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We reflect on notions of positivity and square roots. @
More precisely:

e In a good notions of positivity, it should be a theorem
that every positive thing has a square root!

e The square root must allow to recover the positive thing in an
easy way, making also manifest in that way that the positive thing
IS positive. (~ facilitate proofs of positivity.)

e We prefer unique square roots.

e \We wish to compose two positive things to get new ones.

To achieve this:

e \We will allow for quite general square roots.

e [t turns out that it is good to view positive things as maps.
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Note: Complex numbers are excellent square roots of positive
numbers!

(Think of the richness of wave functions X — ¢(X) € C in QM
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Note: Complex numbers are excellent square roots of positive
numbers!

(Think of the richness of wave functions X — ¢(X) € C in QM

such that p(X) := @(X)¢(X) becomes a probability density over R3.
Volkmar: What about complex square roots of RN-derivatives?)

Note: Suppose Z € C such that ZZ = 1 > 0.

Thenu:=Z =é* e st

In fact, u: 4 — ud is a unitary in B(C) that maps zto Z.

All square roots of A > 0 are unitarily equivalent in that sense.

Note: Positive numbers A, u > 0 can be multiplied.

In fact, if z w € C are square roots of 4, u, respectively,
then (zw)(zw) = (Z2)(Ww) = Au,

so that Au > 0.
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Example. $ a C*-algebra, b € 8. Then @
b>0 = 3B € B suchthat 5°8 = D.

Note: Suppose B’ € B such that 878" = b.
Then% =???. (~> polar decomposition.)
However, u: 8 +— B’ defines a unitary B3B8, 8’8). (Hilbert modules!)

All square roots of b > 0 are unitarily equivalent in that sense.

Note: Let b,c > 0. Then bc > O iff bc = cb.
However, if B8 = b, v*y = ¢, then y*B8*By = (By)*(By) = 0.

This square root depends on the choice (at least of )

and it Is noncommutative.

Note: In order to compose in that way a fixed ¢ with any b, we need to
know the whole map y* e y! (~ Hilbert bimodules!)
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N

Theorem. (Kolmogorov decomposition.) If £ is C—valued PD-
kernel over S, then there exist a Hilbert space H and a map

11 S — H such that o, oo
((0),1(c")) = T

and H = spani(S). Moreover, if j: S — K fulfills (j(o), j(o”)) = 177,
thenv: i(0) — |(o) extends to a unique isometry H — K.

Proof. On Sc =@, C ={(Z)yes | #o: 2 # 0} < oo } define the

sesquilinear form B ,
(@)gess @pes) = D, 21777,

0,0’ €S

PD is born to make that positive. Rest: Quotient by N and completion,
withi: o — e, + N where €; 1= (6507),/cs- B
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Note: (H,1) is an excellent square root of ! @

e fis easily computable in terms of (H,1).

Try to do the same with the collection of numbers \/Z{jjzlzf“iﬂjzj

or with the collection of matrices \/(f‘fi"fi)i,j:l ,,,, "

e (H,1) is unigue in a very specific sense.

In fact, if also (K, |) fulfills span |(S) = K, then v becomes a unitary.

Also, compare positive numbers: S = {w}, t““ =1 > 0.

e Composition of PD-kernels is reflected by tensor products.

()70 := 17017 (Schurprod.)f ~ i:S—>H, [~ j:S—>K
(f) ~ (i®])(0) =i(0)®](0) € HRK. Note: span(i®|)(S) ¢ HRK!
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Theorem. (Kolmogorov decomposition.) If tis $—valued PD-
kernel over S, then there exist a Hilbert 8—module E and a map
1. S — E such that _ o o

(I(0),i(c")) = 17
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Note: (E, 1) is a square root of f, that fulfills: @

e fis easily computable in terms of (E, 1).

e (H,1) is unigue in a very specific sense.

In fact, if also (F, ) fulfills span |(S)B = F, then v becomes a unitary.
However:

e |t does NOT help composing PD-kernels.

There is no reasonable tensor product of right Hilbert 8—modules
that recovers what we did for the one-point set S = {w].

In fact, how could it?
Our composed square root Sy depends on the choice of y!
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Example. A kernel 8: Sx S — B(A,B) over asetSis
completely positive definite (CPD) if

> by K7i(arag) by = 0
]
for all finite choicesof o € S, a € Aand b, € B.

e Heo [He099]: S ={1,...,n}. (Completely multi-positive map.)
No composition considered. In particular, no semigroups.

e Accardi and Koyzyrev [AKO1]: Special case B(H) for S = {0, 1}.

However, semigroups! (The technique of the four semigroups)

e Barreto, Bhat, Liebscher, and MS [BBLS04]: General case.
In particular, CPD-semigroups.

e Possibly Speicher [Spe98] (Habilitation thesis 1994)?
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Example. A kernel 8: SxS — B(A,B)overasetSis
completely positive definite (CPD) if

> by R7i(arag) by = 0
N

for all finite choicesof o € S, a4 € Aand b, € B.

Theorem. (Kolmogorov decomposition.) A > 1 If K
s a CPD-kernel over S from A to B, then there exist an
A-B—correspondence Eandamap i: S — E such that

(i(0),ai(0")) = K77 (a)

and E = span Ai(S)B. Moreover, if |: S — F fulfills (j(o), j(c7)) =
K]79'(@), then v: i(0) — j(o) extends to a unique bilinear isometry
E— F.

Note: S = {w} ~ CP-maps. (Do NOT use n—positive for all n!)
Kolmogorov ~» Paschke’s GNS-construction [Pas73].
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1st proof. The B-valued kernel f@2)-&-7) := Q&7 (a*a’) over @
A x S is, clearly, PD. On its Kolmogorov decomposition (E, 1) check
that ai(a’, o) := i(aa, o) defines a left action of A on E. Puti(o) :=
i(1,0). =

2nd proof. On A® Sc ® B define the B—-valued sesquilinear map
<a® e ® b, 2% Qe ® b/> — b*RO-’OJ(a*a,)bl.

CPD is born to make that positive. Rest: Quotient by N and
completion, withi: o~ 1€, 1+ N. =

The first proof is “classical’:
Guess a PD-kernel, do Kolmogorov, show its algebraic properties.

The second proof is “modern”: Start with a bimodule, define the only
reasonable inner product that emerges from CPD. (The algebraic
properties are general theory of correspondences.)
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Example: The Stinespring construction.
Let . A — B be a CP-map.

Represent B ¢ B(G) faithfully on a Hilbert space G.

Guess that the kernel #&9)-(&-9) := (4, p(a*a’)g) over (A, G) is PD.
Prove it!

Do the Kolmogorov decomposition (H, 1) for t.

Show that ai(@’, g) := i(a@’, g) defines an action of A.

Show that v: g — 1(1, g) defines a bounded operator G — H.

Verify v'av = ¢(a).

But how much work is this!

Paschke: ¢ ~ (E, &) such that (¢, a¢) = ¢(a) and span AEB = E.

If 8 c B(G), then H := E® G (tensor product of correspondences) ~»
B(H) > (a0idg): X0g+— axGg and B(G,H) > (£0idg): g — £0g.
Then (£ ©idg)" (a0 idg) (€ @idg) = ¢(a) © idg = ¢(a).



A recent example: (Ramesh) @
AmapT: Eg — Fgisap—map if (T(X), T(X)) = o((X, X)).



A recent example: (Ramesh) @
AmapT: Eg — Fgisap—map if (T(X), T(X)) = o((X, X)).
Do GNS (&, &) for ¢.



A recent example: (Ramesh) @
AmapT: Eg — Fgisap—map if (T(X), T(X)) = o((X, X)).

Do GNS (€, &) for ¢. Define anisometry (: E©GE — F by {(xoa&h) =
T(xa)b.



A recent example: (Ramesh) @
AmapT: Eg — Fgisap—map if (T(X), T(X)) = o((X, X)).

Do GNS (€, &) for ¢. Define anisometry (: E©GE — F by {(xoa&h) =
T(xa)b.

Then {(X© &) = T(X).



A recent example: (Ramesh) @
AmapT: Eg — Fgisap—map if (T(X), T(X)) = o((X, X)).

Do GNS (€, &) for ¢. Define anisometry (: E©GE — F by {(xoa&h) =
T(xa)b.

Then {(X© &) = T(X).

Tensoring with G for 8 c B(G) gives a generalization of the
factorization result for 8 = B(G) by Bhat, Ramesh, and Sumesh
[BRS10]:



A recent example: (Ramesh) @
AmapT: Eg — Fgisap—map if (T(X), T(X)) = o((X, X)).

Do GNS (€, &) for ¢. Define anisometry (: E©GE — F by {(xoa&h) =
T(xa)b.

Then {(X© &) = T(X).

Tensoring with G for 8 c B(G) gives a generalization of the
factorization result for 8 = B(G) by Bhat, Ramesh, and Sumesh
[BRS10]:

H=0G, K=Eo0EoG=E6oH, L=F06GC.



A recent example: (Ramesh) @
AmapT: Eg — Fgisap—map if (T(X), T(X)) = o((X, X)).

Do GNS (€, &) for ¢. Define anisometry (: E©GE — F by {(xoa&h) =
T(xa)b.

Then {(X© &) = T(X).

Tensoring with G for 8 c B(G) gives a generalization of the
factorization result for 8 = B(G) by Bhat, Ramesh, and Sumesh
[BRS10]:

H=0G, K=Eo0EoG=E6oH, L=F06GC.

p(@) :=aoidg € B(H),and v := £ ©idg € B(G, H). (~ Stinespring.)



A recent example: (Ramesh) @
AmapT: Eg — Fgisap—map if (T(X), T(X)) = o((X, X)).

Do GNS (€, &) for ¢. Define anisometry (: E©GE — F by {(xoa&h) =
T(xa)b.

Then {(X© &) = T(X).

Tensoring with G for 8 c B(G) gives a generalization of the
factorization result for 8 = B(G) by Bhat, Ramesh, and Sumesh
[BRS10]:

H=0G, K=Eo0EoG=E6oH, L=F06GC.

p(@) :=aoidg € B(H),and v := £ ©idg € B(G, H). (~ Stinespring.)
¥Y(X) ;= x0idy € B(H,E® H) = B(H, K).



A recent example: (Ramesh) @
AmapT: Eg — Fgisap—map if (T(X), T(X)) = o((X, X)).

Do GNS (€, &) for ¢. Define anisometry (: E©GE — F by {(xoa&h) =
T(xa)b.

Then {(X© &) = T(X).

Tensoring with G for 8 c B(G) gives a generalization of the
factorization result for 8 = B(G) by Bhat, Ramesh, and Sumesh
[BRS10]:

H=0G, K=Eo0EoG=E6oH, L=F06GC.

p(@) :=aoidg € B(H),and v := £ ©idg € B(G, H). (~ Stinespring.)
¥Y(X) ;= x0idy € B(H,E® H) = B(H, K).

(~ Y(X)"(X) = p({x, X)) and O(xa) = ©(X)p(a).)



A recent example: (Ramesh) @
AmapT: Eg — Fgisap—map if (T(X), T(X)) = o((X, X)).

Do GNS (€, &) for ¢. Define anisometry (: E©GE — F by {(xoa&h) =
T(xa)b.

Then {(X© &) = T(X).

Tensoring with G for 8 c B(G) gives a generalization of the
factorization result for 8 = B(G) by Bhat, Ramesh, and Sumesh
[BRS10]:

H=0G, K=Eo0EoG=E6oH, L=F06GC.

p(@) :=aoidg € B(H),and v := £ ©idg € B(G, H). (~ Stinespring.)
¥Y(X) ;= x0idy € B(H,E® H) = B(H, K).

(~ Y(X)"(X) = p({x, X)) and O(xa) = ©(X)p(a).)

w.={0idg € B(K, L).



A recent example: (Ramesh) @
AmapT: Eg — Fgisap—map if (T(X), T(X)) = o((X, X)).

Do GNS (€, &) for ¢. Define anisometry (: E©GE — F by {(xoa&h) =
T(xa)b.

Then {(X© &) = T(X).

Tensoring with G for 8 c B(G) gives a generalization of the
factorization result for 8 = B(G) by Bhat, Ramesh, and Sumesh
[BRS10]:

H=0G, K=Eo0EoG=E6oH, L=F06GC.

p(@) :=aoidg € B(H),and v := £ ©idg € B(G, H). (~ Stinespring.)
¥Y(X) ;= x0idy € B(H,E® H) = B(H, K).

(~ Y(X)"(X) = p({x, X)) and O(xa) = ©(X)p(a).)

w.={0idg € B(K, L).

(~ w¥(X)v = (((X0 &) 0idg = T(X) ©idg € B(G,FoG) = B(G,L).)
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Note: (E, 1) is an excellent square root of K! @

e K is easily computable in terms of (E, 1).

e (E,I) is unique in a very specific sense.

In fact, if also (F, ]) fulfills span AJ(S)B = F, then v becomes a
bilinear unitary.

e Tensor product shows that composition of CPD-kernels is CPD.

(20 R)77 1= =7 o K% (Schur product.)
R~>I1:S>E ¢~ |:S>F

(LofR) ~ (10))(0) =i(c)ojlc) e EOF.

Here for 4Eg and gk, the internal tensor product E © F s
the unigue A—C-correspondence that is spanned by elementary
tensors X © y fulfilling

X0y, X 0y") =(y,XX)')and a(xoy) = (ax) O y.
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Construction: Start with E® F. Positivity: @

Observe: (X® y, X®y) = (y, (X, X\)y) =y, BBy) = By, By) = 0.

® (X1, X)) + ...+ (Xn, X IS an inner producton E; & ... ® Ey,.
(The sum of positive elements in a C*—algebra is positive.)

e Put Xy*: z— X(y,z) and E* := {X*: x € E}.
Then (X*,x*) = XX and bx'a = (a*xb*)* turns E* into a

B—B3(E)—correspondence.
(XX* is positive in the C*—algebra BB & E).)

e Define the Hilbert M,(8)-module E, := ((E*)")*. Check that
(Xn, Xﬁ) = ((Xi, X]))ij and (XnB)i = Zj ijji-

e Then <Zixi®yia2ixi®yi> = (XY, Xqa@Y™ > 0.



Note:

e A CPD-kernel & from A to B and a CPD-kernel £ from Bto C
can be composed to form a CPD-kernel £ o & from A to C.

e Viewingw e Casmap z+— zwon C
C—valued PD-kernels correspond 1-1 with CPD-kernel from C to C.
Schur product of PD-kernels=compositions of CPD-kernels.

e Viewingbe Basmap z— zb from Cto B
$HB-valued PD-kernels correspond 1-1 with CPD-kernel from C to 8.
Usually, no composition! (Codomain and domain match only in the
C—valued case.)



Recal: & ~ (E,i), € ~ (F,j),then Lo & ~ @

spanfai(c) © j(o)c: ae A,ceC,o € S}

with embedding 1© |: o +— 1(0)© |(o). This is (usually much!) smaller
than

EoOF = (spanAi(S)B) © (span B(S)C)
= span{ai(c)©bj(c’)c:aec A;be B;ceC,o,0’ € S}.

So, E © F does not coincide but at least contains the GNS-
correspondence of € o K.

The GNS-correspondences for & and £ allow easily to compute
GNS-correspondence for £ o K.
Nothing like this is true for Stinespring constructions!




Recall: (For simplicity for CP-maps.)
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By no means does the Stinespring representation p for T help to
construct the Stinespring representation for So T!
(One needs to “tensor” E with the representation space L = F © G of
the Stinespring representation x for S, not with G!)
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T A->BCcBG) ~»~ H=E0G,v=£0idg, p(a) = a0idg.
S:B->CcB(K) ~» L=FoK,w=_0idk, r(b) = boidk.

By no means does the Stinespring representation p for T help to
construct the Stinespring representation for S o T!
(One needs to “tensor” E with the representation space L = F © G of
the Stinespring representation x for S, not with G!)

The GNS-correspondences E and F, on the other hand, are
universal ! (For each CP-map they need to be computed only once.)

Doing Stinespring representations for the individual members of a
CP-semigroup on 8 c B(G), is like considering a 2 x 2—system
of complex linear equations as a real 4 x 4-system (ignoring all
the structure hidden in the fact that certain 2 x 2—submatrices are
very special) and applying the Gaul3 algorithm to the 4 x 4—system
iInstead of trivially resolving the 2 x 2—system by hand.




T = (Ty);»9 @ CPD-semigroup over Son 8 > 1. @
Then the GNS-correspondences &; of the T; fulfill E® €t D Egyt, S

(8%@...@8§2)®...@(8%@...@8%) D 8%+_,,+§;@...®8%+_”+%

Fixt> 0, ~ inductive limit over t = (t,,...,t1) € (0, co)" with
th+...+11 =t For Et: |imind¢8¢ D 8t

EsO Ct D st becomes equality EsO By = Egyy,

S0 E® = (Et)p, is @ product system. The & = i(o) € & C E fulfill
EJ0& =&, thatis, for each o € S the family £€7° = (&), is @ unit,
such that (£7, e&7') = T7 for all o, 0’ € S, and the set {£7°: o € S}
of units generates E® as a product system. We see:

The square root of a CPD-semigroup (in particular, of a CP-
semigroup) is a product system with generating set of units; Bhat
and MS [BS00].




Other examples

e The product system of a PD-semigroup consists of symmetric Fock
spaces. Applications:
Classical Lévy processes (Parthasarathy and Schmidt [PS72].)
Quantum Levy processes (Schiarmann, MS, and Volkwardt
[SSVO07].)

e The product system of uniformly continuous normal CPD-
semigroups on von Neumann algebras consists of time ordered
Fock modules (Barreto, Bhat, Liebscher, and MS [BBLS04)).

For C*—algebras this may fail (Bhat, Liebscher, and MS [BLS10])!

e The Markov semigroups that admit dilations by cocycle perturbations
of “noises” are precisely the “spatial” Markov semigroups (MS

[Ske09a]). Proof: Via “spatial’” product systems (MS [SkeO6]
(preprint 2001))!



CP-semigroups on B3(E)

Let ¢ be a semigroup of (unital, for simplicity) endomorphisms 9; of 5.
Then B; := B with b.x; := Jy(b)X is its GNS-system with unit (1), .

It is not a good idea to tensor with G when 8 ¢ B(G). (Unless vN-alg.)
This changes when B8 = B(G) — or better 8 = B3(E).
But only, if we tensor “from both sides”!

General: T: B¥Eg) — BFo) and S: B3(F.) —» BHGyH) CP-maps.
Their GNS-correspondences € and J.
Require span X(E)E = € and span X(F)JF = JF (strictness!). Then

(EFOEOFR)O(FFoFoG) = EE0Eo0(FOF)oFoi
= E'0EO0K(F)oFoG = EF0(EoF)oC.

So “sandwiching” between the representation modules (or spaces)
preserves tensor products! (~ Morita equivalence.)



Applications:

e i} a strict Eg-semigroup on BYE) with GNS-systems (B*(E)t)p . -
~ E = E"0BXE)© E = E* & E is product system via

(X 0sX)O (¥ ory) +— X Osit h(Xy")y'.
(With “unit vector” MS [Ske02]. General [Ske09Db] (preprint 2004).

e Special case: E a Hilbert spaces gives Bhat's construction [Bha96]
of the (anti-)Arveson system [Arv89] of ©}. (“Reverse” difficult!)

o &% = (Et)en, the GNS-system of a strict CP-semigroup T on B(E).
Then E; := E* © &; © E gives a product system E” = (Ey),y, Of
$B—correspondences.

e Special case: E a Hilbert spaces gives Bhat's Arveson system of T
[Bha96] without dilating T first to an endomorphism semigroup.



Only briefly: Positivity in «—algebras @

e For instance: bin a pre-C*—algebra is positive when positive in 8.
b has a square root 8 € 8.

e For instance: b € L£%G) (G a pre-Hilbert space) is positive if
(g,bg) > 0O for every g € G.
By an application of Friedrich’s theorem, b € $ has a square root
B e LAG,G") where G c G’ c G).

e New: Let B be a unital «=—algebra and S a set of positive linear
functionals on 8.
b e Bis S—positive if p(c'bc) > Oforall p € Sand c € B.
B is S—separated if p(cbc’) = OVyp € S;c,c’ € B implies b = 0.



2

Example: Let B = C(X). Let Zc C. PutS ={p,: p p(w),w € Z}.

eZ=RorZ=SL Thenp>0< dqe B:qq=p.

e Z=C.Then p> 0= p=0. (Liouville.)

e Z C C compact and Z\dZ # 0. Then B c C(Z) = B
and p>0< df e C(2): ff =p.
For instance, Z = [-1,0], p= —X

~ p=ff>0where f = v=x e C[-1,0].
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