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Introduction

* 'The applications of the W function (hereafter mostly
referred to as the W function) to D-dimensional Bose gases are

presented 1in this talk.

* The low temperature T behavior of free ideal Bose gases is

considered 1n 2, 3 and 4 dimensions.
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1. Applications of the W function

* Enumerating search trees

* Solutions to transcendental equations

* Analytic solutions to solar cell parameters
* Wien’s displacement law

* Fringing fields of a parallel plate capacitor

The W function has the potential to provide solutions to problems
that have previously not been solved analytically, as well as
uncovering novel and interesting properties of previously solved

problems.



Star Formation

+- Phi(r.z)

A function Phi(r,z) that can be used to generate magnetic field
lines in terms of the Lambert W



2. The W function

The W function is defined as the multivalued function which solves

the following equation:

W(z)exp(W(z)) = z ze€C, n
ot, equivalently, as the multivalued inverse of the function
[ 2 — z€e? |l
Y R S S

For real argument, at most two solutions: | 1,
* IV, (solid line) is the principal branch

* IV, (dashed line) T
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Two families of transcendental equations appear in statistical
mechanics, applied mathematical and physics problems.

Type 1: "+ Blnz+C=0. (3)
where n, B,C € C not depending on z and n, B # 0. Then
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n . n
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z"lnx+ Bz"+C=0. (5)
nlnz +nB = —Cnz™" = —Cne™® = —Cnz e ™ " .
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3A. Thermodynamic Functions

1 9ZgE 1
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where x = B(e — ),

€ 1s the energy,

1 18 the chemical potential,

B = 1/kT', T is the temperature,
and k is Boltzmann constant.

Z 1s the Grand Partition Function

NBE,NFD are the distributions for number of particles over
different quantum energy states at 7 for systems
of bosons and fermions.



3B. Quantum Statistics

1. Fermi-Dirac 2. Bose-Einstein

* In this work we will present applications of the
W tunction to free ideal Bose gases.

* We represent the number of particles N,
entropy S, pressure P, chemical potential y, and
energy U using the Z grand partition function:



- 0(lnZ) ., 0TnZ) - 0(InZ)
N =kT o S =—k 57 , P=kT 317
O(In Z) ,O0(In 2Z)
— — kT .
p=—k=gn— s U=k =57

* The thermodynamic quantity that gives most insight into the
nature of BEC 1s the fugacity

» — ebPu

* In the limit where all bosons are in the ground state, the fugacity
approaches unity.



4. Two, Three and Four Dimensional
Ideal Bose Gases

* The reduced particle density for a Bose gas in D dimensions is
oiven in terms of a polylogarithm of order related to the
dimension. The result is:

oAP = Lip,i1(2) , )

* Where Lin11(2) is the polylogarithm of order m + 1,
m=D/2 -1and D is the dimension, 2 = €°* is the fugacity of
the system, \ — \/ 271 h2 / k'T'M 1s the de-Broglie wavelength,
M is the mass of the constituent particles, and the quantity pA”
is referred to as the reduced particle density.




The analysis presented here relies on an expansion of
the polylogarithms about g = 1.
It =012, (D=24,0,), as 3—1,

Lipyy = 12(‘3:1) (111 %)m (lnln (i) ~(m+1) +¢(1))+T_U(im]ﬁ(m+ 1 ;1 r)(Inz)’ |

(10)
Where (3 ) is the Riemann Zeta Function,

I'(s) 1s the Gamma Function, and

(s ) (also referred to as the Digamma Function) is
the logarithmic derivative of the Gamma Function.



4A. Chemical Potential

 InD =2and D = 4 dimensions, from pA\” = Li,,1(2) ,
the reduced particle densities are

o\ = Liy(2), D=2, 11a
and

o\t = Liy(2), D=4 11b

Two dimensional case:

=0 — the logarithmic derivatives cancel.

as r increases the summation become small in the following:

o = (1) (it () im0 3 St

[ 1 !
(m+1)\ 2 2 o) r!



From the previous eqn. and p\* = Liy(2), D =4 the reduced
particle density near 3 = 1 is

o\ = Lii(2) ~ —Inln(1/2) +((0)Inz D =2 (12)
which can be rewritten as

t—2lnz—2pX* =0, x=—1Inz
using the fact that ¢(0) = —1/2

Hence this (12) is of the form (3) with z =1, B= -2 and C' = —2p)\?
so that its solution is given by (4),

. 2 1/1
r=—Inz==—2W, [—%eXp (_ ( 3,02)\ ))]

and by the definition of g we have u = —kT'z, then,

1 2
p = 2kTW, (—56_”)‘) L A=+/2nh2/kTM , D=2.

(13)




y is the argument of the W function

y — 0= Wy(y) — 0and W_;(y) — —o0.

it W 1s given in terms of W, then

I' - 0=A—0c0=u— 0
Wo(0) = 0,
Whereas if p is expressed in terms of W, (2), then fu — - ©

Since we are interested in region z & 1 we only consider the

solution in terms of W),

n—1 o—nPA’

(14)

I

Based on this expressmn we have the tollowing results in 2-D:



* For real p, treating /0)\2 as an independent variable, the series
(14) has a radius of convergence £ = 1 —1In 2 Within the circle
of convergence, |p| < 2kT. Also, u has a branch point at
pA? =1 —1In2 and a branch cut along the negative real axis:

pA? € (—oo, R).

) _ A)\2
* For real values of u , condensation occurs when e ?* — 0,
as expected in two dimensions. This is in agreement 1" — 0,
with the result obtained by Lee.



Return to chemical potential in 4-D

D=4,m=1,
pA* =In (1) (111 In (1) —¥(2) + w(l)) +¢(2) el

Z z

Where (2) =9(1)+1, (1) = —C, C is Euler’s constant .
Equivalently,

rin(z) —z+(C2)—pA) =0 z=—Inz, w8

withz=1,B=-1and C = (¢(2) — p\*).



* Therefore the solution to (15) using  ((2) = =?2/6.

| ) ~1/1
e W (6@ - AIWenED)|

251

By the definition of W (z), W(z)™t =exp(W(z))/z, so:

1 2
p=—kTr=—FKT exp (Wj ( [p)\4 — 7;]) + 1) (a7

€

r=—Ilnz= [—

In general, (17) allows for the possibility of a complex chemical

potential. By choosing j= 0 or j = —1 the chemical potential is real.



For real branches of W , a solution exists if:
Wjle™! (pA* — (72/6))] — —oo0,

which is only possible if /= —1 and ¢ (le - %2) — 0.

Recalling that: A= /27h?/(MET),

We have: _— 24h4p 2K2\/6p
VM2 T kM

By definition,

W_1(z) e R < z€[-1/¢e,0).

This constraint can be expressed in terms of T, by

noting that 1n our case it 1s equivalent to

T e [(n/vV6+ )T, T,) ~ [0.789T,,T,).

For real values, T must be within about 80% and 100% T

(18)

A



4B. Pressure

Pressure P 1s a function of the chemical potential.

e, I P

ET Oln =

As a polylogarithm, order of pressure P depends on the dimension.
Hence, for two-dimensional case:

P 2
= 5 Lia(z) D

Note: Volume and Temperature are held fixed
O 1s the number density
Z 1s the fugacity
N 1s the number of particles



Two-Dimensional Case of Ideal Bose Gas

The pressure around z =1 is expressed as:

P 2 1 1 | un
T e |:hl (:> (111 (hl (:)) — l) + G] .

The fact that Inz = (1 /kT)wu, leads to:

P 2 1 _ 2 1 _ e
— ~ — | —2W. —— -:_P’}" — 2 — — -:_"5"“1"'~ — -+
ET x—*[ mj( 2° )(IH< 2”3( 2° )) 1)

b2



In(—2W;(y)) + W;(y) =In2 + In(—y) .

Thus, pressure of a two-dimensional gas 1s:

A2 2 2
P 4 [I-'Tf"j (—Ee_ﬁ')‘“ﬂ - HpX” + 1)1--1-’} (—le_*ﬂﬂ) + ., D=2

KT N2 9 \2 5 N2
When W, is very small,
P 4(p 2 +1)_ . Ly 72 |
_ Vo[ —Ze D=2
kT 22 Wo 2 T D

Note: As limit T2 0 (A2 ), right hand side = 0

* Using series expansion for W, about g = 0, series expansion for
pressure about pA? >> 1 is:

P 2pA2 + 1) o= yn\n-1l e g2
KT A2 Z() - D=2




Four-Dimensional Case of Ideal Bose Gas

Pressure is expressed as: I 2 .. Ny
p = =glis(x) D=4

As mentioned above,

- (=1)m* 1\" 1 C(m+1-— ?)(111 z)"
Lipi1 = T(m + 1) (111 j) (111 In (j) w(m+1 ) Z

r=0(r#m)

pressure 1s related to fugacity z by:

=5 [t (n(2)) (e (2) -0 0) 40+ conme]



and by neglecting In Z terms of order 22 :

P @) 2%0e)
TS T T e

Using solution
1 2
1= —kTr=—FkTexp (I-{-”j (— {p)ﬁ — €]> + 1)
e

equation of state for free ideal Bose gas near z =1 and D=4 1s:

P %3 ([
KT )s(3 B (1--1»-'_1 (E [F ) WD " 1)




Conclusions

* New representations for chemical potential p, P, T of Bose Gas

— Relationship between chemical potential and T in terms of W function in two,
three, four dimensions

— Branch cuts of chemical potential in two dimensions
— Chemical Potential and Decay in a BEC
— Series Expansion in terms of quantity exp (¢4?) with D=2
— Expression for small T below condensation T°
Real Values for chemical potential for 7" € [0.7897.. T¢)

— Equation of state in BEC regime



* W function and analysis of BEC of trapped ideal Bose gas
— Condensate T with D=1, expressed in terms of .
— Chemical Potential with D=2, express in terms of T and N.

* High T expansions for P and p of hard-core bosons, D=1

— Radius of Convergence, Coefficients of Mayer expansions differ from Tonk

gas

— Temperature, chemical potential, pressure in low temperature analysis



* Applications of Type 1 and Type 2 equations to Bose-
Einstein and Maxwell-Boltzmann systems at high
temperatures.

— Convergence of different statistics in classical unit
— Complex chemical potential and temperature

— Incomplete complex analysis for ideal Bose at D=2 & D=4 near
condensation

— Further study on branch cuts, singularities of the thermodynamic
functions.

* Applications of W function

* Obtaining several special solutions of W function in
classical and non-classical limits

e Bose and Lambert are no more but Bosons and The
Lambert W will live for ever.



