
Solutions to Problems posed in January 2009

Solution 1.
For any g ∈ S and any k > 0, clearly gSk ⊂ Sk+1 which gives

|S| ≤ |S2| ≤ |S3| ≤ · · · · · ·

Since G is finite, there is some k so that |Sk| = |Sk+1|. But then we also
have

|Sk+2| = |Sk+1S| = |gSkS| = |gSk+1| = |Sk+1|.
Hence, |Sk| = |Sl| for all l > k. As O(G) = n, cardinality of Sr is ≤ n
for any r, which implies that |Sn| = |Sm| for all m > n. In particular,
|Sn| = |S2n| which gives on using the fact that e ∈ Sn, that Sn ⊂ S2n.
Thus, Sn = S2n which shows that Sn is closed under the group operation.
The other properties required for a subgroup are evidently true.

Solution 2.
(The proof we give is due to M.K.Fort Jr. Much stronger results are known
due to Fort as well as A.Norton).
First of all, we clarify what is meant by the slightly more general concept
of a k-times (Peano) differentiable function f at a point x. This simply
requires that there is a polynomial Px of degree at most k (the k-th order
Taylor polynomial at the point x) such that (f(x + t) − Px(t))/tk → 0 as
t → 0. For k = 0, this is the usual continuity but for k > 1, it is more
general than the usual k-times differentiability which requires that f (k−1)

exist in a neighbourhood of x.
Suppose, if possible, f is a function which is discontinuous at all rationals
and differentiable at all irrationals. Consider the set A = ∩nAn where

An = {p : ∃x, y; |x− p| < 1
n

, |y − p| < 1
n

,
f(x)− f(p)

x− p
− f(y)− f(p)

y − p
> 1}.

From the very definition of A, f is not differentiable at any of the points p
in A. Thus, A is a subset of the rationals. However, we shall observe that
for each n, the interior points of An form an everywhere dense set. This
would be a contradiction to A being contained in the set of rationals. Start
with any open interval I and with some rational number q ∈ I. Choose h, k
such that

max(f(q), limsupt→qf(t)) > h > k > min(f(q), liminft→qf(t)).
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If p ∈ I ∩ (q − 1
n , q) and p > q − (h− k), then

h− f(p)
q − p

− k − f(p)
q − p

=
h− k

q − p
> 1.

Finally, if we choose x, y very close to q so that f(x) > h and f(y) < k (this
is possible because f is discontinuous at q), we get

f(x)− f(p)
x− p

− f(y)− f(p)
y − p

> 1.

Hence p ∈ An. As the set

{t ∈ I ∩ (q − 1
n

, q) : t > q − (h− k)}

is open, the above p is an interior point of An. Thus, the interior of An is
everywhere dense.

Solution 3.
This was originally proved by W.Scherrer in 1946. Of course, we are consid-
ering here only the regular convex n-gons. For the equilateral triangle, it is
simple to see as follows. For a possible lattice equilateral triangle, we must
have the length l of any side to be of the form

√
a2 + b2 for integers a, b.

But then the area
√

3l2

4 cannot be rational (note that the area is rational by
using the determinant expression for it). Thus a lattice equilateral triangle
does not exist. A similar proof can be carried over to show there are no
regular lattice hexagons. Now, suppose n > 4 and n 6= 6 and suppose there
is a regular lattice n-gon with vertices P1, · · · , Pn. Consider such a polygon
of smallest possible area. But, if we reflect its vertices respectively about
the vectors

→
P2P3,

→
P3P4, · · · ,

→
P1P2, we get a new, regular lattice n-gon which

has smaller area !

Solution 4.
(These are due to Papadimitriou and T. Apostol).
There is a typographical error in the problem stated. The correct problem
was supposed to be :
Prove that

∑n
r=1 cot2 rπ

2n+1 = n(2n− 1)/3.
IActually, even if we keep the left hand side

∑n
r=1 cot2 rπ

n+1 as it appeared
originally, it is a similar exercise to prove this equals n(n−1)/3. Let us now
show

n∑

r=1

cot2
rπ

2n + 1
= n(2n− 1)/3.
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Start with

(cotθ − i)n =
(cosθ − isinθ)n

sinnθ
=

cosnθ − isinnθ

sinnθ
.

Equating the imaginary parts on both sides, we obtain

sinnθ

sinθ
=

∑
s

(
n

2s + 1

)
(−1)scotn−2s−1θ.

Now, taking 2n + 1 instead of n, we will have

sin(2n + 1)θ = (sin2n+1θ)Pn(cot2θ)

for 0 < θ < π/2 where Pn is the polynomial
(

2n + 1
1

)
Tn −

(
2n + 1

3

)
Tn−1 + · · ·

Noting that the zeroes of Pn are precisely rπ/(2n + 1) for r = 1, 2, · · · , n we
have the first identity from the ‘sum of the roots’ formula.
Let us now consider the sum

∑n
r=1 cot2m rπ

2n+1 for general m. Noting that
the inequality sinx < x < tanx implies the inequality

cot2mx < 1/x2m < (1 + cot2x)m

we have that
n∑

r=1

cot2m rπ

2n + 1
<

(2n + 1)2m

π2m

n∑

r=1

1
r2m

<
n∑

r=1

(1 + cot2
rπ

2n + 1
)m.

Therefore,
n∑

r=1

(1 + cot2
rπ

2n + 1
)m =

n∑

r=1

cot2m rπ

2n + 1
+ O(n2m−1).

In other words, to find c2m where
∑n

r=1 cot2m rπ
2n+1 = c2mn2m + O(n2m−1),

it suffices to look at the sum

(cot2
π

2n + 1
)m + (cot2

2π

2n + 1
)m + · · ·+ (cot2

nπ

2n + 1
)m

which is the sum sm of the m-th powers of the roots of the polynomial Pn.
By the usual Newton formula, one has

−sr = (−1)rrσr +
r−1∑

k=1

(−1)r−kskσr−k
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where σr are the elementary symmetric functions. Now, we note that

σr =

(2n+1
2r+1

)
(2n+1

1

) =
22r

(2r + 1)!
n2r + O(n2r−1).

Using this, we can prove without difficulty by induction on m that

−sm = (−1)m 24m−1B2m

(2m)!
n2m + O(n2m−1)

where Bk’s are the Bernoulli numbers. In other words,

n∑

r=1

cot2m rπ

2n + 1
= (−1)m−1 24m−1B2m

(2m)!
n2m + O(n2m−1).

Solution 5.
(This is due to Sister Beiter).
If n is a power of a prime, say n = pk, then Φn(X) = Φp(Xpk−1

) evidently.
Therefore, the cyclotomic polynomial does have all coefficients to be 0 or
1. We claim that for any other n, there is at least one negative coefficient.
Indeed, it is another easy exercise to show that when n has at least 2 prime
divisors, Φn(1) = 1 (ask me if you can’t show this). Thus, the sum of all
the coefficients is 1. However, the top coefficient is already 1 which means
that there must be some negative coefficient because it is clearly impossible
that Φn(X) = Xφ(n).

Solution 6.
(This is due to I.Amemiya & K.Masuda).
Call the assertion “whenever a ∈ B satisfies an ∈ A for all large enough n,
it must be in A” as property (P) for A as a subring of B. Suppose A has
property as a subring of B, and consider any f =

∑
n≥0 bnXn+k ∈ B[[X]]

satisfying f r ∈ A[[X]] for all large enough r. Now, br
0 ∈ A for all large r

and, therefore, b0 ∈ A. The trick is to consider the subring B′ of B which
consists of all b ∈ B such that b0b

m ∈ A for all m ≥ 0. It is clear that it is a
subring and that it contains A. Let us show by induction on n that bn ∈ B′

for all n. Suppose we know b0, b1, · · · , bn ∈ B′ and we shall show bn+1 ∈ B′.
Now b0(

∑n
i=0 biX

k+i)m ∈ A[[X]] for all m. So,

b0f
r(f −

n∑

i=0

biX
k+i)(r+1)m =

∑
s

a0b0f
r+s(

n∑

i=0

biX
k+i)(r+1)m−s ∈ A[[X]]
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for some a0 ∈ A. Thus, the corresponding coefficient of Xkr+(k+n+1)(r+1)m -
which is br+1

0 b
(r+1)m
n+1 - is in A. Hence, by property (P), we have b0b

m
n+1 ∈ A

for all m. Thus, bn+1 ∈ B′. So, we have shown that b0f
m ∈ A[[X]] for all

m which gives

(f − b0X
k)r = f r +

r∑

s=1

(const.)bs
0f

r−sXks ∈ A[[X]].

Since f − b0X
k starts with b1X

k+1, we get b1 ∈ A again using property (P).
In this manner, all the bi’s are in A.
We will indicate how to use this fact to prove Joris’s theorem asserting that
when f : R → R is so that f2, f3 are smooth, then so is f . In fact, this
works with a set n1, n2, · · · , nr of positive integers with GCD 1 instead of
2, 3. Choose a positive integer p such that every integer r ≥ p is a non-
negative linear combination of the ni’s. In other words, one could take p
to be one more than the corresponding Frobenius number. Thus, it follows
that f r is smooth for all r ≥ p. The connection with power series is to look,
for any smooth function g at a point a, the so-called ∞-jet of g at a which
is the power series

Ja(g) :=
∑

n≥0

g(n)(a)Xn

n!
∈ R[[X]].

Consider the set D of points a such that Jaf
p 6= 0. It is easy to show

that D is an open subset and that Jaf
r = 0 at each a outside D for any

r ≥ p. Considering the ring B of all continuous functions on D and its
subring A which consists of restrictions of continuous functions on R which
vanish outside D. It is clear that A has property (P) as a subring of B.
For our smooth functions f r, {Jaf

r : a ∈ D} can be considered as an
element J(f r) of A[[X]] for each r ≥ p. As f is smooth on D, the relation
J(f)r = J(f r) ∈ A[[X]] for all r ≥ p implies, by the above property (P)
that J(f) ∈ A[[X]]. From this, it is not difficult to conclude smoothness of
f using repeatedly the following observation :
When f, g are continuous on R, vanish outside D, where f is differentiable
and f ′ = g in D, then f is everywhere differentiable and f ′ = g.
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