathbb{C}\setminus\{0\}$.

12. Let γ be a piecewise continuously differentiable map : $[0,1] \to \mathbb{C}$ and $h: \gamma^* \to \mathbb{C}$ be continuous (γ^* is the range of γ). Show that $f(z) = \int_{\gamma} \frac{h(\zeta)}{\zeta - z} d\zeta$ defines a holomorphic function on $\mathbb{C} \setminus \gamma^*$.

13. If γ is as in above problem show that the total variation of γ is $\int_{0} |\gamma'(t)| dt$.

14. If p is a polynomial and if the maximum of |p| on a region Ω is attained at an interior point show, without using The Maximum Modulus Principle, that p is a constant.

15. If $f(x + iy) = \sqrt{|xy|}$ show that f is not differntiable at 0 even though Cauchy-Riemann equations are satisfied.

16. Show that $\log \sqrt{x^2 + y^2}$ is a harmonic function on $\mathbb{C} \setminus \{0\}$ which is not the real part of any holomorphic function.

17. If f is holomorphic on Ω and e^f is constant on Ω show that f is constant on Ω .

18. If f is an entire function and $\operatorname{Re} f$ (or $\operatorname{Im} f$) is bounded above or below show that f is constant.

19. Prove that $\frac{|a-b|}{|1-\bar{a}b|} \ge \frac{|a|-|b|}{1-|ab|}$ if either |a| and |b| are both less than 1 or both greater than 1.

20. If $f: U \to U$ is holomorphic show that $\frac{|f(\beta) - f(\alpha)|}{|1 - \bar{f}(\beta)f(\alpha)|} \leq \frac{|\beta - \alpha|}{|1 - \bar{\beta}\alpha|}$ for all $\alpha, \beta \in U$.

21. Prove that a holomorphic function from U into itself has at most one fixed point unless it is the identity map.

22. If f is a bijective bi-holomorphic map of U show that f maps open balls in U onto open balls.

23. Let Ω be a region, $f \in C(\Omega)$ and let f^n be holomorphic in Ω for some positive integer n. Show that f is holomorphic in Ω .

24. If f is an entire function such that $|f(z)| \leq 1 + \sqrt{|z|}$ for all $z \in \mathbb{C}$ show that f is a constant.

If f is an entire function such that $|f(z)| \leq M |z|^N$ for |z| sufficiently large (where M is a positive cosnatnt) show that f is a polynomial.

25. Find the largest open set on which $\int_{0}^{1} \frac{1}{1+tz} dt$ is analytic. Do the same for $\int_{0}^{\infty} \frac{e^{tz}}{1+t^2} dt$.

26. If f and g are holomorphic functions on a region Ω with no zeros such that $\{z: \frac{f'}{f}(z) = \frac{g'}{g}(z)\}$ has a limit point in Ω find a simple relation between f and q.

27. If f is a holomorphic function on a region Ω which is not identically zero show that the zeros of the function form an atmost countable set.

28. Is Mean Value Theorem valid in the complex case? (i.e., if f is analytic in a convex region and z_1, z_2 are two points in the region can we always find a point ζ on the line segment from z_1 to z_2 such that $f(z_2) - f(z_1) = f'(\zeta)(z_2 - z_1)$?)

29. Let f be holomorphic on a region Ω with no zeros. If there is a holomorphic function h such that $h' = \frac{f'}{f}$ show that f has a holomorphic logarithm on Ω (i.e. there is a holomorphic function H such that $e^H = f$. Show that h need not exist and give sufficient a condition on Ω that ensures existence of h.

30. Prove that a bounded harmonic function on \mathbb{R}^2 is constant.

31. If f is a non-constant entire function such that $|f(z)| \ge M |z|^n$ for $|z| \ge R$ for some $n \in \mathbb{N}$ and some M and R in $(0, \infty)$ show that f is a polynomial whose degree is at least n.

32. If f is an entire function which is not a constant prove that $\max\{|f(z)|: |z|=r\}$ is an increasing function of r which $\to \infty$ as $r \to \infty$.

33. If $f \in C(U \cup T) \cap H(U)$ and f(z) = 0 on $\{e^{i\theta} : \alpha < \theta < b\}$ for some a < b show that f is identically 0.

34. True or false: if f and g are entire functions such that f(z)g(z) = 1 for all z then f and g are constants. [What is the answer if f and g are polynomials?]

35. If $f: U \to U$ is holomorphic, $a \in U$ and f(a) = a prove that $|f'(a)| \leq 1$.

36. The result of Problem 35 holds for any region that is conformally equivalent to U. [A conformal equivalence is a bijective biholomorphic map].

37. According to Riemann Mapping Theorem, any simply connected region other than \mathbb{C} is conformally equivalent to U. Hence, above problem applies to any such region. Is the result valid for \mathbb{C} ?

38. Prove that only entire functions that are one-to-one are of the type f(z) = az + b.

39. Prove that $\{z : 0 < |z| < 1\}$ and $\{z : r < |z| < R\}$ are not conformally equivalent if r > 0.

40. Let $0 < r_1 < R_1$ and $0 < r_2 < R_2$. Prove that $\{z : r_1 < |z| < R_1\}$ and $\{z : r_2 < |z| < R_2\}$ are conformally equivalent $\Leftrightarrow \frac{R_1}{r_1} = \frac{R_2}{r_2}$

41. Show that if a holomorphic map f maps U into itself it need not have a fixed point in U. Even if it extends to a continuous map of the closure of U onto itself the same conclusion holds.

42. If f is holomorphic on U, continuous on the closure of U and |f(z)| < 1 on T prove that f has at least one fixed point in U. Can it have more than one fixed point?

43. If f is holomorphic: $U \to U$ and f(0) = 0 and if $\{f_n\}$ is the sequence of iterates of f (*i.e.* $f_1 = f, f_{n+1} = f \circ f_n, n \ge 1$) prove that the sequence $\{f_n\}$ converges uniformly on compact subsets of U to 0 unless f is a rotation.

44. Let f be a homeomorphism of $\mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\}$ (with the metric induced by the stereographic projection). Assume that f is differntiable at all points of $\mathbb{C} \cup \{\infty\}$ except $f^{-1}\{\infty\}$. Prove that f is a Mobius Transformation.

45. Prove that the only conformal equivalences : $U \setminus \{0\} \xrightarrow{onto} U \setminus \{0\}$ are rotations.

46. Prove that
$$\pi \cot \pi z = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^2 - n^2}$$
 if z is not an integer.

47. Prove or disprove: $Log(z_1z_2) = Log(z_1) + Log(z_2)$

48. a) Discuss convergence of the following infinite products: $\prod_{n=1}^{\infty} \frac{1}{n^p} (p > 0), \prod_{n=1}^{\infty} (1 + \frac{i}{n}), \prod_{n=1}^{\infty} \left| 1 + \frac{i}{n} \right|.$

b) Prove that $\prod_{\substack{n=2\\\infty}}^{\infty} (1 - \frac{1}{n^2}) = \frac{1}{2}$ and $\prod_{n=0}^{\infty} (1 + z^{2^n}) = \frac{1}{1-z}$ if |z| < 1. [See Problem 51) for $\prod_{n=1}^{\infty} (1 + \frac{i}{n})]$. c) $\prod_{n=1}^{\infty} (1 - \frac{1}{p_n})$ where $p_1, p_2, ...$ is the sequence of primes. 49. Let $\operatorname{Re}(a_n) > 0$ for all *n*. Prove that $\prod_{n=1}^{\infty} [1 + |1 - a_n|]$ converges if and only if $\sum_{n=1}^{\infty} |Log(a_n)| < \infty$. 50. Prove or disprove the following: $\sum_{n=1}^{\infty} |Log(a_n)| < \infty \Leftrightarrow \sum_{n=1}^{\infty} |1 - a_n| < \infty \text{ and } \sum_{n=1}^{\infty} Log(a_n) \text{ is convergent} \Leftrightarrow$ $\sum_{n=1}^{\infty} [1 - a_n] \text{ is convergent.}$

$$[1-a_n]$$

51. Prove that $\prod_{n=1}^{\infty} z_n$ converges $\Leftrightarrow \sum Log(z_n)$ converges. Use this to prove that $\prod_{n=1}^{\infty} (1+i/n)$ is not convergent. 52. Prove that $\sin \pi z = \pi z \prod_{n=1}^{\infty} (1 - \frac{z^2}{n^2})$ 53. Let $B(z) = \prod_{n=1}^{\infty} \frac{|a_n|}{a_n} \frac{a_n - z}{1 - \bar{a}_n z}$. Prove that if $0 < |a_n| < 1$ and $\sum [1 - |a_n|] < 1$

 ∞ then the product conveges uniformly on comapct subsets of U and that B(z) is a holomorphic function on this disk with zeros precisely at the points $a_n, n = 1, 2, \dots$ Prove that $\{a_n\}$ can be chosen so that every point of T is a limit point; prove that T is a natural boundary of B in this case (in the sense B cannot be extended to a holomorphic function on any larger open set.

54. Say that a function $f : \mathbb{R} \to \mathbb{R}$ is analytic if for each $a \in \mathbb{R}$ there exists $\delta_a > 0$ such that on $(a - \delta_a, a + \delta_a)$, f has a power series expansion. Show that the zeros of an analytic function on \mathbb{R} have no limit points.

55. If $f: \mathbb{C} \to \mathbb{C}$ has power series expansion around each point then it has a single power series expansion valid on all of \mathbb{C} . Is it true that if $f : \mathbb{R} \to \mathbb{R}$ has power series expansion around each point then it has a single power series expansion valid on all of \mathbb{R} ?

56. Does there exist an entire function f such that $|f(z)| = |z|^2 e^{\operatorname{Im}(z)}$ for all z? If so, find all such functions. Do the same for $|f(z)| = |z| e^{\operatorname{Im}(z) \operatorname{Re}(z)}$.

57. Does there exist a holomorphic function f on U such that $\{f(\frac{1}{n})\} = \{\frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \dots\}$, i.e. $f(\frac{1}{n}) = \frac{1}{n}$ if n is even and $f(\frac{1}{n}) = \frac{1}{n+1}$ if n is odd?

58. If the radius of convegence of $\sum_{n=0}^{\infty} a_{n,k}(z-a)^n$ exceeds R for each k and

 $\sum_{n=0}^{\infty} a_{n,k} (z-a)^n \to 0 \text{ uniformly on } \{z : |z-z_0| = r\} \text{ then it converges uniformly on } \{z : |z-z_0| \le r\} \text{ provided } R > r + |z_0 - a|.$

59. Let f be continuous and bounded on $\{z : |z| \leq 1\} \setminus F$ where F is a finite subset of T. If f is holomorphic on U and $|f(z)| \leq M$ on $\partial U \setminus F$ show that $|f(z)| \leq M$ on U.

60. Let $\Omega = \{z : \operatorname{Re}(z) > 0\}$. If f is continuous on the closure of Ω , holomorphic on Ω and if $|f(z)| \leq 1$ on $\partial\Omega$ does it follow that the same inequality holds on Ω ?.

61. Let $\Omega = \{z : a < \text{Im}(z) < b\}, f \in H(\Omega) \text{ and } f$ be bounded and continuous on the closure of Ω . Prove that if $|f(z)| \leq 1$ on $\partial\Omega$ then the same inequality holds on Ω .

62. Prove that $f(z) = \frac{z}{(1-z)^2}$ is one-to-one on U and find the image of U.

63. If p and q are polynomials with $\deg(q) > \deg(p) + 1$ prove that the sum of the residues of $\frac{p}{q}$ at all its poles is 0.

64. Evaluate
$$\int_{\gamma} \frac{1}{(z-2)(2z+1)^2(3z-1)^3} dz$$
 and $\int_{\gamma} \frac{1}{(z-10)(z-\frac{1}{2})^{100}} dz$ where $\gamma(t) = e^{2\pi i t} (0 \le t \le 1)$

65. Find the number of zeros of $z^7 + 4z^4 + z^3 + 1$ in U and the annulus $\{1 < |z| < 2\}$.

66. Let $p(z) = z^n + c_{n-1}z^{n-1} + \dots + c_1z + c_0$ and $R = \sqrt{1 + |c_0|^2 + |c_1|^2 + \dots + |c_{n-1}|^2}$. Prove that all the zeros of p are in $\{z : |z| < R\}$. 67. Let $1 < a < \infty$. prove that $z + a - e^z$ has exactly one zero in the left half plane $\{z : \operatorname{Re}(z) < 0\}$.

68. If 0 < |a| < 1 show that the equation $(z - 1)^n e^z = a$ has exactly n solutions in $\operatorname{Re} z > 0$. Prove that all the roots are simple roots. If $|a| \leq \frac{1}{2^n}$ prove that all the roots are in $\{z : |z - 1| < \frac{1}{2}\}$.

69. Prove that $f(z) = 1 + z^2 + z^{2^2} + ... + z^{2^n} + ...$ has U as its natural boundary in the sense it cannot be extended to a holomorphic function on any open which properly contains U.

70. If p is a polynomial such that |p(z)| = p(|z|) for all z prove that $p(z) = cz^n$ for some $c \ge 0$ and some $n \in \mathbb{N} \cup \{0\}$.

71. Prove that above result holds if p is replaced by an entire function.

72. Prove the two dimensional Mean value Property:

the average of a holomorphic function over an open ball is the value at the centre.

73. Construct a conformal equivalence between the first quadrant and the upper half plane. Also, find a conformal equivalence between U and its intersection with the right half plane.

74. Find a conformal equivalence between the sector $\{z \neq 0 : \theta_1 < \arg(z) < \theta_2\}$ with $0 < \theta_1 < \theta_2 < \pi/2$ and U.

75. Prove that if γ is a closed path in a region Ω and $f \in H(\Omega)$ then $\operatorname{Re}(\int_{-\pi} f(z)f'(z)dz) = 0.$

76. Prove or disprove: given any sequence $\{a_n\}$ of complex numbers there is a holomorphic function f in some neighbourhood of 0 such that $f^{(n)}(0) = a_n$ for all n.

77. If f is holomorphic on $\Omega \setminus \{a\}$ prove that $e^{f(z)}$ cannot have a pole at a.

78. Prove that
$$\int_{0}^{2\pi} \log \left| 1 - e^{i\theta} \right| d\theta = 0$$

79. Use above result to prove Jensen's Formula:

80. Let Ω be an open set containing 0 and $f \in H(\Omega)$. Prove that $f(\overline{z}) = f(\overline{z})$ for all z with |z| sufficiently small $\Leftrightarrow f^{(n)}(0) \in \mathbb{R}$ for all $n \ge 0$.

81. If $f \in H(U), f(0) = 0, f'(0) \neq 0$ prove that there is no $g \in H(U \setminus \{0\})$ such that $g^2 = f$.

82. If f is an entire function such that $|f(z)| \to \infty$ as $|z| \to \infty$ prove that $|f(z)| \ge c |z|$ for some positive number c for all z with |z| sufficiently large.

83. Let Ω be a region, $\{f_n\} \subset H(\Omega)$ and assume that $\{f_n\}$ is uniformly bounded on each compact subset of Ω . Let C be the set of points where $\{f_n\}$ is convergent. If this set has a limit point in Ω prove that $\{f_n\}$ converges uniformly on compact subsets of Ω to a holomorphic function.

84. Prove or disprove: If Ω is a region, $\{f_n\} \subset H(\Omega), f_n^{(k)}(z) \to 0$ as $n \to \infty$ for each $z \in \Omega$ and each $k \in \{0, 1, 2, ...\}$ then $\{f_n\}$ converges (to 0) uniformly on compact subsets of Ω

85. Give an example of a function f which is continuous on a closed strip, holomorphic in the interior, bounded on the boundary but not bounded on the strip! [See also problem #61 above].

86. Let $u(z) = \text{Im}\{(\frac{1+z}{1-z})^2\}$. Show that u is harmonic in U and $\lim_{r \to 1} u(re^{i\theta}) = 0$ for all θ . Why doesn't this contradict the Maximum Modulus Principle for harmonic functions?

87. If $\phi(|z|)$ is harmonic in the region $\{z : \operatorname{Re}(z) > 0\}$ (ϕ being real valued and "smooth") prove that $\phi(t) \equiv a \log t + b$ for some a and b.

88. Let $f: \overline{U} \to \mathbb{C}$ be a continuous function which is harmonic in U. Prove that f is holomorphic in U if and only if $\int_{-\pi}^{\pi} f(e^{it})e^{int}dt = 0$ for all positive integers n.

89. Let $\Omega = \{z : \operatorname{Re}(z) > 0\}$. If f is bounded and continuous on $\partial\Omega$ show that it is the restriction of a continuous function on $\overline{\Omega}$ which is harmonic in Ω .

90. Prove that the square of a real harmonic function is not harmonic unless it is a constant. When is the product of two real harmonic functions harmonic? Find all holomorphic functions f such that $|f|^2$ is harmonic.

91. If $f: \Omega \to \mathbb{C}$ and f and f^2 are harmonic prove that either f is holomorphic or \overline{f} is holomorphic. Prove the converse.

92. If u is a non-constant harmonic in a region Ω prove that the zeros of the gradient of u in Ω have no limit point.

93. If u is harmonic in a region Ω prove that partial derivatives of u of all orders are harmonic.

94. Let $S = \{x \in \mathbb{R} : a \leq x \leq b\}$. Let Ω be a region containing S. Prove that if $f \in H(\Omega \setminus S) \cap C(\Omega)$ then $f \in H(\Omega)$.

95. Let $f, f_n(n = 1, 2, ...)$ be holomorphic functions on a region Ω . If $\operatorname{Re}(f_n) \xrightarrow{uc} \operatorname{Re}(f)$ show that $f_n \xrightarrow{uc} f$.

96. Let $f(z) = \int_{-1}^{1} \frac{1}{t-z} dt, z \in \mathbb{C} \setminus [-1, 1]$. Prove that f is holomorphic, its

imaginary part is bounded, but the real part is not. Prove that $\lim_{z\to\infty} zf(z)$ exists and find this limit. Find a bounded non-constant holomorphic function on $\mathbb{C}\setminus[-1,1]$.

97. Give an example of a region Ω such that Ω^c is infinite and every bounded holomorphic function on Ω is a constant.

Remark: it can be shown that there are non-constant bounded holomorphic functions on $\mathbb{C}\setminus[-1,1]$ but there are no such functions on $\mathbb{C}\setminus K$ if K is a compact subset of \mathbb{R} with Lebesgue measure 0. Thus the complement of the Cantor set gives a region whose complement is uncountable such that every bounded holomorphic function on it is a constant.

98. If Ω is any region contained in $\mathbb{C}\setminus(-\infty, 0]$ show that there exists a bounded non-constant holomorphic function on Ω .

More generally if there is a non-constant holomorphic function ϕ on Ω such that $\phi(\Omega)$ is contained in $\mathbb{C} \setminus (-\infty, 0]$ the same conclusion holds.

99. If Ω is $\mathbb{C}\setminus(-\infty, 0]$ or a horizontal strip or a vertical strip or U^c show that there exist non-constant bounded holomorphic functions on Ω .

100. Prove that there is no holomorphic function f on U^c such that $|f(z)| \to \infty$ as $|z| \to 1$.

101. Prove that there is no continuous bijection from $\overline{\Omega}$, where $\Omega = \{z : \operatorname{Re}(z) > 0\}$, onto \overline{U} which maps Ω onto U and is holomorphic in Ω .

102. Let Ω be a bounded region, $f \in C(\overline{\Omega}) \cap H(\Omega)$ and assume that |f| is a non-zero constant on $\partial\Omega$. If f is not a constant on Ω show that f has at least one zero in Ω .

103. Let f be a non-constant entire function. Prove that the closure of $\{z : |f(z)| < c\}$ coincides with $\{z : |f(z)| \le c\}$ for all c > 0.

104. Prove that if $f \in H(\Omega), [a, b] \subset \Omega$ (where [a, b] is the line segment from a to b) then $|f(b) - f(a)| \le |b - a| |f'(\xi)|$ for some $\xi \in [a, b]$. Also prove that $|f(b) - f(a) - (b - a)f'(a)| \le \frac{|b - a|^2}{2} |f''(\eta)|$ for some $\eta \in [a, b]$.

105. Evaluate
$$\int_{\gamma} \frac{z^2 + 1}{z(z^2 + 4)} dz$$
 where $\gamma(t) = re^{2\pi i t} (0 \le t \le 1)$ where $0 < r < 2$.

No computation is needed!

Compute the same integral for r > 2.

106. Give an example of a bounded holomorphic function f on $\mathbb{C}\backslash\mathbb{R}$ which cannot be extended to any larger open set.

107. If
$$f \in H(0 < |z| < R)$$
 and $\int_{0 < x^2 + y^2 < R} |f(x + iy)| dxdy < \infty$ prove that

f has either a removable singularity or a pole of order one at 0.

108. In the previous problem if
$$\int_{0 < x^2 + y^2 < R} |f(x+iy))|^2 dxdy < \infty$$
 prove that

f has a removable singularity at 0.

109. Show that there is no function $f \in H(U) \cap C(\overline{U})$ such that $f(z) = \frac{1}{z} \forall z \in \partial U$.

110. If $f \in C(U), f_n \in H(U)$ and $f_n \to f$ in $L^1(U)$ then $f \in H(U)$.

111. Any conformal equivalence of $\mathbb{C}\setminus\{0\}$ is of the form cz or of the form $\frac{c}{z}$ where c is a constant.

112. If $x_1 > x_2 > x_3 > \dots, \{x_n\} \to 0$ and $f \in H(U)$ with $f(x_n) \in \mathbb{R} \forall n$ then $f^{(k)}(0) \in \mathbb{R} \forall k$.

113. Let $\{f_n\} \subset H(D)$ where D is an open disc. Assume that $f_n(D) \subset D \setminus \{0\} \forall n$ and that $\lim_{n \to \infty} f_n(a) = 0$ where is the center of D. Then $\lim_{n \to \infty} f_n(z) = 0$ uniformly on compact subsets of D.

114. Let $\{u_n\}$ be a sequence of (strictly) positive harmonic functions on an open set Ω such that $\sum u_n = \infty$ at one point. Then the series diverges at every point. Moreover, if it converges at one point it converges uniformly on compact subsets of Ω .

115. Find all limit points of the sequence $\{\frac{1}{n}\sum_{k=1}^{n}k^{ia}\}_{n=1,2,\dots}$ where *a* is a non-zero real number.

116. Let f have an isolated singularity at a point a. Prove that e^{f} cannot have a pole at a.

117. Let f be holomorphic on U and assume that for each $r \in (0, 1)$, $f(re^{it})$ has a constant argument (i.e. $f(re^{it}) = |f(re^{it})| e^{ia_r}$ where the real number a_r does not depend on t. Show that f is a constant.

118. [based on problem 117)] Let $f \in H(\Omega)$ and suppose |f| is harmonic in Ω . Show that f is a constant.

119. Let $f \in H(U), f(U) \subset U, f(0) = 0$ and $f(\frac{1}{2}) = 0$. Show that $|f'(0)| \leq \frac{1}{2}$. Give an example to show that equality may hold.

120. Let $f \in H(U), f(U) \subset U, f(0) = 0, f'(0) = 0, f''(0) = 0, \dots, f^{(k)}(0) = 0$ where k is a positive integer. Show that $|f(\frac{1}{2})| \leq \frac{1}{2^k}$ and find a necessary and sufficient condition that $\left|f(\frac{1}{2})\right| = \frac{1}{2^k}$.

121. If f and zf(z) are both harmonic then f is analytic.

122. Prove that
$$f(re^{i\theta}) = \sum_{n=-\infty}^{\infty} r^{|n|} \sin(n\alpha) e^{in\theta}$$
 is harmonic in U.

123. If $\Omega = \{z : \operatorname{Re}(z) > 0\}$ and f is a bounded holomorphic function on Ω with $f(n) = 0 \forall n \in \mathbb{N}$ show that $f(z) = 0 \forall z \in \Omega$.

124. Show that there is a holomorphic function f on $\{z : \operatorname{Re}(z) > -1\}$ such that $f(z) = \frac{z^2}{2} - \frac{z^3}{(2)(3)} + \frac{z^4}{(3)(4)} - \dots$ for |z| < 1.

125. Consider the series $z + \frac{z^2}{2} + \frac{z^3}{3} + ...$ on U and $i\pi - (z-2) + \frac{(z-2)^2}{2} - \frac{(z-2)^3}{3} + ...$ on $\{z : |z-2| < 1\}$. (These two regions are disjoint). Show that there is a region Ω and a function $f \in H(\Omega)$ such that Ω contains both U and $\{z : |z-2| < 1\}$, $f(z) = z + \frac{z^2}{2} + \frac{z^3}{3} + \dots$ on U and $f(z) = i\pi - (z-2) + \frac{(z-2)^2}{2} - \frac{(z-2)^3}{3} + \dots$ on $\{z : |z-2| < 1\}$.

126. Let $f: U \to U$ be holomorphic with f(0) = 0 = f(a) where $a \in U \setminus \{0\}$. Show that $|f'(0)| \leq |a|$.

127. Prove that a complex valued function u on a simply connected region Ω is harmonic if and only if it is of the form $f + \overline{g}$ for some $f, g \in H(\Omega)$.

128. Let $f(z) = z + \frac{1}{z} (z \in \mathbb{C} \setminus \{0\})$. Show that $f(\{z : 0 < |z| < 1\}) = f(\{z : z \in \mathbb{C} \setminus \{0\}\})$. $|z| > 1\} = \mathbb{C} \setminus [-2, 2]$ and that $f(\{z : |z| = 1\}) = [-2, 2]$. Show also that f is conformal equivalence of both the regions $\{z : 0 < |z| < 1\}$ and $\{z : |z| > 1\}$ with $\mathbb{C}\setminus[-2,2]$. Prove that $\{z: |z| > 1\}$ is not simply connected. [How many proofs can you think of?]

129. Show that there is no bounded holomorphic function f on the righthlaf plane which is 0 at the points 1, 2, 3, ... and 1 at the point $\sqrt{2}$. What is the answer if 'bounded' is omitted?

130. Prove or disprove: if $\{a_n\}$ has no limit points and $\{c_n\} \subset \mathbb{C}$ then there is an entire function f with $f(a_n) = c_n \forall n$.

131. Let Ω be a bounded region, $f \in H(\Omega)$ and $\limsup |f(z)| \leq M$ for every

point *a* on the boundary of Ω . Show that $|f(z)| \leq M$ for every $z \in \Omega$. 132. Let *f* be an entire function such that $\frac{f(z)}{z} \to 0$ as $|z| \to \infty$. Show that f is a constant.

133. Let f be an entire function which maps the real axis into itself and the imaginary axis into itself. Show that $f(-z) = -f(z) \forall z \in \mathbb{C}$.

134. Let f be a continuous function : $\mathbb{C} \to \mathbb{C}$ such that $f(z^2 + 2z - 6)$ is an entire function. Show that f is an entire function.

135. If f and g are entire functions with no common zeros and if h is an entire function show that h = fF + gG for some entire functions F and G. ntire].

136. Show that the series $\sum_{n=1}^{\infty} \frac{z^n}{n}$ converges if $|z| \le 1$ and $z \ne 1$.

137. Show that the convergence of $\sum_{n=1}^{\infty} \frac{\sin(nz)}{n}$ implies that $z \in \mathbb{R}$.

138. If $f \in C(U) \cap H(U)$ and f is real valued on $T = \partial U$ then f is a constant.

139. Let $\Omega = \{z : \text{Im}(z) > 0\}$ and $f \in H(\Omega) \cap C(\overline{\Omega})$. If $f(x) = x^4 - 2x^2$ for 0 < x < 1 find f(i). n Ω].

140. Let Ω be a region and m denote Lebesgue measure on Ω . If $\{f_n\} \subset H(\Omega) \cap L^2(\Omega)$ and if $\{f_n\}$ converges in $L^2(\Omega)$ to f show that $f \in H(\Omega)$.

141. Let Ω be a region containing U and $f \in H(\Omega)$. If |f(z)| = 1 whenever |z| = 1 show that $U \subset f(\Omega)$.

142. Let Ω be a bounded region, $f, g: \Omega \to \mathbb{C}$ be continuous and holomorphic in Ω . If |f(z) - g(z)| < |f(z)| + |g(z)x| on $\partial\Omega$ show that f and g have the same number of zeros in Ω .

143. Let Ω be a bounded region $f: \Omega \to U$ be continuous and $f \in H(\Omega)$. If |f(z)| = 1 whenever $z \in \Omega$ show that $U = f(\Omega)$.

144. Given any continuous function $f : \mathbb{R} \to \mathbb{C}$ there is an entire function g such that g has no zeros and $g(x) > |f(x)| \quad \forall x \in \mathbb{R}$.

145. Let $f : \mathbb{R} \to \mathbb{C}$ be continuous. Then we can write f as $\sum_{n=-\infty}^{\infty} f_n(x-n)$ where each f_n is continuous and $f_n(x) = 0$ if $|x| \ge 1$.

146. Let $f : \mathbb{R} \to \mathbb{C}$ be continuous and f(x) = 0 for $|x| \ge 1$. Let $S = \{z : |\operatorname{Re}(z)| > 3$ and $|\operatorname{Re}(z)| > 2 |\operatorname{Im}(z)|$. Given $\epsilon > 0$ we can find an entire function g such that $|f(x) - g(x)| < \epsilon \ \forall x \in \mathbb{R}$ and $|g(z)| < \epsilon \ \forall z \in S$.

147. Let $f : \mathbb{R} \to \mathbb{C}$ be continuous. Then there is an entire function g such that $|f(x) - g(x)| < 1 \quad \forall x \in \mathbb{R}$.

148. Let $f : \mathbb{R} \to \mathbb{C}$ and $\eta : \mathbb{R} \to (0, \infty)$ be continuous. Then there is an entire function g such that $|f(x) - g(x)| < \eta(x) \ \forall x \in \mathbb{R}$.

149. [Used in problem 146) above]

Let a < b and $f: [a, b] \to \mathbb{C}$ be continuous. Let $f_n(x) = \frac{n}{\sqrt{2\pi}} \int_a^b e^{-n^2(x-t)^2} f(t) dt$.

Then $f_n(x) \to f(x)$ uniformly on $[a + \delta, b - \delta]$ and $f_n(x) \to 0$ uniformly on $\mathbb{R} \setminus [a - \delta, b + \delta]$ for each $\delta > 0$.

150. Show that the family of all analytic maps $f: U \to \{z : \operatorname{Re}(z) > 0\}$ with $|f(0)| \leq 1$ is normal.

151. Let $f \in H(\Omega)$ and f be injective. If $\{z : |z-a| \leq r\} \subset \Omega$ show that

$$f^{-1}(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{\zeta f'(\zeta)}{f(\zeta) - z} d\zeta \ \forall z \in f(B(a, r)), \text{ where } \gamma(t) = a + re^{2it}, 0 \le t \le 1.$$

152. If
$$f \in C(\overline{U}) \cap H(U)$$
 show that $f(z) = i \operatorname{Im}(f(0)) + \frac{1}{2\pi} \int_{-\pi}^{-\pi} \frac{e^{it} + z}{e^{it} - z} \operatorname{Re} f(e^{it}) dt$

 $\forall z \in U.$

153. If Ω is simply connected show that for any real harmonic function u on Ω , a harmonic conjugate v of u is given by $v(z) = \operatorname{Im}[u(a) + \int (\frac{\partial u}{\partial x} - i\frac{\partial u}{\partial y})dz]$

where a is a fixed point of Ω and γ is any path from a to z in Ω .

154. Let Ω be a region and $f, g \in H(\Omega)$. If |f| + |g| attains its amximum on Ω at some point a of Ω then f and g are both constants.

155. If f and g are entire functions with $f(n) = g(n) \ \forall n \in \mathbb{N}$ and if $\max\{|f(z)|, |g(z)| \le e^{c|z|}$ for |z| sufficiently large with 0 < c < 1 show that $f(z) = g(z) \ \forall z \in \mathbb{C}$. Show that this is false for c = 1.

156. Show that there is a function f in $C(U) \cap H(U)$ whose power series does not converge uniformly on U.

157. If $\{f_n\} \subset H(\Omega)$ and $\lim_{n \to \infty} f_n(z) = f(z)$ exists $\forall z \in \Omega$ show that there is a dense open subset Ω_0 of Ω such that $f \in H(\Omega_0)$.

158. Let $L: H(\Omega) \to H(\Omega)$ be linear and multiplicative, not identically 0. Show that there is a point $c \in \Omega$ such that $L(f) = f(c) \ \forall f \in H(\Omega)$.

159. Let Ω be a region and $f \in H(\Omega)$ with $f(z) \neq 0 \ \forall z \in \Omega$. If f has a holomorphic square root does it follow that it has a holomorphic logarithm? What if it has a holomorphic k - th root for infinitely many positive integers k?

160. $\lim_{z \to a} \frac{f(z)}{g(z)} = \lim_{z \to a} \frac{f'(z)}{g'(z)}$ if f and g are analytic in some neighbourhood of a, f(a) = g(a) = 0 and $g'(a) \neq 0$.

161. If f and g are analytic in some neighbourhood of $a, |f(z)| \to \infty$ and $|g(z)| \to \infty$ as $z \to a$ then $\lim_{z\to a} \frac{f(z)}{g(z)} = \lim_{z\to a} \frac{f'(z)}{g'(z)}$ provided $\lim_{z\to a} \frac{f'(z)}{g'(z)}$ exists. 162. Let f be an entire function such that |f(z)| = 1 whenever |z| = 1.

Show that $f(z) \equiv cz^n$ for some non-negative integer n and some constant c with modulus 1.

163. Let Ω be a region (not necessarily bounded) which is not dense in \mathbb{C} , $f \in C(\Omega) \cap H(\Omega), |f(z)| \leq M \ \forall z \in \partial \Omega.$ Suppose f is bounded on Ω . Then $|f(z)| \le M \ \forall z \in \Omega.$

164. In above problem the hypothesis that Ω is not dense can be deleted provided $\Omega \neq \mathbb{C}$. $\frac{f'(z)}{g'(z)}$ provided $\lim_{z \to a} \frac{f'(z)}{g'(z)}$ exists.

165. If f is an entire function such that |f(z)| = 1 whenever |z| = 1 show that $f(z) = cz^n$ for some $n \ge 0$ and $c \in \mathbb{C}$ with |c| = 1.

166. Let $f \in H(\Omega \setminus \{a, a_1, a_2, ...\})$ where Ω is a region, $a_n \to a, a'_n s$ are distinct points of Ω and $a \in \Omega$. If f has a pole at each a_n show that $f(B(a, \epsilon) \setminus \{a, a_1, a_2, ...\})$ is dense in \mathbb{C} for every $\epsilon > 0$.

167. If f is a rational function such that |f(z)| = 1 whenever |z| = 1 show that $f(z) = cz^n \{\prod_{j=1}^k \frac{z-\alpha_j}{1-\bar{\alpha_j}z}\} / \{\prod_{j=1}^m \frac{z-b_j}{1-\bar{b_j}z}\}$ for some $n \in \mathbb{Z}$ and $a_1, a_2, ..., a_N, b_1, b_2, ..., b_m \in \mathbb{Z}$

 $\mathbb{C}\backslash T, c \in \mathbb{C}$ with |c| = 1.

168. Let f and g be holomorphic on U with g one-to-one and f(0) = g(0) = 0, If $f(U) \subset g(U)$ show that $f(B(0,r)) \subset g(B(0,r))$ for any $r \in (0,1]$.

169. All injective holomorphic maps from U onto itself are of the type $c \frac{z-a}{1-\bar{a}z}$ with |a| < 1, |c| = 1. Find all m - to - 1 holomorphic maps of U onto itself for a given positive integer m.

170. Let Ω_1 and Ω_2 be bounded regions. Let $f : \Omega_1 \to \Omega_2$ be a holomorphic map such that there is no sequence $\{z_n\}$ in Ω_1 converging to a point in $\partial\Omega_1$ such that $\{f(z_n)\}$ converges to a point in Ω_2 . Then there is a positive integer m such that f is m - to - 1 on Ω_1 .

171. The condition in Problem 169) above that there is no sequence $\{z_n\}$ in Ω_1 converging to a point in $\partial\Omega_1$ such that $\{f(z_n)\}$ converges to a point in Ω_2 is equivalent to the fact that $f^{-1}(K)$ is compact whenever K is a compact subset of Ω_2 .

172. Prove that the analogue of Problem 169) when $\Omega_1 = \Omega_2 = \mathbb{C}$ and $\partial \Omega_1$ is interpreted as (the boundary in \mathbb{C}_{∞} i.e.) $\{\infty\}$ holds. Give an example to show that Problem 169) fails for a general unbounded region Ω_1 .

173. Let $f \in H(U), \theta_1 \in \mathbb{R}, \theta_2 \in \mathbb{R}$ and $\left| f(re^{i\theta_1}) \right| = |f(0)| = \left| f(re^{i\theta_2}) \right|$ for all $r \in (0, 1)$. Show that f is a constant if $\frac{\theta_1 - \theta_2}{2\pi}$ is irrational.

174. Suppose $\theta_1 \in \mathbb{R}, \theta_2 \in \mathbb{R}$ and $f \in H(U), \left| f(re^{i\theta_1}) \right| = |f(0)| = \left| f(re^{i\theta_2}) \right|$ for all $r \in (0, 1)$ implies that f is a constant. Show that $\frac{\theta_1 - \theta_2}{2\pi}$ is irrational.

175. A second order differential equation: let Ω be a convex region and $g \in H(\Omega)$. Show that any holomorphic function f satisfying the differential equation f'' + f = g in Ω can be expressed as $h(z)\sin(z) + \phi(z)\cos(z)$ for suitable $h, \phi \in H(\Omega)$.

176. Show that $U \setminus \{0\}$ is not conformally equivalent to $\{z : 1 < |z| < 2\}$.

177. Let f be continuous on $\{z : |z| \le R\}$ and holomorphic on B(0, R). Let $M(r) = \sup\{|f(z)| : |z| = r\}$ and $\phi(r) = \sup\{\operatorname{Re} f(z) : |z| = r\}$ for $0 \le r \le R$.

Show that $\phi(r) \leq \frac{R-r}{R+r} \operatorname{Re} f(0) + \frac{2r}{R+r} \phi(r)$ and $M(r) \leq \frac{R-r}{R+r} |f(0)| + \frac{2r}{R+r} \phi(r)$ for $0 \leq r \leq R.$

178. If f is an entire function such that $\operatorname{Re} f(z) \leq B |z|^n$ for $|z| \geq R$ then f is a polynomial of degree at most n.

179. Let Ω be a region and A be a subset of Ω with no limit points in Ω . Show that $\Omega \setminus A$ is a region.

180. Show that $\mathbb{C} \setminus (Q \times Q)$ is connected.

As an easy consequence of this we can show that $\mathbb{R}^n \setminus Q^n$ is connected. (We only have to project to two dimensions)].

181. Prove the formula $\int_{-\infty}^{\infty} e^{itx} e^{-x^2/2} dx = \sqrt{2\pi} e^{-t^2/2} (t \in \mathbb{R})$ in four different

ways.

Contour integration, Power series method: justify $\int_{-\infty}^{\infty} \sum_{n=0}^{\infty} \frac{i^n t^n x^n}{n!} e^{-x^2/2} dx =$

$$\sum_{n=0}^{\infty} \frac{i^n t^n}{n!} \int_{-\infty}^{\infty} x^n e^{-x^2/2} dx,$$

using the fact that zeros are isolated: let $\phi(z) = \int_{-\infty}^{\infty} e^{izx} e^{-x^2/2} dx$, show that ϕ is entire and compute $\phi(it)$ for real t, differential equation method: prove that $\phi'(t) = -t\phi(t).$

182. Prove that $|e^z - 1 - z| \leq \frac{|z|^2}{2}e^{|z|} \quad \forall z \in \mathbb{C} \text{ and } |e^z - 1 - z| \leq \frac{|z|^2}{2} \text{ if } \operatorname{Re}(z) = 0.$ Also show that $|e^z - 1 - z - z^2/2! - \dots - z^n/n!| \leq \frac{|z|^{n+1}}{(n+1)!}e^{|z|} \quad \forall z \in \mathbb{C}.$

183. Let f be a non-constant entire function. Show without using Picard's Theorem that $\liminf_{|z|\to\infty} |f(z)| \in \{0,\infty\}.$

184. Let Ω be open and $f \in H(\Omega)$ be one-to-one. Let γ be any closed path in Ω and $\Omega_1 = \{z \in \Omega \setminus \gamma^* : Ind_{\gamma}(z) \neq 0\}$. Show that $f^{-1}(w)Ind_{\gamma}(f^{-1}(w)) =$ $\frac{1}{2\pi i} \int \frac{zf'(z)}{f(z) - w} dz \ \forall w \in f(\Omega_1).$

185. Let $f \in H(U \setminus \{0\})$ and assume that f has an essential singularity at 0. Let $f_n(z) = f(\frac{z}{2^n}), n \ge 1, z \in U \setminus \{0\}$. Show that $\{f_n\}$ is not normal in $H(U \setminus \{0\}).$

186. Let Ω be an open set in \mathbb{C} such that $\mathbb{C}_{\infty} \setminus \Omega$ is connected. Let γ be closed path in Ω . Show that $Ind_{\gamma}(a) = 0 \ \forall a \in \mathbb{C} \setminus \Omega$.

187. If f is an entire function which is not a transaltion show that $f \circ f$ has a fixed point.

188. Show that there is a sequence of polynomials $\{p_n\}$ such that $\lim_{n \to \infty} p_n(z) =$

 $\begin{cases} 0 \text{ if } \operatorname{Im}(z) = 0 \\ 1 \text{ if } \operatorname{Im}(z) > 0 \\ -1 \text{ if } \operatorname{Im}(z) > 0 \end{cases}$

189. Show that there is a sequence of polynomials $\{p_n\}$ such that $\lim_{n \to \infty} p_n(z) = 0 \quad \forall z \in \mathbb{C}$ but the convergence is not uniform on at least one compact set.

190. If A is bounded in \mathbb{C} then $\mathbb{C}_{\infty} \setminus A$ is connected if and only if $\mathbb{C} \setminus A$ is connected. If A is unbounded and $\mathbb{C} \setminus A$ is connected does it follow that $\mathbb{C}_{\infty} \setminus A$ is connected? If $\mathbb{C}_{\infty} \setminus A$ is connected does it follow that $\mathbb{C} \setminus A$ is connected?

191. Let Ω be a bounded region, $a \in \Omega$ and $f : \Omega \to \Omega$ be a holomorphic map such that f(a) = a. Show that $|f'(a)| \leq 1$.

192. Let $f \in H(U \setminus \{0\})$ and $|f(z)| \leq \log \frac{1}{|z|} \quad \forall z \in U \setminus \{0\}$. Show that f vanishes identically.

193. Let f be an entire function with $|x||f(x+iy)| \leq 1 \ \forall x, y \in \mathbb{R}$ then $f(z) = 0 \ \forall z \in \mathbb{C}$.

194. Let $f_n: U \to U$ be holomorphic and suppose $f_n(0) \to 1$. Show that $f_n \stackrel{ucc}{\to} 1$.

195. If $n \in \{3, 4, ...\}$ show that the equation $z^n = 2z - 1$ has a unique solution in U.

196. Show that there are (restrictions to \mathbb{R} of) entire functions which tend to ∞ faster than any given function. More precisely, if $\phi : (0, \infty) \to (0, \infty)$ is any increasing function then there is an entire function f such that $f(x) \ge \phi(x)$ $\forall x \in (0, \infty)$.

197. Find a necessary and sufficient condition that $A \equiv \{z : |az^2 + bz + c| < r\}$ is connected.

198. If $z, c_1, c_2, c_3 \in \mathbb{C}$ and $\frac{1}{z-c_1} + \frac{1}{z-c_2} + \frac{1}{z-c_3} = 0$ show that z belongs to the closed triangular region with vertices c_1, c_2, c_3 .

199. Prove the following result of Gauss and Lucas: if p is a polynomial then every zero of p' is in the convex hull of the zeros of p.

200. Let
$$f \in C(\overline{U}) \cap H(U)$$
. Show that $\int_{-1}^{1} |f(x)|^2 dx \le \int_{-\pi}^{\pi} |f(e^{it})|^2 dt$.

201. Prove Brouer's Fixed Point Theorem in two dimensions (: every continuous map $\phi : \overline{U} \to \overline{U}$ has a fixed point) by construction a homotopy in $\mathbb{C}\setminus\{0\}$ from the unit circle to a constant (under the assumption that ϕ has no fixed point).

202. If $\phi : T \to \mathbb{C} \setminus \{0\}$ is continuous and if $\phi(-z) = -\phi(z) \ \forall z \in T$ show that there is no continuous function g on T such that $g^2 = \phi$.

203. Prove that if K is a non-empty compact convex subset of \mathbb{C} then every continuous map $\phi: K \to K$ has a fixed point.

204. If $f \in H(B(0,\delta)), f(0) = 0$ and $f(z) \neq 0 \ \forall z \in B(0,\delta) \setminus \{0\}$ show that |f(z)| is not harmonic. (Example: $|z|^n$)

205. Prove Rado's Theorem

Let Ω be a region, $f \in C(\Omega)$ and $f \in H(\Omega_0)$ where $\Omega_0 = \Omega \setminus f^{-1}\{0\}$. Then $f \in H(\Omega)$

Remark: this problem requires some measure theory and properties of sub-harmonic functions.

206. Let $f \in H(\mathbb{C}\setminus\{0\})$ and suppose f does not have an essential singularity at 0. If $f(e^{it}) \in \mathbb{R} \ \forall t \in \mathbb{R}$ show that $f(z) = \frac{p(z)}{z^k}$ for some non-negative integer k and some polynomial p whose degree does not exceed 2k.

207 Find a necessary and sufficient condition that $az^2 + bz + c$ (with $a \neq 0$) is one-to-one in U.

208 Let $c_1, c_2, ..., c_n$ be distinct complex numbers. Show that $\sum_{k=1}^n \prod_{j \neq k} \frac{c_j - c_k}{c_j - c_k} = 1$ for all $c \in \mathbb{C}$.

209 Let $c_1, c_2, ..., c_n$ be distinct complex numbers. Show that $\sum_{k=1}^n \prod_{j \neq k} \frac{c_j - c}{c_j - c_k} = 1$ for all $c \in \mathbb{C}$.

210.

Let μ be a finite positive measure on the Borel subsets of $(0, \infty)$. If $g \in L^{\infty}(\mu)$ and $\int_{0}^{\infty} e^{-x} p(x) g(x) d\mu(x) = 0$ for every polynomial p show that g = 0 a.e. $[\mu]$. Conclude that $\{e^{-x} p(x) : p \text{ is a polynomial}\}$ is dense in $L^{1}(\mu)$.

211.

Let $\Omega = \mathbb{C} \setminus \{0, 1\}$ and $f \in H(\Omega)$. Show that if f is not a constant then it must be one of four specific Mobius transformations. [Proposed and solved by Walter Rudin in Amer. Math. Monthly]