
Figure 1: Circle of Inversion

Solution 1 (Ashay Burungale).
More generally, look at the configuration in the figure here. Let Cn be the
n-th circle with center On and radius rn. Let Pn denote the projection of On

on AB. We claim that rn = rab
n2b2+ab+a2 .

The key idea is to use inversion. Look at the circle of inversion (see Figure
) with radius = 2a + 2b = 2r. Now, the vertical line on the left which

corresponds to the big semicircles is tangent to both the big
semicircle as well as to the semicircle on the right. Note that the common

point of tangency lies on the circle of inversion and is, therefore, fixed. Sim-
ilarly, the vertical line on the right corresponds to the left semicircles. The
point A is the centre of inversion and C ′ is the inversion of C. The points of
tangency of the common tangents through A of a pair of corresponding circles
(like Tn and T ′

n in the figure) play a double role. On the one hand, they are
homologous, corresponding under the implied homothety and, on the other
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hand, they are antihomologous mapping to each other under inversion. In
other words, denoting b

a
by t, we have the equalities

AT ′
n

ATn

=
r′n
rn

=
rt

rn

and
AT ′

nATn = (2r)2.

Therefore, (AT ′
n)2 = 4r3t

rn
.

But, we also have (AT ′
n)2 = (2r + tr)2 + (2ntr)2 − (tr)2.

Combining these, we get rn = rt
n2t2+t+1

which proves the claim.
The original problem is the case n = 1.
Also solved by Santosh Nadimpalli, Prithwijit De, Sahil Mhaskar.

Solution 2.
It is easy to see that r = cos(nθ) has n petals or 2n petals according as to
whether n is odd or even.
Let P denote the point (xn, yn) where 2yn is the ‘width’ of the rose petal.
Consider the obtuse angle α made by the line OP with the tangent at P .
Then tanα = r

dr
dα

. As yn is maximal, the tangent at P is horizontal; that is,

α + θn = π. Hence r + tanθn
dr
dα

= 0. Thus,

ntanθn = cot(nθn).

When n = 2, this gives tanθ2 = 1√
5

and therefore,

y2 = rsinθ2 = cos(2θ2)sinθ2 =

√
6

9
.

For general n, one can either express cot(nθn) as a rational function of tanθn

and use ntanθn = cot(nθn) or do the following which is easier :
Differentiating y = rsinθ with respect to θ and set dy

dθ
equal to 0. If θn is the

smallest critical value, then

cosθncos(nθn) = nsinθnsin(nθn).

Adding ncosθncos(nθn), we get

(n + 1)cosθncos(nθn) = ncos(n − 1)θn.

2



The Chebychev polynomials Tn(X) defined by Tn(cosθ) = cos(nθ) give us

cosθnTn(cosθn) =
n

n + 1
Tn−1(cosθn).

Note that the Tn’s can be obtained easily by comparing the real parts of

(cosθ + isinθ)n = cos(nθ) + isin(nθ).

Also solved by Santosh Nadimpalli.

Solution 3 (Ashay Burungale).
We claim a3 is in the center for each a. Indeed by computation, since a4 = a,
we get (a3b − a3ba3)2 = 0 = (ba3 − a3ba3)2.

Thus, a3b − a3ba3 = (a3b − a3ba3)4 = 0 = (ba3 − a3ba3)4 = ba3 − a3ba3.

Thus, a3bc = a3ba3c and so a3R is a ring with unity. Note that if these rings
are commutative, then so is R because a3bc = a3cb gives with b = a that
ac = ca. So, we may assume R has a unity, say 1.
Note that 24 = 2 and 34 = 3 gives 14 = 0 = 78 which implies 2 = 0.
Now (1 + a)3 = 1 + a + a2 + a3 means a + a2 is in the center. Thus, a + b +
(a + b)2 = a + b + a2 + b2 + ab + ba is in the center. So, ab + ba is central. In
particular, a(ab+ ba) = (ab+ ba)a; that is, a2 is central. As a+ a2 is already
in the center, so is a.

Solution 4 (Ashay Burungale).
More generally, we prove that if b > 1 and bn − 1 divides a, then the base b

expression of a has at least n non-zero digits. Let m be the minimal number
of non-zero digits of any non-zero multiple of bn − 1. Among all multiples
with m non-zero digits, suppose A = a1b

k1 + · · · + ambkm has the smallest
digit-sum. Here 0 ≤ ai < b and k1 > k2 > · · · > km. The key claim is that
the powers ki are all distinct mod n. If this is proved, then it would follow
that the number C = a1b

r1 + · · ·+ ambrm where ri < n and ri ≡ ki mod n, is
a multiple of bn −1 but is less than or equal to (b−1)(1+ b+ · · ·+ bn−1 < bn.
Thus, C = bn − 1 and so m = n. Let us prove now that ki’s are distinct mod
n. Suppose i < j and ki ≡ kj mod n. Choosing d large enough such that
kj + dn > k1, consider the number B = A − aib

ki − ajb
kj + (ai + aj)b

kj+dn.
This is a multiple of bn − 1 as B − A = aib

ki(bkj−ki+dn − 1) + ajb
kj(bdn − 1).

Note that by minimality of the number m of non-zero digits, the number
ai + aj must be ≥ b. But, then the digit-sum of B is clearly (digit-sum for
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A) − ai − aj + 1 + (ai + aj − b) which is less than the digit-sum for A. This
contradicts the choice of A. Therefore, the claim is proved and the main
assertion follows.

Solution 5.
If t < 4, there is nothing to prove. Suppose t ≥ 4. Solving for t1, t2 with
t = t1 + t2 = t1t2, we get

t1 =
t −

√
t2 − 4t

2
, t2 =

t +
√

t2 − 4t

2
.

Note that 1 < t1 ≤ 2 from t ≥ 4. If t2 < 4, then we are through. Otherwise,
work with t2 in place of t. As t2 + 1 < t2 + t1 = t, the size decreases by more
than 1 and this process will lead to a number less than 4 after finitely many
steps. Note that this algorithm produces a set t1, t2, · · · , tk of numbers, all
less than 4, having the stronger property that

t1 + · · · + tk = t1t2 · · · tk;

t2 + · · · + tk = t2 · · · tk;
...

tk−1 + tk = tk−1tk.

Solution 6.
Consider p(S) − q(T ) ∈ Q[S, T ]. Writing the decomposition

p(S) − q(T ) = f1(S, T ) · · · fr(S, T )

into irreducible polynomials and using the ‘Hilbertian’ property of Q stated
in the problem, there are infinitely many rational numbers t such that for
each i ≤ r, fi(S, t) ∈ Q[S] is irreducible. Now, the hypothesis implies that
for each t ∈ Q, there is some s ∈ Q with p(s) = q(t); that is, there is some
i ≤ r (depending on t) such that fi(s, t) = 0. Therefore, there is some i ≤ r

such that for infinitely many t ∈ Q, the polynomial fi(S, t) ∈ Q[S] has a
root in Q. Being irerducible, this means that fi must have degree 1 in S. In
other words, fi(S, T ) = f(T )S + g(T ) with f, g ∈ Q[T ] and f non-zero. We
may write

p(S) − q(T ) = h(S, T )(f(T )S + g(T ))
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for some h(S, T ) ∈ Q[S, T ].

Specializing S = − g(T )
f(T )

, we get p(− g(T )
f(T )

) = q(T ).

So − g(T )
f(T )

is integral (i.e., satisfies a monic polynomial) over Q[T ]. But then
it must be a polynomial itself.

Solution 7.
As C is closed and bounded, there exists P ∈ C with OP maximal. IF P

coincides with O, then evidently C is just the single point O (a disc of radius
zero). Suppose P is not O. Let Q be any point on the circle C0 with centre
O passing through P . If the angle 6 QOP is θ, consider the sequence of
points Qn on the line segment OQ defined by OQn = OP (cos θ

n
)n. Note that

OQn = OP cos θ
n
(cos θ

n
)n−1. Now, OP cos θ

n
is the base of a right triangle with

hypotenuse OP . By hypothesis, the point Qn,1 ∈ C where OQn,1 = OP cos θ
n

and 6 Qn,1OP = θ
n
. In this manner, for each k ≤ n, the point Qn,k ∈ C where

OQn,k = OQn,k−1 cos θ
n

and 6 Qn,kOQn,k−1 = θ
n
. Thus, Qn ∈ C. Evidently,

Qn → Q. As C is closed, Q ∈ C. Therefore, each point of the circle C0

belongs to C. By maximality of OP , it is clear that no point outside C0

can be in C. Finally, it is clear that each point inside C0 is in C as the
corresponding radial segment intersects C.
Also solved by Ashay Burungale.

Solution 8.
The generating function 1+

∑

n≥1 p2(n)tn =
∏

k≥1
1

(1−tk)k (see P.A.Macmahon’s

1916 book ‘Combinatorial analysis’ for a proof). The interesting thing is that
Macmahon’s conjectured values

1 +
∑

n≥1

pd(n)tn =
∏

k≥1

1

(1 − tk)(
k+d−2

d−1 )

are known to be false for each d ≥ 3 (!) Nevertheless, there is still hope

that the exponent
(

k+d−2
d−1

)

could be replaced by one of the same degree d− 1
to get a correct generating function. For instance, when d = 3, a paper by
V.Mustonen & R.Rajesh (see arXiv:cond-mat/0303607v1) shows that when
d = 3, if there is an exponent of degree 2 in k, it must be of the form
(0.5 ± 0.012)k2. As yet, the question is quite open.
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