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Introduction

• The applications of  the W function (hereafter mostly

referred to as the W function) to D-dimensional Bose gases are

presented in this talk.

• The low temperature T behavior of  free ideal Bose gases is

considered in 2, 3 and 4 dimensions.
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1. Applications of  the W function 

• Enumerating search trees

• Solutions to transcendental equations

• Analytic solutions to solar cell parameters

• Wien’s displacement law

• Fringing fields of a parallel plate capacitor

The W function has the potential to provide solutions to problems

that have previously not been solved analytically, as well as

uncovering novel and interesting properties of  previously solved

problems.



A function Phi(r,z) that can be used to generate magnetic field 

lines in terms of  the Lambert W



(1)

2. The W function
The W function is defined as the multivalued function which solves

the following equation:

or, equivalently, as the multivalued inverse of the function

For real argument, at most two solutions:

• W0 (solid line) is the principal branch

• W-1 (dashed line)

(2)



(3)

Two families of transcendental equations appear in statistical

mechanics, applied mathematical and physics problems.

Type 1:

(4)

(6)

Type 2:

(5)



temperature,

(7)
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is the Grand Partition Function

are the distributions for number of  particles over 

different quantum energy states atT for systems 

of  bosons and fermions.

,

3A. Thermodynamic Functions 



3B. Quantum Statistics

1. Fermi-Dirac                    2. Bose-Einstein

• In this work we will present applications of  the 
W function to free ideal Bose gases.

• We represent the number of  particles N, 
entropy S, pressure P, chemical potential μ, and 
energy U using the Z grand partition function: 



• The thermodynamic quantity that gives most insight into the

nature of  BEC is the fugacity

• In the limit where all bosons are in the ground state, the fugacity

approaches unity.



4. Two, Three and Four Dimensional 

Ideal Bose Gases

• The reduced particle density for a Bose gas in D dimensions is 

given in terms of  a polylogarithm of  order related to the 

dimension. The result is:

• Where                   is the polylogarithm of  order m + 1,   

m=D/2   -1 and D is the dimension,                 is the fugacity of  

the system,          is the de-Broglie wavelength,

M is the mass of  the constituent particles, and the quantity        

is referred to as the reduced particle density.

(9)



The analysis presented here relies on an expansion of

the polylogarithms about z = 1. 

If  m=0,1,2, (D=2,4,6,), as z→1,

Where          is the Riemann Zeta Function, 

Γ(s) is the Gamma Function, and

(also referred to as the Digamma Function) is 
the logarithmic derivative of  the Gamma Function.

(10)



4A. Chemical Potential

• In D = 2 and D = 4 dimensions, from 

the reduced particle densities are

and

Two dimensional case:

m = 0         the logarithmic derivatives cancel.

as r increases the summation become small in the following:  

(11a)

(11b)



From the previous eqn. and                                      the reduced

particle density near z = 1 is

which can be rewritten as

using the fact that                  .

Hence this (12) is of  the form (3) with n = 1, B = −2 and                

so that its solution is given by (4),

and by the definition of  z we have                 then,

(12)

(13)



y is the argument of the W function

if µ is given in terms of W0 then

Whereas if μ is expressed in terms of W-1 (z), then βµ - ∞

Since we are interested in region z ≈ 1 we only consider the

solution in terms of W0.

Based on this expression we have the following results in 2-D:

(14)



• For real μ, treating          as an independent variable, the series 

(14) has a radius of  convergence                      .Within the circle 

of  convergence,                    Also, μ has a branch point at                          

a                        and a branch cut along the negative real  axis:

• For real values of  μ , condensation occurs when                                                      

as expected in two dimensions. This is in agreement               

with the result obtained by Lee.



Return to chemical potential in 4-D

D = 4, m = 1,

Where                       ,                   ,  .

Equivalently,

with n = 1, B = -1 and

(15)

(16)



• Therefore the solution to (15) using

By the definition of            so:

In general, (17) allows for the possibility of  a complex chemical

potential. By choosing j = 0 or j = −1 the chemical potential is real.

(17)



For real branches of  W , a solution exists if:

which is only possible if  j = −1 and 

Recalling that:

We have:
(18)

By definition, 

This constraint can be expressed in terms of  Tc by

noting that in our case it is equivalent to                                               

For real values, T must be within about 80% and 100% Tc



Pressure P is a function of  the chemical potential. 

As a polylogarithm, order of  pressure P depends on the dimension. 

Hence, for two-dimensional case:

Note: Volume and Temperature are held fixed

ρ is the number density

z is the fugacity

N is the number of  particles

4B. Pressure



The pressure around z =1 is expressed as:

The fact that lnz = (1/kT)μ, leads to:

Two-Dimensional Case of  Ideal Bose Gas



Thus, pressure of  a two-dimensional gas is:

When W0 is very small, 

Note: As limit T 0 ( λ ∞), right hand side  0

• Using series expansion for W0 about z = 0, series expansion for 

pressure about ρλ2 >> 1 is:



Pressure is expressed as:

As mentioned above,

pressure is related to fugacity z by:

Four-Dimensional Case of  Ideal Bose Gas



and by neglecting ln z terms of  order ≥2 :

Using solution

equation of  state for free ideal Bose gas near z =1 and D=4 is:



Conclusions

• New representations for chemical potential μ, P, T of  Bose Gas

– Relationship between chemical potential and T in terms of  W function in two, 

three, four dimensions

– Branch cuts of  chemical potential in two dimensions

– Chemical Potential and Decay in a BEC

– Series Expansion in terms of  quantity exp (-ρλ2) with D=2

– Expression for small T below condensation T

Real Values for chemical potential for 

– Equation of  state in BEC regime



• W function and analysis of  BEC of  trapped ideal Bose gas

– Condensate T with D=1, expressed in terms of  N.

– Chemical Potential with D=2, express in terms of  T and N.

• High T expansions for P and ρ of  hard-core bosons, D=1

– Radius of  Convergence, Coefficients of  Mayer expansions differ from Tonk

gas

– Temperature, chemical potential, pressure in low temperature analysis



• Applications of  Type 1 and Type 2 equations to Bose-

Einstein and Maxwell-Boltzmann systems at high 

temperatures.

– Convergence of  different statistics in classical unit

– Complex chemical potential and temperature

– Incomplete complex analysis for ideal Bose at D=2 & D=4 near 

condensation

– Further study on branch cuts, singularities of  the thermodynamic 

functions.

• Applications of  W function

• Obtaining several special solutions of  W function in 

classical and non-classical limits 

• Bose and Lambert are no more but Bosons and The 

Lambert W will live for ever. 


