Hopf Algebras, Independences and Dual Groups

Steffi Lachs

University of Greifswald

Bengaluru, 31st QP-Conference ICM Satellite Conference

August 17, 2010

Outline

- Preliminaries
 - Universal products
 - IN₀-graded dual groups
- Connections between dual groups and Hopf algebras
- Main theorem
- 4 Applications: CLT's for sums of i.i.d. q.r.v.'s

Free product of *-algebras

Notation:

$$\mathbb{A}_{2} = \left\{ \varepsilon = (\varepsilon_{1}, \dots, \varepsilon_{m}) \mid m \in \mathbb{N}, \varepsilon_{k} \in \left\{1, 2\right\}, \varepsilon_{k} \neq \varepsilon_{k+1}, k \in \left\{1, \dots, m\right\} \right\}$$

Let A_1, A_2 be *-algebras.

• free product of the vector spaces:

$$\mathcal{A}_1\sqcup\mathcal{A}_2:=igoplus_{arepsilon\in\mathbb{A}_2}\mathcal{A}_{arepsilon_1}\otimes\mathcal{A}_{arepsilon_2}\otimes\cdots\otimes\mathcal{A}_{arepsilon_m}$$

with multiplication

$$\underbrace{(a_1 \otimes \cdots \otimes a_m)}_{\in \mathcal{A}_{(\varepsilon_1, \dots, \varepsilon_m)}} \underbrace{(b_1 \otimes \cdots \otimes b_n)}_{\in \mathcal{A}_{(\varepsilon_1, \dots, \varepsilon_n)}} = \begin{cases} a_1 \otimes \cdots \otimes a_m \otimes b_1 \otimes \cdots \otimes b_n, & \varepsilon_m \neq \varrho_1 \\ a_1 \otimes \cdots \otimes (a_m b_1) \otimes \cdots \otimes b_n, & \varepsilon_m = \varrho_1 \end{cases}$$

with involution

$$(a_1 \otimes \cdots \otimes a_m)^* := a_m^* \otimes \cdots \otimes a_1^*$$

 \Rightarrow the free product $A_1 \sqcup A_2$ becomes a *-algebra

Universal property of the free product

 \mathcal{A} , \mathcal{A}_1 , \mathcal{A}_2 , $\hat{\mathcal{A}}_1$, $\hat{\mathcal{A}}_2$ algebras, ι_1 , ι_2 , $\hat{\iota}_1$, $\hat{\iota}_2$ canonical embeddings, j_1 , j_2 algebra homomorphisms

Universal property of the free product

 \mathcal{A} , \mathcal{A}_1 , \mathcal{A}_2 , $\hat{\mathcal{A}}_1$, $\hat{\mathcal{A}}_2$ algebras, ι_1 , ι_2 , $\hat{\iota}_1$, $\hat{\iota}_2$ canonical embeddings, j_1 , j_2 algebra homomorphisms

Universal products and notions of independence

Definition

A **universal product** is a prescription that assigns to every pair of algebras $(\mathcal{A}_1,\mathcal{A}_2)$ and every pair of linear functionals (φ_1,φ_2) a linear functional $\varphi_1 \bullet \varphi_2 : \mathcal{A}_1 \sqcup \mathcal{A}_2 \to \mathbb{C}$ in such a way that the following axioms yield:

- (A1) $(\varphi_1 \bullet \varphi_2) \bullet \varphi_3 = \varphi_1 \bullet (\varphi_2 \bullet \varphi_3)$ with linear functional $\varphi_3 : \mathcal{A}_3 \to \mathbb{C}$
- (A2) $(\varphi_1 \bullet \varphi_2) \circ \iota_1 = \varphi_1$ and $(\varphi_1 \bullet \varphi_2) \circ \iota_2 = \varphi_2$
- (A3) $(\varphi_1 \circ j_1) \bullet (\varphi_2 \circ j_2) = (\varphi_1 \bullet \varphi_2) \circ (j_1 \coprod j_2)$ with algebra homomorphisms $j_{1,2} : \hat{\mathcal{A}}_{1,2} \to \mathcal{A}_{1,2}$

Universal products and notions of independence

Definition

A **universal product** is a prescription that assigns to every pair of algebras (A_1, A_2) and every pair of linear functionals (φ_1, φ_2) a linear functional $\varphi_1 \bullet \varphi_2 : A_1 \sqcup A_2 \to \mathbb{C}$ in such a way that the following axioms yield:

(A1)
$$(\varphi_1 \bullet \varphi_2) \bullet \varphi_3 = \varphi_1 \bullet (\varphi_2 \bullet \varphi_3)$$
 with linear functional $\varphi_3 : \mathcal{A}_3 \to \mathbb{C}$

(A2)
$$(\varphi_1 \bullet \varphi_2) \circ \iota_1 = \varphi_1$$
 and $(\varphi_1 \bullet \varphi_2) \circ \iota_2 = \varphi_2$

(A3)
$$(\varphi_1 \circ j_1) \bullet (\varphi_2 \circ j_2) = (\varphi_1 \bullet \varphi_2) \circ (j_1 \coprod j_2)$$

with algebra homomorphisms $j_{1,2} : \hat{\mathcal{A}}_{1,2} \to \mathcal{A}_{1,2}$

Definition

Let \mathcal{A} be a unital *-algebra and Φ be a state on \mathcal{A} . Furthermore let $\mathcal{A}_1, \ldots, \mathcal{A}_n$ be *-algebras and $j_k : \mathcal{A}_k \to \mathcal{A}$ ($k \in \{1, \ldots, n\}$) *-algebra homomorphisms. Then j_1, \ldots, j_n are called •-independent, if

$$\Phi \circ (j_1 \sqcup \cdots \sqcup j_n) = (\Phi \circ j_1) \bullet \cdots \bullet (\Phi \circ j_n).$$

Examples for universal products are: the tensor product \otimes , the free product \bigstar , the Boolean product \diamond , the monotone product \diamond , which are defined as follows:

Examples for universal products are: the tensor product \otimes , the free product \star , the Boolean product \diamond , the monotone product \diamond and the anti-monotone product \triangleleft , which are defined as follows:

$$(\varphi_1 \otimes \varphi_2)(a_1 \otimes \cdots \otimes a_m) = \varphi_1 \left(\prod_{k: \varepsilon_k = 1}^{\rightarrow} a_k \right) \varphi_2 \left(\prod_{l: \varepsilon_l = 2}^{\rightarrow} a_l \right)$$
 (T)

for
$$a_1 \otimes \cdots \otimes a_m \in \mathcal{A}_{(\varepsilon_1, \dots, \varepsilon_m)}$$

Examples for universal products are: the tensor product \otimes , the free product \star , the Boolean product \diamond , the monotone product \triangleright and the anti-monotone product \triangleleft , which are defined as follows:

$$(\varphi_{1} \otimes \varphi_{2})(a_{1} \otimes \cdots \otimes a_{m}) = \varphi_{1} \left(\prod_{k:\varepsilon_{k}=1}^{\rightarrow} a_{k} \right) \varphi_{2} \left(\prod_{l:\varepsilon_{l}=2}^{\rightarrow} a_{l} \right)$$

$$(\varphi_{1} \bigstar \varphi_{2})(a_{1} \otimes \cdots \otimes a_{m}) = \sum_{I \subsetneq \{1,\dots,m\}} (-1)^{m-\#I+1} (\varphi_{1} \bigstar \varphi_{2}) \left(\prod_{k\in I}^{\rightarrow} a_{k} \right) \left(\prod_{l\notin I} \varphi_{\varepsilon_{l}}(a_{l}) \right)$$

$$(\mathsf{F})$$

$$(\mathsf{recursively with } \varphi_{1} \bigstar \varphi_{2} \left(\prod_{k\in\emptyset}^{\rightarrow} a_{k} \right) := 1)$$

for
$$a_1 \otimes \cdots \otimes a_m \in \mathcal{A}_{(\varepsilon_1, \dots, \varepsilon_m)}$$

$$(\varphi_1 \diamond \varphi_2)(a_1 \otimes \cdots \otimes a_m) = \left(\prod_{k: \varepsilon_k = 1} \varphi_1(a_k)\right) \left(\prod_{l: \varepsilon_l = 2} \varphi_2(a_l)\right) \tag{B}$$

for
$$a_1 \otimes \cdots \otimes a_m \in \mathcal{A}_{(\varepsilon_1, \dots, \varepsilon_m)}$$

$$(\varphi_1 \diamond \varphi_2)(a_1 \otimes \cdots \otimes a_m) = \left(\prod_{k: \varepsilon_k = 1} \varphi_1(a_k)\right) \left(\prod_{l: \varepsilon_l = 2} \varphi_2(a_l)\right) \tag{B}$$

$$(\varphi_1 \triangleright \varphi_2)(a_1 \otimes \cdots \otimes a_m) = \varphi_1 \left(\prod_{k:\varepsilon_k=1}^{\rightarrow} a_k\right) \left(\prod_{l:\varepsilon_l=2}^{\rightarrow} \varphi_2(a_l)\right) \tag{M}$$

for
$$a_1 \otimes \cdots \otimes a_m \in \mathcal{A}_{(\varepsilon_1, \dots, \varepsilon_m)}$$

$$(\varphi_1 \diamond \varphi_2)(a_1 \otimes \cdots \otimes a_m) = \left(\prod_{k: \varepsilon_k = 1} \varphi_1(a_k)\right) \left(\prod_{l: \varepsilon_l = 2} \varphi_2(a_l)\right) \tag{B}$$

$$(\varphi_1 \triangleright \varphi_2)(a_1 \otimes \cdots \otimes a_m) = \varphi_1 \left(\prod_{k:\varepsilon_k=1}^{\rightarrow} a_k\right) \left(\prod_{l:\varepsilon_l=2}^{\rightarrow} \varphi_2(a_l)\right)$$
 (M)

$$(\varphi_1 \triangleleft \varphi_2)(a_1 \otimes \cdots \otimes a_m) = \left(\prod_{k: \varepsilon_k = 1} \varphi_1(a_k)\right) \varphi_2\left(\prod_{l: \varepsilon_l = 2} \overrightarrow{a_l}\right) \tag{AM}$$

for $a_1 \otimes \cdots \otimes a_m \in \mathcal{A}_{(\varepsilon_1, \dots, \varepsilon_m)}$

\mathbb{N}_0 -graded dual groups

Definition

A \mathbb{N}_0 -graded dual semigroup (\mathcal{D}, Λ) is a graded *-algebra \mathcal{D} with a homogeneous *-algebra homomorphism $\Lambda : \mathcal{D} \to \mathcal{D} \sqcup \mathcal{D}$, which fulfills

$$\begin{split} &(\Lambda \amalg \mathrm{id}_{\mathcal{D}}) \circ \Lambda = (\mathrm{id}_{\mathcal{D}} \amalg \Lambda) \circ \Lambda \\ &(\mathbf{0} \sqcup \mathrm{id}_{\mathcal{D}}) \circ \Lambda = \mathrm{id}_{\mathcal{D}} = (\mathrm{id}_{\mathcal{D}} \sqcup \mathbf{0}) \circ \Lambda. \end{split}$$

If there exists in addition an homogeneous antipode $\kappa: \mathcal{D} \to \mathcal{D}$ s. t.

$$(\kappa \sqcup \mathrm{id}_{\mathcal{D}}) \circ \Lambda = \mathbf{0} = (\mathrm{id}_{\mathcal{D}} \sqcup \kappa) \circ \Lambda,$$

 $(\mathcal{D}, \Lambda, \kappa)$ becomes a graded dual group.

\mathbb{N}_0 -graded dual groups

Definition

A \mathbb{N}_0 -graded dual semigroup (\mathcal{D}, Λ) is a graded *-algebra \mathcal{D} with a homogeneous *-algebra homomorphism $\Lambda : \mathcal{D} \to \mathcal{D} \sqcup \mathcal{D}$, which fulfills

$$\begin{split} &(\Lambda \amalg \mathrm{id}_{\mathcal{D}}) \circ \Lambda = (\mathrm{id}_{\mathcal{D}} \amalg \Lambda) \circ \Lambda \\ &(\mathbf{0} \sqcup \mathrm{id}_{\mathcal{D}}) \circ \Lambda = \mathrm{id}_{\mathcal{D}} = (\mathrm{id}_{\mathcal{D}} \sqcup \mathbf{0}) \circ \Lambda. \end{split}$$

If there exists in addition an homogeneous antipode $\kappa: \mathcal{D} \to \mathcal{D}$ s. t.

$$(\kappa \sqcup \mathrm{id}_{\mathcal{D}}) \circ \Lambda = \mathbf{0} = (\mathrm{id}_{\mathcal{D}} \sqcup \kappa) \circ \Lambda,$$

 $(\mathcal{D}, \Lambda, \kappa)$ becomes a graded dual group.

• for $\varphi_1, \varphi_2 \in \mathcal{D}'$ the **convolution** is defined by

$$\varphi_1 \star \varphi_2 := (\varphi_1 \bullet \varphi_2) \circ \Lambda$$

(here $\varphi_1 \bullet \varphi_2 \in (\mathcal{D} \sqcup \mathcal{D})'$ stands for one universal product)

Connections between dual groups and Hopf algebras

AIM: Constructing a functor by using the symmetric tensor algebra S(V) in order to carry out an algebraic reduction of a graded dual group according to one of the universal products to a graded commutative Hopf *-algebra.

Connections between dual groups and Hopf algebras

AIM: Constructing a functor by using the symmetric tensor algebra $\mathcal{S}(V)$ in order to carry out an algebraic reduction of a graded dual group according to one of the universal products to a graded commutative Hopf *-algebra.

• for a fixed universal product • and any algebras A_1, A_2 there exists a linear map

$$\varepsilon_{\mathcal{A}_1,\mathcal{A}_2}: \mathcal{A}_1 \sqcup \mathcal{A}_2 \to \mathcal{S}(\mathcal{A}_1) \otimes \mathcal{S}(\mathcal{A}_2),$$

which satisfies for all $\varphi_1 \in \mathcal{A}'_1, \varphi_2 \in \mathcal{A}'_2$

$$\varphi_1 \bullet \varphi_2 = (\mathcal{S}(\varphi_1) \otimes \mathcal{S}(\varphi_2)) \circ \varepsilon_{\mathcal{A}_1, \mathcal{A}_2}$$

Connections between dual groups and Hopf algebras

AIM: Constructing a functor by using the symmetric tensor algebra $\mathcal{S}(V)$ in order to carry out an algebraic reduction of a graded dual group according to one of the universal products to a graded commutative Hopf *-algebra.

• for a fixed universal product • and any algebras $\mathcal{A}_1, \mathcal{A}_2$ there exists a linear map

$$\varepsilon_{\mathcal{A}_1,\mathcal{A}_2}: \mathcal{A}_1 \sqcup \mathcal{A}_2 \to \mathcal{S}(\mathcal{A}_1) \otimes \mathcal{S}(\mathcal{A}_2),$$

which satisfies for all $\varphi_1 \in \mathcal{A}'_1, \varphi_2 \in \mathcal{A}'_2$

$$\varphi_1 \bullet \varphi_2 = (\mathcal{S}(\varphi_1) \otimes \mathcal{S}(\varphi_2)) \circ \varepsilon_{\mathcal{A}_1, \mathcal{A}_2}$$

these maps fulfill similar axioms as the universal product

Reduction of dual groups to Hopf algebras

- gD& category of graded dual groups
- gComℌ category of graded commutative Hopf *-algebras

Theorem (Functor $\mathcal{S}:\mathfrak{gDG}\to\mathfrak{gCom}\mathfrak{H}$)

choose one universal product "•", then

$$(\mathcal{D}, \Lambda, \kappa) \mapsto \big(\mathcal{S}(\mathcal{D}), \mathcal{S}(\varepsilon_{\mathcal{D}, \mathcal{D}} \circ \Lambda), \mathcal{S}(\mathbf{0}), \mathcal{S}(\kappa)\big)$$
$$\mathsf{Mor}(\mathcal{D}_1, \mathcal{D}_2) \ni g \mapsto \mathcal{S}(g) \in \mathsf{Mor}\big(\mathcal{S}(\mathcal{D}_1), \mathcal{S}(\mathcal{D}_2)\big)$$

describes a functor $\mathcal S$ from \mathfrak{gDG} to $\mathfrak{gCom}\mathfrak H$

• $\mathcal{S}: \mathcal{D}' \to \operatorname{Hom}(\mathcal{S}(\mathcal{D}), \mathbb{C})$ is a homomorphism between the semigroup \mathcal{D}' with convolution

$$\varphi_1 \star \varphi_2 = (\varphi_1 \bullet \varphi_2) \circ \Lambda \qquad \forall \varphi_1, \varphi_2 \in \mathcal{D}'$$

and the monoid $\operatorname{Hom}(\mathcal{S}(\mathcal{D}),\mathbb{C})$ with convolution

$$\mathcal{S}(\varphi_1) \circledast \mathcal{S}(\varphi_2) := (\mathcal{S}(\varphi_1) \otimes \mathcal{S}(\varphi_2)) \circ \mathcal{S}(\varepsilon_{\mathcal{D},\mathcal{D}} \circ \Lambda)$$

Proof of the Theorem

Sketch of proof

coassociativity:

$$\begin{split} \left(\mathcal{S}(\varepsilon_{\mathcal{D},\mathcal{D}} \circ \Lambda) \otimes \mathrm{id}_{\mathcal{S}(\mathcal{D})} \right) \circ \mathcal{S}(\varepsilon_{\mathcal{D},\mathcal{D}} \circ \Lambda) \\ &= \left(\mathrm{id}_{\mathcal{S}(\mathcal{D})} \otimes \mathcal{S}(\varepsilon_{\mathcal{D},\mathcal{D}} \circ \Lambda) \right) \circ \mathcal{S}(\varepsilon_{\mathcal{D},\mathcal{D}} \circ \Lambda) \end{split}$$

counit property:

$$\begin{split} \left(\mathcal{S}(\mathbf{0}) \otimes \mathrm{id}_{\mathcal{S}(\mathcal{D})} \right) \circ \mathcal{S}(\varepsilon_{\mathcal{D},\mathcal{D}} \circ \Lambda) &= \iota_{\mathcal{D}} \\ &= \left(\mathrm{id}_{\mathcal{S}(\mathcal{D})} \otimes \mathcal{S}(\mathbf{0}) \right) \circ \mathcal{S}(\varepsilon_{\mathcal{D},\mathcal{D}} \circ \Lambda) \end{split}$$

3. antipode property:

$$M_{\mathcal{S}(\mathcal{D})} \circ (\mathcal{S}(\kappa) \otimes \mathrm{id}_{\mathcal{S}(\mathcal{D})}) \circ \mathcal{S}(\varepsilon_{\mathcal{D},\mathcal{D}} \circ \Lambda) = \mathcal{S}(\mathbf{0})$$
$$= M_{\mathcal{S}(\mathcal{D})} \circ (\mathrm{id}_{\mathcal{S}(\mathcal{D})} \otimes \mathcal{S}(\kappa)) \circ \mathcal{S}(\varepsilon_{\mathcal{D},\mathcal{D}} \circ \Lambda)$$

- 4. $g \mapsto \mathcal{S}(g)$ maps morphisms g between dual groups to morphisms $\mathcal{S}(g)$ between Hopf *-algebras s. t. $\mathcal{S}(g \circ h) = \mathcal{S}(g) \circ \mathcal{S}(h)$
- 5. $S(\varphi_1 \star \varphi_2) = S(\varphi_1) \circledast S(\varphi_2) \quad \forall \varphi_1, \varphi_2 \in \mathcal{D}'$
- 6. S protects the grading, because $\varepsilon_{D,D}$ is homogeneous

In which way does the functor gives us new results?

In which way does the functor gives us new results?

Theorem (M. Schürmann'93)

- $m{\bullet} \ \ \mathcal{C} = igoplus_{k \in \mathbb{N}_0} \mathcal{C}^{(k)}$ graded coalgebra, $u \in \mathbb{N}$
- ullet $\varphi \in \mathcal{C}'$ fulfills

(i)
$$\varphi \upharpoonright \mathcal{C}^{(k)} = 0$$
 for $0 < k < \nu$

(ii)
$$\varphi \upharpoonright \mathcal{C}^{(0)} = \delta \upharpoonright \mathcal{C}^{(0)}$$
,

$$\Rightarrow \lim_{N \to \infty} \varphi^{*N} \left(\frac{c}{N^{-\frac{k}{\nu}}} \right) = (\exp_* g_{\varphi})(c) \qquad \forall c \in \mathcal{C}^{(k)}, \tag{1}$$

 $\text{whereby } g_\varphi \in \mathcal{C}' \text{ is defined by } g_\varphi(c) = \begin{cases} 0, & \text{if } c \in \mathcal{C}^{(k)}, k \neq \nu \\ \varphi(c), & \text{if } c \in \mathcal{C}^{(\nu)} \end{cases}$

In which way does the functor gives us new results?

Theorem (M. Schürmann'93)

- ullet $\mathcal{C}=igoplus_{k\in\mathbb{N}_0}\mathcal{C}^{(k)}$ graded coalgebra, $u\in\mathbb{N}$
- ullet $\varphi \in \mathcal{C}'$ fulfills

(i)
$$\varphi \upharpoonright \mathcal{C}^{(k)} = 0$$
 for $0 < k < \nu$

(ii)
$$\varphi \upharpoonright \mathcal{C}^{(0)} = \delta \upharpoonright \mathcal{C}^{(0)}$$
,

$$\Rightarrow \lim_{N \to \infty} \varphi^{*N} \left(\frac{c}{N^{-\frac{k}{\nu}}} \right) = (\exp_* g_{\varphi})(c) \qquad \forall c \in \mathcal{C}^{(k)}, \tag{1}$$

 $\text{whereby } g_\varphi \in \mathcal{C}' \text{ is defined by } g_\varphi(c) = \begin{cases} 0, & \text{if } c \in \mathcal{C}^{(k)}, k \neq \nu \\ \varphi(c), & \text{if } c \in \mathcal{C}^{(\nu)} \end{cases}$

In which way does the functor gives us new results?

Theorem (M. Schürmann'93)

- ullet $\mathcal{C}=igoplus_{k\in\mathbb{N}_0}\mathcal{C}^{(k)}$ graded coalgebra, $u\in\mathbb{N}$
- $\varphi \in \mathcal{C}'$ fulfills

(i)
$$\varphi \upharpoonright \mathcal{C}^{(k)} = 0$$
 for $0 < k < \nu$

(ii)
$$\varphi \upharpoonright \mathcal{C}^{(0)} = \delta \upharpoonright \mathcal{C}^{(0)}$$
,

$$\Rightarrow \lim_{N \to \infty} \varphi^{*N} \left(\frac{c}{N^{-\frac{k}{\nu}}} \right) = (\exp_* g_{\varphi})(c) \qquad \forall c \in \mathcal{C}^{(k)}, \tag{1}$$

$$\text{whereby } g_\varphi \in \mathcal{C}' \text{ is defined by } g_\varphi(c) = \begin{cases} 0, & \text{if } c \in \mathcal{C}^{(k)}, k \neq \nu \\ \varphi(c), & \text{if } c \in \mathcal{C}^{(\nu)} \end{cases}$$

- $\nu = 1 \Rightarrow$ Law of Large Numbers
- $\nu = 2 \Rightarrow$ CLT for coalgebras

LT's for graded dual groups

Main theorem

- $\mathcal{D} = \bigoplus \mathcal{D}^{(k)}$ graded dual group, $\nu \in \mathbb{N}$
- given $\varepsilon_{\mathcal{D},\mathcal{D}}$ for a universal product
- $\varphi \in \mathcal{D}'$ fulfills
 - (i) $\varphi \upharpoonright \mathcal{D}^{(k)} = 0$ for $0 < k < \nu$
 - (ii) $\varphi \upharpoonright \mathcal{D}^{(0)} = \delta \upharpoonright \mathcal{D}^{(0)}$

$$\Rightarrow \lim_{N \to \infty} \varphi^{*N} \left(\frac{d}{N^{-\frac{k}{\nu}}} \right) = (\exp_* g_{\varphi})(d) \qquad \forall d \in \mathcal{D}^{(k)}, \tag{2}$$

whereby $g_{\varphi} \in \mathcal{D}'$ is defined by $g_{\varphi}(d) = \begin{cases} 0, & \text{if } d \in \mathcal{D}^{(k)}, k \neq \nu \\ \varphi(d), & \text{if } d \in \mathcal{D}^{(\nu)} \end{cases}$

LT's for graded dual groups

Main theorem

- $\mathcal{D} = \bigoplus_{k \in \mathbb{N}_0} \mathcal{D}^{(k)}$ graded dual group, $\nu \in \mathbb{N}$
- given $\varepsilon_{\mathcal{D},\mathcal{D}}$ for a universal product
- $\varphi \in \mathcal{D}'$ fulfills
 - (i) $\varphi \upharpoonright \mathcal{D}^{(k)} = 0$ for $0 < k < \nu$
 - (ii) $\varphi \upharpoonright \mathcal{D}^{(0)} = \delta \upharpoonright \mathcal{D}^{(0)}$

$$\Rightarrow \lim_{N \to \infty} \varphi^{*N} \left(\frac{d}{N^{-\frac{k}{\nu}}} \right) = (\exp_* g_{\varphi})(d) \qquad \forall d \in \mathcal{D}^{(k)}, \tag{2}$$

 $\text{whereby } g_\varphi \in \mathcal{D}' \text{ is defined by } g_\varphi(d) = \begin{cases} 0, & \text{if } d \in \mathcal{D}^{(k)}, k \neq \nu \\ \varphi(d), & \text{if } d \in \mathcal{D}^{(\nu)} \end{cases}$

LT's for graded dual groups

Main theorem

- $\mathcal{D} = \bigoplus \mathcal{D}^{(k)}$ graded dual group, $\nu \in \mathbb{N}$
- given $\varepsilon_{\mathcal{D},\mathcal{D}}$ for a universal product
- $\varphi \in \mathcal{D}'$ fulfills

$$\begin{array}{ll} \text{(i)} & \varphi \upharpoonright \mathcal{D}^{(k)} = 0 \\ \text{(ii)} & \varphi \upharpoonright \mathcal{D}^{(0)} = \delta \upharpoonright \mathcal{D}^{(0)} \end{array} \qquad \text{for } 0 < k < \nu$$

(ii)
$$\varphi \upharpoonright \mathcal{D}^{(0)} = \delta \upharpoonright \mathcal{D}^{(0)}$$

$$\Rightarrow \lim_{N \to \infty} \varphi^{\star N} \left(\frac{d}{N^{-\frac{k}{\nu}}} \right) = (\exp_{\star} g_{\varphi})(d) \qquad \forall d \in \mathcal{D}^{(k)}, \tag{2}$$

whereby $g_{\varphi} \in \mathcal{D}'$ is defined by $g_{\varphi}(d) = \begin{cases} 0, & \text{if } d \in \mathcal{D}^{(k)}, k \neq \nu \\ \varphi(d), & \text{if } d \in \mathcal{D}^{(\nu)} \end{cases}$

Sketch of proof

- use functor S to get the graded Hopf *-algebra S(D) out of D
- LT's for coalgebras \Rightarrow (1) on $(S(\mathcal{D}), \circledast)$
- restrict (1) to (\mathcal{D}, \star) in order to get (2)

AIM: Using the main theorem in the setting of q.p.s.'s for distributions of q.r.v.'s

AIM: Using the main theorem in the setting of q.p.s.'s for distributions of q.r.v.'s

SPECIAL CASE: $\mathbb{C}[x]$ as a dual group with $\Lambda(x) = \iota_1(x) + \iota_2(x)$ and $\kappa(x) = -x$; hereby $\mathbb{C}[x] \sqcup \mathbb{C}[x] \cong \mathbb{C}\langle x_1, x_2 \rangle$ (non-commuting)

AIM: Using the main theorem in the setting of q.p.s.'s for distributions of q.r.v.'s

SPECIAL CASE: $\mathbb{C}[x]$ as a dual group with $\Lambda(x) = \iota_1(x) + \iota_2(x)$ and $\kappa(x) = -x$; hereby $\mathbb{C}[x] \sqcup \mathbb{C}[x] \cong \mathbb{C}\langle x_1, x_2 \rangle$ (non-commuting)

Let (Q, Φ) be a q.p.s.

Corollary

- $(j_n:\mathbb{C}[x] \to \mathcal{Q})_{n \in \mathbb{N}}$ sequence i.i.d. q.r.v. (same distribution $\varphi = \Phi \circ j_n$)
- $\Rightarrow \lim_{N \to \infty} \varphi^{*N} \left(P \left(\frac{x}{\sqrt{N}} \right) \right) = (\exp_* g_{\varphi}) \left(P(x) \right)$

 $\text{for all } P(x) \in \mathbb{C}[x] \text{, whereby } g_{\varphi}(x^k) = \begin{cases} 0, & \text{if } k \neq 2 \\ \varphi(x^2), & \text{if } k = 2 \end{cases}$

AIM: Using the main theorem in the setting of q.p.s.'s for distributions of q.r.v.'s

SPECIAL CASE: $\mathbb{C}[x]$ as a dual group with $\Lambda(x) = \iota_1(x) + \iota_2(x)$ and $\kappa(x) = -x$; hereby $\mathbb{C}[x] \sqcup \mathbb{C}[x] \cong \mathbb{C}\langle x_1, x_2 \rangle$ (non-commuting)

Let (Q, Φ) be a q.p.s.

Corollary

- $(j_n:\mathbb{C}[x] \to \mathcal{Q})_{n \in \mathbb{N}}$ sequence i.i.d. q.r.v. (same distribution $\varphi = \Phi \circ j_n$)
- $\Rightarrow \lim_{N \to \infty} \varphi^{\star N} \left(P \left(\frac{x}{\sqrt{N}} \right) \right) = (\exp_{\star} g_{\varphi}) \left(P(x) \right)$ for all $P(x) \in \mathbb{C}[x]$, whereby $g_{\varphi}(x^k) = \begin{cases} 0, & \text{if } k \neq 2 \\ \varphi(x^2), & \text{if } k = 2 \end{cases}$

In what form do we get $(\exp_{\star} g_{\varphi})$ for respective notions of independence?

Universal products and independences again

Let • be a universal product, which fulfills additionally

(A4)
$$(\varphi_1 \bullet \varphi_2)(a_1a_2) = \varphi_1(a_1)\varphi_2(a_2)$$
 and $(\varphi_2 \bullet \varphi_1)(a_2a_1) = \varphi_2(a_2)\varphi_1(a_1)$.

Theorem (N. Muraki'02)

There exist exactly five universal products: the tensor (T), the free (F), the Boolean (B), the monotone (M) and the anti-monotone (AM) product.

⇒ There are exactly five independences!

- $(j_n : \mathbb{C}[x] \to \mathcal{Q})_{n \in \mathbb{N}}$ sequence of (tensor, free, Boolean, monotone or anti-monotone) i.i.d. q.r.v.'s with $\varphi = \Phi \circ j_n$ and $j_n(x) = q_n$
- \Rightarrow for all $k = 1, 2, \dots$

$$\lim_{N \to \infty} \varphi^{*N} \left(\frac{x^k}{\sqrt{N}} \right) = \lim_{N \to \infty} \Phi \left(\left(\frac{q_1 + \dots + q_N}{\sqrt{N}} \right)^k \right)$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} x^k \cdot \exp\left(-\frac{x^2}{2} \right) dx, \tag{T}$$

$$= \frac{1}{2\pi} \int_{-2}^{+2} x^k \cdot \sqrt{4 - x^2} \, \mathrm{d}x,\tag{F}$$

$$= \frac{1}{2} \int_{-\infty}^{+\infty} x^k \cdot (\delta_{-1} + \delta_{+1}) \, \mathrm{d}x, \tag{B}$$

$$=\frac{1}{\pi}\int_{-\sqrt{2}}^{+\sqrt{2}} x^k \cdot \frac{1}{\sqrt{2-x^2}} dx.$$
 (M+AM)

- $(j_n:\mathbb{C}[x]\to\mathcal{Q})_{n\in\mathbb{N}}$ sequence of (tensor, free, Boolean, monotone or anti-monotone) i.i.d. q.r.v.'s with $\varphi=\Phi\circ j_n$ and $j_n(x)=q_n$
- \Rightarrow for all $k = 1, 2, \dots$

$$\lim_{N \to \infty} \varphi^{*N} \left(\frac{x^k}{\sqrt{N}} \right) = \lim_{N \to \infty} \Phi \left(\left(\frac{q_1 + \dots + q_N}{\sqrt{N}} \right)^k \right)$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} x^k \cdot \exp\left(-\frac{x^2}{2} \right) dx, \tag{T}$$

$$= \frac{1}{2\pi} \int_{-2}^{+2} x^k \cdot \sqrt{4 - x^2} \, \mathrm{d}x,\tag{F}$$

$$= \frac{1}{2} \int_{-\infty}^{+\infty} x^k \cdot (\delta_{-1} + \delta_{+1}) \, \mathrm{d}x,\tag{B}$$

$$=\frac{1}{\pi}\int_{-\sqrt{2}}^{+\sqrt{2}} x^k \cdot \frac{1}{\sqrt{2-x^2}} dx.$$
 (M+AM)

- $(j_n: \mathbb{C}[x] \to \mathcal{Q})_{n \in \mathbb{N}}$ sequence of (tensor, free, Boolean, monotone or anti-monotone) i.i.d. q.r.v.'s with $\varphi = \Phi \circ j_n$ and $j_n(x) = q_n$
- \Rightarrow for all $k = 1, 2, \dots$

$$\lim_{N \to \infty} \varphi^{*N} \left(\frac{x^k}{\sqrt{N}} \right) = \lim_{N \to \infty} \Phi \left(\left(\frac{q_1 + \dots + q_N}{\sqrt{N}} \right)^k \right)$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} x^k \cdot \exp\left(-\frac{x^2}{2} \right) dx, \tag{T}$$

$$= \frac{1}{2\pi} \int_{-2}^{+2} x^k \cdot \sqrt{4 - x^2} \, \mathrm{d}x,\tag{F}$$

$$= \frac{1}{2} \int_{-\infty}^{+\infty} x^k \cdot (\delta_{-1} + \delta_{+1}) \, \mathrm{d}x, \tag{B}$$

$$=\frac{1}{\pi}\int_{-\sqrt{2}}^{+\sqrt{2}} x^k \cdot \frac{1}{\sqrt{2-x^2}} dx.$$
 (M+AM)

- $(j_n:\mathbb{C}[x]\to\mathcal{Q})_{n\in\mathbb{N}}$ sequence of (tensor, free, Boolean, monotone or anti-monotone) i.i.d. q.r.v.'s with $\varphi=\Phi\circ j_n$ and $j_n(x)=q_n$
- \Rightarrow for all $k = 1, 2, \dots$

$$\lim_{N \to \infty} \varphi^{*N} \left(\frac{x^k}{\sqrt{N}} \right) = \lim_{N \to \infty} \Phi \left(\left(\frac{q_1 + \dots + q_N}{\sqrt{N}} \right)^k \right)$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} x^k \cdot \exp\left(-\frac{x^2}{2} \right) dx, \tag{T}$$

$$= \frac{1}{2\pi} \int_{-2}^{+2} x^k \cdot \sqrt{4 - x^2} \, \mathrm{d}x,\tag{F}$$

$$= \frac{1}{2} \int_{-\infty}^{+\infty} x^k \cdot (\delta_{-1} + \delta_{+1}) \, \mathrm{d}x, \tag{B}$$

$$=\frac{1}{\pi}\int_{-\sqrt{2}}^{+\sqrt{2}} x^k \cdot \frac{1}{\sqrt{2-x^2}} dx.$$
 (M+AM)

- $(j_n:\mathbb{C}[x]\to\mathcal{Q})_{n\in\mathbb{N}}$ sequence of (tensor, free, Boolean, monotone or anti-monotone) i.i.d. q.r.v.'s with $\varphi=\Phi\circ j_n$ and $j_n(x)=q_n$
- \Rightarrow for all $k = 1, 2, \dots$

$$\lim_{N \to \infty} \varphi^{*N} \left(\frac{x^k}{\sqrt{N}} \right) = \lim_{N \to \infty} \Phi \left(\left(\frac{q_1 + \dots + q_N}{\sqrt{N}} \right)^k \right)$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} x^k \cdot \exp\left(-\frac{x^2}{2} \right) dx, \tag{T}$$

$$= \frac{1}{2\pi} \int_{-2}^{+2} x^k \cdot \sqrt{4 - x^2} \, \mathrm{d}x,\tag{F}$$

$$= \frac{1}{2} \int_{-\infty}^{+\infty} x^k \cdot (\delta_{-1} + \delta_{+1}) \, \mathrm{d}x,\tag{B}$$

$$= \frac{1}{\pi} \int_{-\pi}^{+\sqrt{2}} x^k \cdot \frac{1}{\sqrt{2-x^2}} dx. \tag{M+AM}$$

tensor case

Boolean case

free case

(anti-)monotone case

$$\mathfrak{M}_{2k} = \frac{1}{2^k} \binom{2k}{k}$$

ACCARDI, L.; HORA, A.; OBATA, N.: Quantum Probability and Spectral Analysis of Graphs, Theoretical and Mathematical Physics, Springer: Berlin 2007.

BEN GHORBAL, A.; SCHÜRMANN, M.: Non-commutative notions of stochastic independence, Math. Proc. Cambridge Philosophical Society 133 (2002), pp. 531-561.

BEN GHORBAL, A.; SCHÜRMANN, M.: Quantum Lévy processes on dual groups, Mathematische Zeitschrift 251 (2005), pp. 147-165.

GIRI, N.; VON WALDENFELS, W.: An algebraic version of the central limit theorem, Z. Wahrsch. verw. Geb. 42 (1978), pp. 129-134.

KIETZMANN, S.: Faltungsexponentiale auf dualen Gruppen, Diplomarbeit, Greifswald 2010.

LACHS, S.: Zentrale Grenzwertsätze für Momentenfunktionale, Staatsexamensarbeit, Greifswald 2009.

MURAKI, N.: The Five Independences as Natural Products. EMAU Greifswald Preprint 3/2002.

SCHÜRMANN, M.: White Noise on Bialgebras, LNM 1544, Springer: Berlin 1993.

SPEICHER, R.: On universal products, Fields Inst. Comm. 12, AMS 1997, pp. 257-266.

VOICULESCU, D.-V.: Dual algebraic structures on operator algebras related to free products, J. Operator Theory 17 (1987), pp. 85-98.