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1 Introduction

This expository lecture is about Brownian motion, a term I had come across
for the �rst time in a course on physical chemistry at the Madras Christian
College. Brownian motion is an outstanding example of a phenomenon /
situation in another science giving rise to a rich mathematical theory. It has
deep connections with other branches of mathematics as well. We look at
some of these aspects.

The heuristics discussed in Section 2 lead to a description of the Wiener
measure in Section 3. After a brief discussion of Markov property and heat
kernel in Section 4, we take up the probabilistic way of solving the classical
Dirichlet problem in Section 5; here arguments involving Brownian motion
give an elegant way of solving a purely mathematical problem.

Our approach is informal and no proofs are given. Precise de�nitions and
detailed proofs can be found in the references given at the end. The objective
here is just to whet your appetite.

2 Heuristics

Brownian motion is a type of molecular movement encountered when a
"solute" particle of certain size is suspended in a medium consisting of a

1This is an expanded version of a lecture given in the Department
of Mathematics, Madras Christian College, Tambaram, Chennai - 600
059 in February 2003.
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very large number of "solvent" particles; the size of the solute particle is
quite large compared to that of a solvent particle, but not large enough for
it to sediment. All the particles are mobile and the motion of the solute
particle (also called Brownian particle) is due to the 
uctuations caused by
the bombardment from the solvent particles. Such a movement was �rst
observed and studied by Robert Brown, a botanist, when pollen grains were
suspended in water; (hence the name: Brownian motion). This phenomenon
is generally prevalent in colloidal solutions. Theoretical investigation, from
the point of view of physics, was pioneered by Einstein; this resulted in an
experiemental veri�cation of the atomic theory of matter.

Painstaking experiments lead to the following observations: the motion is
unceasing, haphazard; knowledge of the trajectory of the solute particle upto
any speci�c time does not help in predicting its position with certainty at a
future time. This suggests a probabilistic model as follows. We shall assume
that there are no external forces acting, that the solvent medium is uniform
and that there is no temperature gradient. Let B(t) denote the position of
the Brownian particle at time t; for convenience, B(0) � 0 is the starting
point. The natural probabilistic hypotheses are:
(i) for each t � 0; B(t) is a random variable;
(ii) t 7! B(t) is continuous;
(iii) for 0 � t1 � t2 � : : : � tn < 1 the random variables B(t1) �
B(0); B(t2)�B(t1); : : : ; B(tn)�B(tn�1) are independent; (note that these
random variables denote the displacement over non overlapping intervals).

Observe that for any t � 0; n = 1; 2; : : : we can write

B(t) = B(t)�B(0)

= B(t)�B
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= Sum of n independent random variables.

Therefore central limit theorem of probability theory (together with conti-
nuity in t) leads us to believe that each B(t) is a Gaussian (normal) ran-
dom variable. Since the Brownian motion is taking place in a homoge-

neous isotropic medium we can take expectation (average value) of B(t)
�
=

E(B(t)) = E(B(0)) = 0. As time passes, the Brownian particle is likely to
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wander to longer distances about the origin; so variance of B(t) will increase
with time.

Let d � 1 denote the dimension. After suitable centering and scaling, stan-
dard d-dimensional Brownian motion can be thought of as an IRd-valued
stochastic process fB(t) : t � 0g with independent Gaussian increments,
having continuous sample paths, and such that for 0 � s < t <1, the incre-
ment B(t)�B(s) has the d-dimensional Gaussian distribution N(0; (t�s)I)
where I is (d� d) identity matrix.

3 Wiener measure

To claim that the d-dimensional Brownian motion process, as a mathe-
matical entity, is meaningful one needs the following: a probability space
(S;F ; P ) and a function B : [0;1)� S ! IRd such that
1) t 7! B(t; !) is continuous for any ! 2 S;B(0; !) = 0 for all !
2) ! 7! B(t; !) is an F-measurable function for any t � 0;
3) for 0 < t1 < t2 < : : : < tn < 1, the increments B(t1) � B(0); B(t2) �
B(t1); : : : ; B(tn)�B(tn�1) are independent random variables having respec-
tively N(0; t1I); N(0; (t2 � t1)I); : : : ; N(0; (tn � tn�1)I) distributions.

What can be candidates for (S;F ; P ) and B(�; �)? Are there are natural
candidates?

To answer these let 
d
�
= C([0;1) : IRd) = fw : [0;1) ! IRd : w continu-

ousg endowed with the metric

�(f; g) =

1X
k=1

1

2k

sup
0�t�k

kf(t)� g(t)k

1 + sup
0�t�k

kf(t)� g(t)k :

(
d; �) is a complete separable metric space; � gives the topology of uniform
convergence on compact sets. There is a natural Borel structure associated
with this topology; let B denote the Borel �-algebra of 
d.

Now pretend that we have (S;F ; P ); B(�; �) satisfying 1) - 3) above. Then
one can get a map B̂ : S ! 
d given by (B̂!)(�) = B(�; !) for ! 2 S. Since B
is generated by the so called "�nite dimensional cylinder sets" in 
d, it is not
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di�cult to show that B̂ is measurable. So B̂ induces a probability measure
PB̂�1 on (
d;B) determined by PB̂�1(E) = P (B̂�1(E)) for any E 2 B.
The measure PB̂�1 can be regarded as the distribution of the process B.

Let Xt(w) � X(t; w)
�
= w(t); t � 0; w 2 
d denote the t-th coordinate

projection. If (S;F ; P ); B(�; �); B̂ are as above, it is easily checked that, on
the probability space (
d;B; P B̂�1) the stochastic process fXt : t � 0g given
by the coordinate projections has all the properties of Brownian motion
starting at 0, viz. properties 1) - 3) above hold with B replaced by X.

Going back to our question, since 
d;B; fXt : t � 0g are already available,
our purpose will be served if we can construct a probability measure P0 on
(
d;B) such that on (
d;B; P0) the family fXt : t � 0g forms a Brownian
motion starting at 0. (Note: This is similar to constructing appropriate
probability measures on (IR;B(IR)) to show that random variables with cer-
tain distributions exist. For example, how will you prove mathematically
that a standard normal random variable exists?)

Thanks to Norbert Wiener, such a probability measure P0 can be con-
structed starting from �nite dimensional Gaussian distributions; see [KS],
[P], [B] for details. So the probability measure P0 is called the standard
d-dimensional Wiener measure. For any d-dimensional Brownian motion
B(�; �) starting at 0, with B̂ de�ned as above it can be seen that PB̂�1 = P0;
that is, P0 is the distribution of any standard d-dimensional Brownian mo-
tion. All the probabilistic information about the d-dimensional Brownian
motion is available in the probability measure P0.

For x 2 IRd let wx be the continuous function on [0;1) taking the constant
value x. De�ne the probability measure Px on (
d;B) by Px(E) = P0(E �
wx); E 2 B. Under Px note that Xt � N(x; tI); (Xt �Xs) � N(0; (t� s)I)
and that the incrementsXt1�X0; Xt2�Xt1 ; : : : ; Xtn�Xtn�1 are independent
for 0 � t1 < t2 < : : : < tn < 1; that is, under Px, the process fXt : t � 0g
is a d-dimensional Brownian motion starting at x 2 IRd;Px is called the
d-dimensional Wiener measure starting at x.

Brownian motion has several interesting properties. One may recall that
Weierstrass had shown the existence of a continuous but nowhere di�eren-
tiable function. It can be proved that almost all sample paths of a Brownian
motion process are nowhere di�erentiable. In other words, nowhere di�er-
entiable functions are "typical" rather than "exceptional". See [KS].
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4 Markov property, Heat kernel

An intuitively obvious consequence of the independent increment property
is the Markov (or memoryless) property: Given the knowledge of "past and
present", to predict the probabilistic behaviour at a "future time" the past
is irrelevant; that is, for 0 � s < t, Borel set A � IRd,

Px(X(t) 2 AjfX(r) : 0 � r � sg) = Px(X(t) 2 AjX(s)): (1)

The conditional probability on l.h.s. of (1) is the prediction based on "past
and present", whereas r.h.s. of (1) gives the prediction based on "present
alone".

We know that the probability density function of N(x; (t� s)I) is

p(s; x; t; z) =

�
1

2�(t� s)

�d=2
exp

(
� 1

2(t� s)

dX
i=1

(zi � xi)2
)

(2)

for z 2 IRd, where x 2 IRd; 0 � s < t <1. It can be shown that

Px(X(t) 2 AjX(s) = y) =
Z
A

p(s; y; t; z)dz (3)

so that p(s; x; t; z) dz can be interpreted as the "in�nitesimal probability"
that X(t) 2 dz given X(s) = x. Thus p(�; �; �; �) given by (2) is the transition
probability density function of the d-dimensional Brownian motion.

Now, simple di�erentiation shows

@p

@t
(s; x; t; z) =

1

2

dX
i=1

@2

@z2i
p(s; x; t; z)

� 1

2
�zp(s; x; t; z) (4)

which is the d-dimensional heat (or di�usion) equation; �z denotes the
d-dimensional Laplacian in z-variables. Not only does p satisfy the heat
equation; but it is also the fundamental solution to heat equation; that is
solution to the initial value problem for heat equation with initial value f
can be expressed as

u(t; z) =

Z
f(x) p(0; x; t; z)dx:
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(This is basically an exercise using dominated convergence theorem and weak
convergence of probability measures.) The function p is also called the heat
kernel. The above discussion indicates that solutions to heat equation can
be given in terms of Brownian motion. Indeed this is so, and the celebrated
Feynman-Kac formula is an o�shoot of this circle of ideas. An interested
reader can look up [KS], [V] for details.

5 Brownian motion and the Dirichlet problem

For d � 3 a simple change of variables gives

G(x; z)
�
=

1Z
0

p(0; x; t; z)dt = C(d)

�
1

jz � xj

�d�2
(5)

for x 6= z, where C(d) is a constant depending only on the dimension d;G
is the so called Newtonian potential. It may be noted that z 7! G(x; z) is
harmonic on fz 6= xg. For d = 1; 2 also similar radial harmonic functions
can be obtained from p, but will require appropriate centering.

This suggests that there could be connection between Brownian motion and
the Laplacian. In fact the connection is very deep. We look at just one aspect
of this, where probabilistic arguments are very elegant, viz. probabilistic

solution to the classical Dirichlet problem for the Laplacian � =
dP
i=1
@2=@x2i .

Let D be a bounded domain with smooth boundary @D; let g be a given
bounded continuous function on @D. Classical Dirichlet problem consists in
�nding a function u(�) de�ned on �D satisfying

(i) u is harmonic in D; that is
�u(x) = 0; x 2 D;

(ii) u is continuous on �D;
(iii) u(x) = g(x); x 2 @D:

9>>=>>; (6)

Ingredients for solving (6) in terms of Brownian motion are:
(a) a function is harmonic in D , it has the mean value property in D;
(b) rotational invariance of Brownian motion (about the starting point); this
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enables mean value property to be characterized in probabilistic language;
(c) strong Markov property of Brownian motion, viz. analogue of equation
(1) still holds if deterministic time s; t are replaced by certain random times
called "stopping times".

For x 2 IRd; r > 0 let S(x : r) = fy : kx � yk < rg be the open ball with
centre x and radius r. Recall that a function f has the mean value property
in D if for x 2 D; r > 0 satisfying S(x : r) � D one has

f(x) =

Z
@S(x:r)

f(y) d�x;r(y) (7)

where �x;r denotes the normalized surface area measure on @S(x : r); (see
[S] for integration with respect to surface area measure). It is well known
that (a) above is a consequence of Green's formula.

As p(s; x; t; z) is a function of kz � xk it is clear that the heat kernel is
invariant under orthogonal transformations about the initial point x. It can
then be shown that if Brownian trajectories are rotated about the starting
point, the distribution of Brownian motion does not change.

Now consider fX(t) : t � 0g under P0; that is, Brownian motion starting at
0. For r > 0 let

�r(w) = infft � 0 : X(t; w) = w(t) 62 S(0 : r)g
= �rst exit time of BM from S(0 : r);

X�r(w) = X(�r(w); w) = w(�r(w))

= place at which BM exits for the �rst time from S(0 : r):

Continuity of Brownian paths implies thatX�r(�) is a random variable taking
values in @S(0 : r) with distribution P0X

�1
�r . Now rotational invariance of

Brownian motion shows that P0X
�1
�r is a probability measure on @S(0 : r)

which is invariant under orthogonal transformations, and hence P0X
�1
�r =

�0;r. See [PS] for a proof.

Similarly if the starting point of the Brownian motion is x, and

�r(w) = infft � 0 : X(t; w) 62 S(x : r)g

then PxX
�1
�r = �x;r.
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To get a candidate for solution to (6), pretend that u(�) is a solution. Then
for x 2 D,

u(x) =

Z
@S(x:r)

u(z) d�x;r(z) (by (a) and (7))

=

Z
@S(x:r)

u(z) dPxX
�1
�r (z) (since PxX

�1
taur = �x;r)

=

Z

d

u(X�r(w))dPx(w) (by change of variables)

= Ex[u(X(�r))] (8)

where Ex denotes integration (expectation) with respect to Px. Observe that
(8) is a probabilistic version of the mean value property. Also the extremes
of (8) now suggest a candidate for solution to (6).

Let �(w) = infft � 0 : X(t; w) 62 Dg = �rst exit time of X from D. Since D
is bounded, for any starting point x 2 D it can be shown that the Brownian
motion makes a �rst exit from D in �nite time; that is, Px(� <1) = 1 for
all x 2 D. By continuity of trajectories X(�) 2 @D. De�ne

u(x) = Ex[g(X((�))]; x 2 �D: (9)

Note that u is well de�ned and bounded.

Let x 2 D; r > 0 be such that S(x : r) � D; let �r be as before. Now the
random times �; �r are examples of stopping times alluded to earlier; (for a
precise de�nition, etc. see [KS], [PS]); also �r(w) < �(w) for a.a. w with
respect to Px, for any x 2 D; that is, Px(�r < �) = 1 for x 2 D. So using
the strong Markov property it can be proved that

u(x) = Ex[EX(�r)(g(X(�)))] = Ex[u(X(�r))] (10)

where EX(�r)[: : : ] denotes Ey[: : : ] with y = X(�r). Thus u has the mean
value property and hence is harmonic in D. It is, of course, clear that u = g
on @D.

To prove u(�) is continuous on �D it is now enough to show that u(xn)! u(z)
as xn ! z where xn 2 D; z 2 @D. As g is bounded continuous, this

basically amounts to showing PxnX
�1
�

d! �z, where �z is the degenerate
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measure given by �z(H) = 1 or 0 according as z 2 H or z 62 H, and
d! denotes "weak convergence of probability measures" or "convergence in
distribution". This can be done as @D is smooth. See [B], [P] for information
on weak convergence of probability measures, and [KS] for details concerning
continuity of u. Thus u de�ned by (9) solves the Dirichlet problem (6).

Uniqueness can also be established using probabilistic arguments; see [KS].

The strength of the probabilistic method, apart from readily giving an ex-
pression for solution, is that it e�ortlessly takes care of complicated domains
and even certain domains with nonsmooth boundary. Continuity of u on �D
is a delicate point which depends on the regularity of the domain. In fact,
domains for which the Dirichlet problem is solvable can be characterized in
terms of Brownian motion. See [KS], [PS].

Remark: If d � 2 and D = S(0 : R) for some R > 0, it is known that the
solution to (6) can be written as

u(x) =

Z
@S(0:R)

g(z) �(x; z) d�0;R(z); x 2 D

where

�(x; z) =
Rd�2(R2 � kxk2)

kx� zk2 ; x 2 D; z 2 @D

is the Poisson kernel. Comparison with (8) and (9) shows that

PxX
�1
� (A) =

Z
A

�(x; z)d�0;R(z); A � @S(0 : R);

that is, the Poisson kernel is the Radon-Nikodym derivative of the hitting
measure PxX

�1
� with respect to the normalized surface area measure. 2

As indicated in the introduction we have barely touched upon some aspects
of Brownian motion. An interested reader can consult [D], [KS], [V] and the
references therein to know more about the connections between Brownian
motion and analysis.

Brownian motion itself is a prototype of a class of Markov processes called
di�usion processes, having applications in diverse �elds. Study of di�usion
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processes has produced a plethora of tools and theories like stochastic cal-
culus, stochastic di�erential equations, martingale problems, ... Prominent
among those who have made seminal contributions to the subject is S.R.S.
Varadhan, an illustrious alumnus of this college.
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