Hopf Algebras, Independences and Dual Groups

Steffi Lachs

University of Greifswald

Bengaluru, 31st QP-Conference
ICM Satellite Conference

August 17, 2010

Steffi Lachs (University of Greifswald) Hopf Algebras, Independences and Dual Groups August 17, 2010



Outline

o Preliminaries
@ Universal products
@ INy-graded dual groups

e Connections between dual groups and Hopf algebras
e Main theorem

e Applications: CLT’s for sums of i.i.d. g.r.v’s

Steffi Lachs (University of Greifswald) Hopf Algebras, Independences and Dual Groups August 17, 2010 2/18



Preliminaries Universal products

Free product of x-algebras

@ Notation:
A, = {{-,‘: (61,...,6,,1) | me N, g € {1,2},5/(7&5](4_1,](6 {1,...,m}}

Let A, A, be x-algebras.
o free product of the vector spaces:
AU =P A, @A, ® A,
e€A,

@ with multiplication

A QA b1 Q- @by, &m# 01
a1 ® - Q(awb) @ - @by, €em=01

GA(EI ----- em) e'A(Ql ----- on)
@ with involution
(a1®...®am)* :a;@@aT

= the free product A; U .4, becomes a x-algebra
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Preliminaries Universal products

Universal property of the free product

A, Ay, Ay, Ay, A, algebras, ¢, 12, i1, i, canonical embeddings, ji, j» algebra
homomorphisms

A,
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Preliminaries Universal products

Universal property of the free product

A, Ay, Ay, Ay, A, algebras, ¢, 12, i1, i, canonical embeddings, ji, j» algebra
homomorphisms

Ay '
L1 J1
Alj Uj
AU A, - A
T
Ji -
AN
3, 10 A
AU Ay L - AU A
:x J2 %)
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Preliminaries Universal products

Universal products and notions of independence

Definition

A universal product is a prescription that assigns to every pair of algebras
(A, A2) and every pair of linear functionals (¢, ¢,) a linear functional
w1 e Ay U A, — Cin such a way that the following axioms yield:
(A1) (p10p2) @03 =p10(p203)
with linear functional ;5 : A3 — C
(A2) (301 ° 302) oL = Y and (301 ° @2) Oly = 2

(A3) (p10j1) @ (p20)2) = (p1 @ ¢2) 0 (j1 L j2)
with algebra homomorphisms j; » : A;» — A »
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Preliminaries Universal products

Universal products and notions of independence

Definition

A universal product is a prescription that assigns to every pair of algebras
(A, A2) and every pair of linear functionals (¢, ¢,) a linear functional
w1 e Ay U A, — Cin such a way that the following axioms yield:
(A1) (p10p2) @03 =p10(p203)
with linear functional ;5 : A3 — C
(A2) (301 ° @2) oL = Y and (301 ° SOZ) Oly = 2

(A3) (p10j1) @ (p20)2) = (p1 @ ¢2) 0 (j1 L j2)
with algebra homomorphisms j; » : A;» — A »

Definition
Let A be a unital x-algebra and ® be a state on .A. Furthermore let A, ..., A,
be x-algebras and ji : A, — A (k € {1,...,n}) x-algebra homomorphisms.

Thenjy,...,j, are called e-independent, if

Do (jiU---Ujy,) = (Pojj)e---e(Poj,).
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Preliminaries Universal products

Some universal products

Examples for universal products are: the tensor product ®, the free product
%, the Boolean product ¢, the monotone product > and the anti-monotone
product <, which are defined as follows:
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Preliminaries Universal products

Some universal products

Examples for universal products are: the tensor product ®, the free product
%, the Boolean product ¢, the monotone product > and the anti-monotone
product <, which are defined as follows:

(<P1®<P2)(a1®-~-®am)=@1<n ak)@Z(H al> (T)

kZEkII 115122

fora; ® - ®am € Ag,,....c)
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Preliminaries Universal products

Some universal products

Examples for universal products are: the tensor product ®, the free product
%, the Boolean product ¢, the monotone product > and the anti-monotone
product <, which are defined as follows:

(@1@@2)(a1®-~-®am)=@1<n ak)@Z(H al> (T)

kZEkII 1151:2

(1) (@1 @ @ ay) =

DR GV 28 22 (H"k) (H%,(al)) (F)

IG{1,...,m} kel i1

.
(recursively with ¢ %, (H ak> =1)

ke

fora; ® - ®am € Ag,,....c)
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Preliminaries Universal products

Some universal products

(prop)(@®: - Qam) = < 11 <P1(ak)> < 11 @2(&)) (B)

k2€k:1 1151:2

fora;® - - ®am € Ag,,....c)
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Preliminaries Universal products

Some universal products

(prow)(@® - ®a,) = < IT » ak> <H m(m)) (B)

k:er=1 Lig;=2
(P> @)@ ®- - ®an) = ( H ak) (H 902(611)> M)
k:ep=1 l:g;

fora;® - - ®am € Ag,,....c)
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Preliminaries Universal products

Some universal products

(prop)(@®: - Qam) = < 11 <P1(ak)> < 11 @2(&)) (B)

k:gy=1 l:g;=2
(1> @2)(a1 ® -+ Q@ an) = ¢ ( 11 ak) ( 11 902(611)> (M)
k:er=1 l:ig;=2
(e1902) (a1 ® - ®an) = < II <p1(ak)> P2 ( II a,) (AM)
k:er=1 L:igj=2

fora;® - - ®am € Ag,,....c)
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Preliminaries IN-graded dual groups

INy-graded dual groups

A INy-graded dual semigroup (D, A) is a graded x-algebra D with a
homogeneous x-algebra homomorphism A : D — D LI D, which fulfills

(ATlidp) o A = (idp TTA) 0 A
(OUidD)OA:idD:(idDUO)OA.

If there exists in addition an homogeneous antipode x : D — D s. t.

(kUidp)o A =0= (idp Uk) o A,

(D, A, k) becomes a graded dual group.
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Preliminaries IN-graded dual groups

INy-graded dual groups

A INy-graded dual semigroup (D, A) is a graded x-algebra D with a
homogeneous x-algebra homomorphism A : D — D LI D, which fulfills

(ATlidp) o A = (idp TTA) 0 A
(OUidD)OA:idD:(idDUO)OA.

If there exists in addition an homogeneous antipode x : D — D s. t.

(kUidp)o A =0= (idp Uk) o A,

(D, A, k) becomes a graded dual group.

o for ¢y, ¢, € D’ the convolution is defined by

prxpr = (prewy)oA

(here ¢, @ v, € (DU D)’ stands for one universal product)
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Connections between dual groups and Hopf algebras

Connections between dual groups and Hopf algebras

Aim: Constructing a functor by using the symmetric tensor algebra S(V) in
order to carry out an algebraic reduction of a graded dual group according to
one of the universal products to a graded commutative Hopf x-algebra.
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Connections between dual groups and Hopf algebras

Connections between dual groups and Hopf algebras

Aim: Constructing a functor by using the symmetric tensor algebra S(V) in
order to carry out an algebraic reduction of a graded dual group according to
one of the universal products to a graded commutative Hopf x-algebra.

o for a fixed universal product e and any algebras A;, A, there exists a
linear map

A, AU Ay — S(A1) ® S(Ay),

which satisfies for all p; € A, ¢, € A)

o100 = (S(p1) ® S(2)) 0 €4,,4,
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Connections between dual groups and Hopf algebras

Connections between dual groups and Hopf algebras

Aim: Constructing a functor by using the symmetric tensor algebra S(V) in
order to carry out an algebraic reduction of a graded dual group according to
one of the universal products to a graded commutative Hopf x-algebra.

o for a fixed universal product e and any algebras A;, A, there exists a
linear map

A, AU Ay — S(A1) ® S(Ay),

which satisfies for all p; € A, ¢, € A)

o100 = (S(p1) ® S(2)) 0 €4,,4,

@ these maps fulfill similar axioms as the universal product
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Connections between dual groups and Hopf algebras

Reduction of dual groups to Hopf algebras

@ g9 - category of graded dual groups
@ gCom$ - category of graded commutative Hopf x-algebras

Theorem (Functor S : g0® — gComs))

“_9

@ choose one universal product “e”, then

(Da Aa /i) =7 (S(D)a S(sD,’D © A)v 8(0)7 S(H))
Mor(Dy,D>) > g~ S(g) € Mor(S(Dy),S(D))

describes a functor S from g0 to g€om$H

@ S: D' — Hom(S(D), C) is a homomorphism between the semigroup D’
with convolution

orxpy=(prewm)oA  Vo,pmeD

and the monoid Hom(S(D), C) with convolution

S(p1) ® S(2) == (S(p1) ® S(¢2)) 0 S(epp o A)
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Connections between dual groups and Hopf algebras
Proof of the Theorem

Sketch of proof

1. coassociativity:
(8(6@79 o A) ® ldS(’D)) o S(EJD,D o A)
= (idS(D) & S(EDJ) o A)) o 8(5137@ o A)
2. counit property:
(S(O) ® ldS(D)) (¢} 8(81_)71) o A) =lp
= (ids(p) ® 8§(0)) 0 S(ep,p o A)
3. antipode property:
MS(D) o (S(K,) (029 ldS(D)) o S(ED;D o A) = S(O)
= Ms(p) © (ids(p) ® S(k)) 0 S(ep,p o A)
4. g — S(g) maps morphisms g between dual groups to morphisms S(g)
between Hopf x-algebras s. t. S(g o h) = S(g) o S(h)

5. S(p1xp2) =S(p1) ®8S(p2) Vo1, €D
6. S protects the grading, because ep p is homogeneous
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Main theorem

LT’s for graded coalgebras

In which way does the functor gives us new results?
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Main theorem

LT’s for graded coalgebras

In which way does the functor gives us new results?

Theorem (M. Schirmann’93)

o C= @ c™ graded coalgebra, v € IN

keNg
@ p € (' fulfills
i) prc®=0 for0 <k <v
(i) 1C9=51c,
= Jim o () = (exp,go)0)  Veec, (1)

0, ifceC® k#£v

hereb € C' is defined b =
whereby g, is defined by g, (c) o(c), ifeec®
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Main theorem

LT’s for graded coalgebras

In which way does the functor gives us new results?

Theorem (M. Schirmann’93)

o C= @ c™ graded coalgebra, v € IN

ke,
@ p € (' fulfills
(i) p1Cc® =0 for0 <k <v
(i) o 1O =51CO,
1 *N @ _ (k)
- Nler;O¢ (N—é) (exp, gy)(c) Ve e, (1)

0, ifceC® k#£v

hereb € C' is defined b =
whereby g, is defined by g, (c) o(c), ifeec®

Steffi Lachs (University of Greifswald) Hopf Algebras, Independences and Dual Groups August 17, 2010 12/18



Main theorem

LT’s for graded coalgebras

In which way does the functor gives us new results?

Theorem (M. Schirmann’93)

o C= @ c™ graded coalgebra, v € IN

keNg
@ p € (' fulfills
i) prc®=0 for0 <k <v
(i) 1C9=51c,
= Jim o () = (exp,go)0)  Veec, (1)

0, ifceC® k#£v

hereb € C' is defined b =
whereby g, is defined by g, (c) o(c), ifeec®

@ v =1 = Law of Large Numbers
@ v =2 = CLT for coalgebras
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Main theorem

LT’s for graded dual groups

o D= @ DW graded dual group, v € IN
keNg

@ given ep p for a universal product
o ¢ € D' fulfills

(i) ¢ 1 DY =0 for0 <k <v
(i) ¢ | DO =45 DO
o *N d — (k)
= lim o (;g) (exp, g,)(d) ~ Vd e D, (2)

o(d), ifdeD¥

i (k)
whereby g, € D' is defined by g.,(d) = {0’ tdeDb kv
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Main theorem

LT’s for graded dual groups

o D= @ DW graded dual group, v € IN
keNg

@ given ep p for a universal product
o ¢ € D' fulfills

(i) DV =0 for0 <k <wv
(i) ¢ | DO =45 DO

= lim *V (4¢) = (exp, g,)(d) VdeDW, (2)
N—oo N v

o(d), ifdeD¥

i (k)
whereby g, € D' is defined by g.,(d) = {0’ tdeDb kv
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LT’s for graded dual groups

o D= @ DW graded dual group, v € IN
keNg

@ given ep p for a universal product
o ¢ € D' fulfills

(i) o1 D® =0 for0 < k < v
(i) ¢ [ DO =61DO
& *N d _ ®)
= Jim o (~40) = (exp, g,)(d)  Vd €DV, -
0 ifd e DW k+v
whereb € D' is defined b =12 )
Y 8o Y 8¢(d) {so(d) i d e D)

Sketch of proof
@ use functor S to get the graded Hopf x-algebra S(D) out of D
@ LT’s for coalgebras = (1) on (S(D), ®)
@ restrict (1) to (D, *) in order to get (2)

—
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Applications: CLT's for sums of i.i.d. g.r.vs

Nice applications

AIm: Using the main theorem in the setting of g.p.s.’s for distributions of g.r.v.s
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Applications: CLT's for sums of i.i.d. g.r.vs

Nice applications

AIm: Using the main theorem in the setting of g.p.s.’s for distributions of g.r.v.s

SPECIAL CASE: C[x] as a dual group with A(x) = ¢ (x) + t2(x) and x(x) = —x;
hereby C[x] U C[x] = C{x,x;) (non-commuting)
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Applications: CLT's for sums of i.i.d. g.r.vs

Nice applications

AIm: Using the main theorem in the setting of g.p.s.’s for distributions of g.r.v.s

SPECIAL CASE: C[x] as a dual group with A(x) = ¢ (x) + t2(x) and x(x) = —x;
hereby C[x] U C[x] = C{x,x;) (non-commuting)

Let (Q,®) be aq.p.s.

Corollary

@ (j, : Clx] = Q),ew Sequence i.i.d. g.r.v. (same distribution ¢ = ® o j,)
® p(x)=0
= Jim o™ (P(Z5)) = (exp. o) (PW)

o, if k£ 2
for all P(x) € C[x], whereby g, (x) = {<p(x2), s o
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Applications: CLT's for sums of i.i.d. g.r.vs

Nice applications

AIm: Using the main theorem in the setting of g.p.s.’s for distributions of g.r.v.s

SPECIAL CASE: C[x] as a dual group with A(x) = ¢ (x) + t2(x) and x(x) = —x;
hereby C[x] U C[x] = C{x,x;) (non-commuting)

Let (Q,®) be aq.p.s.

Corollary
@ (j, : Clx] = Q),ew Sequence i.i.d. g.r.v. (same distribution ¢ = ® o j,)
® p(x)=0

= Jim o™ (P(Z5)) = (exp. o) (PW)

for all P(x) € C[x], whereby g, (x) = {

0, if k #2
o(x?), ifk=2

In what form do we get (exp, g,) for respective notions of independence?
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Applications: CLT's for sums of i.i.d. g.r.vs

Universal products and independences again

Let e be a universal product, which fulfills additionally
(A4) (p1®@2)(a1a2) = pi(a1)p2(az) and (o2 @ ¢1)(aza1) = p2(az)e1(ar).

Theorem (N. Muraki’02)

There exist exactly five universal products: the tensor (T), the free (F), the
Boolean (B), the monotone (M) and the anti-monotone (AM) product.

= There are exactly five independences!
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Applications: CLT's for sums of i.i.d. g.r.vs

Special CLT

Theorem (CLT - one-dimensional case)

@ (j, : Clx] — Q).en Sequence of (tensor, free, Boolean, monotone or
anti-monotone) i.i.d. g.r.v./s with ¢ = ® 0 j,, and j,(x) = g,

0 p(x) =0, @@*)=1,

= forallk=1,2,...

1 e
_E - fexp(——) : M
)Jc V4 — 22 dx, (F)
271'
/ £ (6 +b4) d ®)
+V2 1
_;/M Y (M+AM)
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Applications: CLT's for sums of i.i.d. g.r.vs

Special CLT

Theorem (CLT - one-dimensional case)

@ (j, : Clx] = Q)n.ew Sequence of (tensor, free, Boolean, monotone or

anti-monotone) i.i.d. g.r.v./s with ¢ = ® 0 j,, and j,(x) = g,
® p(x) =0, @(*) =1,
= forallk=1,2,...

. xk . q1+---+gn k
*N —
th © <7\/1V) _th <I>(< W )
dx

1 ~+oo x2
- [t ()
exp 7

V2T J -0 ’
1 [t

= — /4 — 22 dx,
2 J_»

1 [toeo
=7/ (6 4 64)dy,
2/

1 [tV2 1
:7/ Pl dx.
T J_3 2 —x2
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Applications: CLT's for sums of i.i.d. g.r.vs

Special CLT

Theorem (CLT - one-dimensional case)

@ (j, : Clx] — Q).en Sequence of (tensor, free, Boolean, monotone or
anti-monotone) i.i.d. g.r.v./s with ¢ = ® 0 j,, and j,(x) = g,

0 p(x) =0, @@*)=1,

= forallk=1,2,...

. xk . q1+---+gn k
*N —
th © <7\/1V) _th <I>(< W )
dx

1 oo x?
- [ g«.exp(_g) : )
-1 Vi )
T™J—2
1 [too
:5‘/_00 )gc (5_1+5+1)dx, (B)
1 [+v2 1
:;/M * (M+AM)
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Applications: CLT's for sums of i.i.d. g.r.vs

Special CLT

Theorem (CLT - one-dimensional case)

@ (j, : Clx] — Q).en Sequence of (tensor, free, Boolean, monotone or
anti-monotone) i.i.d. g.r.v./s with ¢ = ® 0 j,, and j,(x) = g,

0 p(x) =0, @@*)=1,

= forallk=1,2,...

1 e
= )J‘ V4 — 22 dx, (F)
T

=Eﬁwﬁ%Lﬁﬁmm, (®)
1 [tV2 1

_;/ﬂ/2 e — (M+AM)

Steffi Lachs (University of Greifswald) Hopf Algebras, Independences and Dual Groups August 17, 2010 16/18



Applications: CLT's for sums of i.i.d. g.r.vs

Special CLT

Theorem (CLT - one-dimensional case)

@ (j, : Clx] — Q).en Sequence of (tensor, free, Boolean, monotone or
anti-monotone) i.i.d. g.r.v./s with ¢ = ® 0 j,, and j,(x) = g,

0 p(x) =0, @@*)=1,

= forallk=1,2,...

| oo
_E e (<5 ) e )
)Jc V4 — 22 dx, (F)
271'
/ £ (6 +b4) d ®)
L
_7/+ S S N (M+AM)
T J_v2 2 — x?
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T(t)

B(t)

Applications: CLT's for sums of i.i.d. g.r.vs

tensor case

T = 4(2)

2k

Boolean case

free case
o
L T
t

Mae = 7 (%)

(anti-)monotone case
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