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1 Matrix exponentials

Md : vector space of complex d× d-matrices, A = (aij)i,j=1,...,d ∈Md

Usual product of matrices

eA :=

∞∑
n=0

An

n!

eA = lim
n→∞

(E +
A

n
)n

Positivity

A ≥ 0 means: aij ≥ 0 for all i, j ∈ {1, . . . , d}

A,B ≥ 0 =⇒ AB ≥ 0

Semigroups of matrices

Tt ∈Md : TsTt = Ts+t, lim
t→0

Tt = E ⇐⇒ Tt = etA for some matrix A ∈Md

Schoenberg corrrespondence

etA ≥ 0 for all t ∈ R+ ⇐⇒ A is real and aij ≥ 0 for all i 6= j
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Using the dual pairing

(A,B) =
∑
i,j

aij bij

we identify Md and its dual vector space M ′
d.

Turn Md into a *-algebra by defining the product to be the Schur product, i.e. A ·B
is given by

(A ·B)ij = aijbij

and the involution by (A∗)ij = aij.

Then A ∈ Md
∼= M ′

d is ≥ 0 iff A ∈ M ′
d is a positive linear functional on the above

*-algebra Md since

(A,B∗B) =
∑
i,j

aij|bij|2 ≥ 0

for all B ∈Md iff aij ≥ 0 for all i, j.

Schur product of matrices

eA· :=

∞∑
n=1

A·n

n!
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i.e. (eA· )ij = eaij

eA· = lim
n→∞

(1 +
A

n
)·n

Positivity

A ≥ 0 means A is positive (semi-)definite.

A,B ≥ 0 =⇒ A ·B ≥ 0 (Result of Schur)

Semigroups of matrices

Tt ∈Md, Ts · Tt = Ts+t, lim
t→0

Tt = 1 ⇐⇒ Tt = etA· for some matrix A ∈Md

Schoenberg corrrespondence

etA· ≥ 0 for all t ∈ R+ ⇐⇒ A is hermitian and conditionally positive definite

Using once more the dual pairing

(A,B) =
∑
i,j

aij bij

we again identify Md and its dual vector space M ′
d.
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Turn Md into a *-algebra by defining the product to be the usual matrix multiplication

and the involution by (A∗)ij = aji, i.e. A∗ is the usual adjoint of the matrix A.

Then A ∈ Md
∼= M ′

d is ≥ 0 iff A ∈ M ′
d is a positive linear functional on the ‘usual‘

*-algebra Md since

(A,B∗B) =
∑
i,j,n

aijbni bnj ≥ 0

for all B ∈Md iff A is positive definite.
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2 Exponentials of linear functionals on coalgebras and bialgebras

Fundamental facts on coalgebras
(follow from the Fundamental Theorem on Coalgebras)

Let (C,∆, δ) be a coalgebra with comultiplication ∆ and counit δ.

The convolution product of two linear functionals ϕ1 and ϕ2 on C is defined by

ϕ1 ? ϕ2 = (ϕ1 ⊗ ϕ2) ◦∆

Then, with respect to convolution, the space C ′ of linear functionals on C becomes a

unital algebra.

1) The series
∞∑
n=0

ψ?n(c)

n!
=: eψ? (c)

converges for each ψ ∈ C ′ and c ∈ C.

2) Let ϕt be a weakly continuous convolution semigroup of linear functionals on C, i.e.

ϕs ? ϕt = ϕs+t and lim
t→0+

ϕ(c) = δ(c) for all c ∈ C
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Then

ψ(c) =
d

dt
ϕt(c)|t=0

exists and

ϕt(c) = etψ? (c)

3) We have

lim
n→∞

(δ +
ψ

n
)?n = eψ? weakly (which means pointwise)

and more:

lim
n→∞

(δ +
ψ

n
+ O(n−2))?n = eψ? weakly

when O(n−2) is a linear functional on C such that for c ∈ C

|O(n−2)(c)| ≤ Dc n
−2

for some constant Dc (depending on c).
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Positivity

Let (B,∆, δ) be a *-bialgebra, which means that B is a coalgebra and a *-algebra such

that ∆ and δ are *-algebra homomorphisms.

A linear functional ϕ on B is called positive if ϕ(b∗b) ≥ 0 for all b ∈ B, and we have

ϕ1, ϕ2 positive =⇒ ϕ1 ? ϕ2 positive

A linear functional ψ on B is called conditionally positive if ψ(b∗b) ≥ 0 for all b ∈ kern δ

Schoenberg correspondence

etψ? are positive for all t ∈ R+ ⇐⇒ ψ is hermitian and conditionally positive

Two different *-bialgebra structures on Md give the Schoenberg correspondence results

for the introductary examples of matrix and Schur multiplication:
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Usual product of matrices

∆eij =

d∑
n=1

ein ⊗ enj and δeij = δij

Schur product of matrices

∆eij = eij ⊗ eij and δeij = 1
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3 Polynomial products

I : some index set

CI = {(αk)k∈I |αk ∈ C}
C[xk, yk] : polynomial algebra in (commuting) indeterminates xk and yk, k ∈ I

Polynomial monoid structures

Pl = Pl(xk, yk), l ∈ I : polynomials in xk, yk satisfying

Pl(Pk(xm, ym), zk) = Pl(xk, Pk(ym, zm)) (1)

and ( 0 ∈ CI denotes the family consisting of 0’s)

Pl(xk, 0) = xl and Pl(0, yk) = yk (2)

We put, for α, β ∈ CI ,

(α ? β)l := Pl(αk, βk)

to define a ‘convolution’ product which as a consequence of properties (1) and (2) of

the polynomials turns CI into a monoid with unit element 0, i.e.

(α ? β) ? γ = α ? (β ? γ)

and

α ? 0 = α = 0 ? α
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For α ∈ CI and n ∈ N denote by α/n the element of CI with (α/n)k = αk
n .

Theorem

Let α ∈ CI and k ∈ I.
Then the sequence ((α/n)?n)k converges if n→∞.

Proof : Define the algebra homomorphism

∆ : C[xk]→ C[xk]⊗ C[xk] ∼= C[xk, yk]

by

∆xk = Pk

Then (1) and (2) imply that (C[xk],∆, S(0)) forms a (commutative) bialgebra where

S(0) is defined by S(0)P (xk) = P (0).

More generally, for α ∈ CI , we define S(α) ∈ C[xk]
′ by S(α)P (xk) = P (αk).

Then

S(α ? β)(xl) = (α ? β)l

= Pl(αk, βk)

= (S(α)⊗ S(β))(∆xl)

= (S(α) ? S(β))(xl)
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and

((α/n)?n)k = S(α/n)?n(xk)

Claim:

S(α/n) = S(0) +
D(α)

n
+ O(n−2)

where for a monomial M ∈ C[xk] we put

D(α)(M) =

{
αk if M = xk
0 otherwise

Proof of claim: We evaluate S(α/n) at a monomial M.

M = 1 : S(α/n)(1) = 1 = S(0)(1)

M = xl : S(α/n)(xl) = (α/n)l = D(α/n)(xl) =
D(α)

n
(xl)

degM ≥ 2 : S(α/n)(M) =
1

ndegM
S(α)(M) = O(n−2)(M)

Now

S(α/n)?n → eD(α)
? weakly

follows and, in particular,

((α/n)?n)k → eD(α)
? (xk) �
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It follows from property (1) that for fixed α1, . . . , αn ∈ CI , k ∈ I , the function

(t1, . . . , tn) 7→ ((t1α1) ? · · · ? (tnαn))k

is a polynomial in the real quantities t1, . . . , tn.

Thus we may define the nth � -product by

(α1 � · · ·� αn)k : =
∂n

∂t1 · · · ∂tn
((t1α1) ? · · · ? (tnαn))k|t1=···=tn=0

= (D(α1) ? · · · ? D(αn))(xk)

to write

(eα? )k := eD(α)
? (xk)

and

eα? =

∞∑
n=0

α�n

n!

We have

S(eα? ) = eD(α)
?
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Theorem

α� β = β � α ⇐⇒ eα+β
? = eα? ? eβ?

Proof: ‘⇒’ : For a coalgebra C call a linear functional d on C a derivation if

d(bc) = d(b)δ(c) + δ(b)d(c)

for all b, c ∈ C.

Then

d1, d2 derivations =⇒ [d1, d2]? (= d1 ? d2 − d2 ? d1) is a derivation

Suppose now that [α, β]� = 0.

Then

0 = ([α, β])k = [D(α), D(β)]?(xk) =⇒ [D(α), D(β)]? = 0

since a derivation is determined by its values on the generators xk.

From [D(α), D(β)]? = 0 we obtain

eD(α+β)
? = eD(α)+D(β)

?

= eD(α)
? ? eD(β)

?
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and

S(eα? ? eβ? ) = S(eα? ) ? S(eβ? )

= eD(α)
? ? eD(β)

?

= eD(α+β)
?

= S(eα+β
? ) �

It follows that for β ∈ CI the functionals αt = etβ? , t ∈ R+, form a 1-parameter

semigroup which is weakly continuous, i.e. limt→0(αt)k = 0 for all k ∈ I .

Conversely, by passing to the weakly continuous convolution semigroup S(αt) on the

coalgebra C[xk] we have

Theorem

Let αt be a weakly continuous 1-parameter semigroup in CI.

Then

βk =
d

dt
(αt)k|t=0

exists for all k ∈ I and

αt = etβ?
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4 Exponentials of linear functionals on Dual Semigroups

We give a realization of the category coproduct of two algebras B1, B2 which is the free

product of the algebras or, in other words, the algebra freely generated by the algebras

B1 and B2.

As a vector space

B1 t B2 =
⊕
ε∈A

Bε

where

A = {(ε1, . . . , εm) |m ∈ N; εi = 1, 2; εi 6= εi+1}

and, for ε = (ε1, . . . , εm),

Bε = Bε1 ⊗ · · · ⊗ Bεm.

16



The multiplication is given by

(a1 ⊗ · · · ⊗ am) (b1 ⊗ · · · ⊗ bn)

=

{
(a1 ⊗ · · · ⊗ am ⊗ b1 ⊗ · · · ⊗ bn) if εm 6= γ1

(a1 ⊗ · · · ⊗ am−1 ⊗ (amb1)⊗ b1 ⊗ b2 ⊗ · · · ⊗ bn) if εm = γ1

for

ε = (ε1, . . . , εm), γ = (γ1, . . . , γn)

and

a1 ⊗ · · · ⊗ am ∈ Bε, b1 ⊗ · · · ⊗ bn ∈ Bγ.
Notice that, like for the tensor case, in a very natural way,

(B1 t B2) t B3
∼= B1 t (B2) t B3)

and that, even in a more natural way than for the tensor case,

B1 t B2
∼= B2 t B1.
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Noncommutative notions of independence

In this talk such a notion is given by a ‘universal’ product, i.e. a prescription which

associates with each pair ϕ1 : B1 → C, ϕ2 : B2 → C of linear functionals ϕ1/2 on

algebras B1/2 a linear functional ϕ1 • ϕ2 on the coproduct B1 t B2 such that

(ϕ1 • ϕ2) ◦ ι1 = ϕ1 (3)

(ϕ1 • ϕ2) ◦ ι2 = ϕ2

(ϕ1 • ϕ2) • ϕ3 = ϕ1 • (ϕ2 • ϕ3) (4)

(ϕ1 ◦ j1) • (ϕ2 ◦ j2) = (ϕ1 • ϕ2) ◦ (j1 t j2) (5)

If (A,Φ) is a quantum probability space, the *-subalgebras A1/2 of A are called in-

dependent if the joint distribution Φ ◦ (ι1 t ι2) of the embeddings ι1/2 is given by the

product (Φ ◦ ι1) • (Φ ◦ ι2) of the marginal distributions.
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Voiculescu Dual Semigroups and Groups

A Dual Semigroup is a *-algebra B together with a *-algebra homomorphism

∆ : B → B t B

such that

(∆ t id) ◦∆ = (id t∆) ◦∆

(0 t id) ◦∆ = id = (id t 0) ◦∆.

If an antipode exists, i.e. a *-algebra homomorphism A : B → B such that

M ◦ (A t id) ◦∆ = 0 = M ◦ (id t A) ◦∆,

the Dual Semigroup B is called a Dual Group.
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Symmetric tensor algebras

Let V be a vector space and denote by S(V ) the symmetric tensor algbera over V .

This object can be characterized by the following universal property.

There is an embedding ι of V into S(V ) such for each linear mapping

R : V → D

from V to a commutative unital algebra D there exists a unique unital algebra homo-

morphism S(R) with S(R) ◦ ι = R.

S(V ) can be realized as follows.

Choose a vector space basis {vk | k ∈ I} and put S(V ) = C[xk].

Then the embedding is the obvious one, and S(R) is the homomorphism with

S(R)(xk) = R(vk).

Given I we may put V = CI .

Then V ′ = CI , and a polynomial monoid structure on CI = V ′ is nothing but a

bialgebra structure on S(V ) with counit S(0).
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It can be shown that an equivalent formulation of universal products is by families

σB1,B2 : B1 t B2 → S(B1)⊗ S(B2),

the relation to the universal product being given by the equation

ϕ1 • ϕ2 = (S(ϕ1)⊗ S(ϕ2)) ◦ σB,B

Given a Dual Semigroup B and a notion of noncommutative independence we define

ϕ1 ? ϕ2 := (ϕ1 • ϕ2) ◦∆

to obtain a polynomial convolution product for linear functionals on the Dual Semi-

group B (see the talks of Stephanie Lachs and Stefan Voß !).
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Example

B = C0[x] = {P ∈ C[x] |P (0) = 0}
∆x = ι1(x) + ι2(x); ι1/2 : B → B t B the canonical embeddings

We choose Boolean independence, so that

(ϕ1 • ϕ2)(b1 ⊗ · · · ⊗ bm) = ϕε1(b1) · · ·ϕεm(bm)

for b1 ⊗ · · · ⊗ bm ∈ Bε, B1 = B2 = B.

Then

(ϕ1 ? ϕ2)(xn) = (ϕ1 • ϕ2)(ι1(x) + ι2(x))n

=

n∑
k=1

∑
l1,...,lk∈N

l1+···+lk=n

(
ϕ1(xl1)ϕ2(xl2)ϕ1(xl3) · · · + ϕ2(xl1)ϕ1(xl2)ϕ2(xl3) · · ·

)
which gives

(ψ1 � · · ·� ψk)(x
n) = k!

∑
l1,...,lk∈N

l1+···+lk=n

ψ1(xl1) · · ·ψk(xlk)

Finally, we obtain

ψ�n = n!ψ∗n
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where ∗ denotes the coalgebra convolution coming from the coalgebra structure (‘shuffle

algebra’) on C[x] given by the comultiplication

xn 7→
n∑
k=1

xk ⊗ xn−k

so that in this example

eψ? =

∞∑
n=0

ψ∗n
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Schoenberg correspondence

Let there be given

• a positive (!) universal product (satsifying (3)-(5))

• a Dual Semigroup B

Theorem

For a linear functional ψ on B we have

etψ? are positive for all t ∈ R+ ⇐⇒ ψ is hermitian and conditionally positive

Outline of proof : By Muraki’s classification theorem there are exactly five positive

universal products.

Schoenberg correspondence holds in all five cases for Dual Groups of tensor algebra

type. (Use the realization of the GNS representation on a suitable Fock space.)

Now use the transformation theory for quantum Lévy processes (see talk of Stefan

Voß !) to prove the Schoenberg correspondence in the general case.
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