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Introduction

Let H∞(D) be the set of bounded harmonic functions of the unit
disk D = {z ∈ C | |z| < 1}, which is a closed subspace of L∞(D).

The classical Poisson integral formula

f(reiθ) =
1

2π

∫ 2π

0

1− r2

1− 2r cos(θ − φ) + r2
f̃(eiφ)dφ,

shows that the map H∞(D) ∋ f 7→ f̃ ∈ L∞(∂D) is an isometry.

H∞(D) has a hidden algebra structure.

Where does it come from?
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Answer
It comes from the heat semigroup {Pt}t≥0 acting on L∞(D), where
Pt = et∆ and ∆ is the Laplacian with respect to the Poincare metric.

H∞(D) is nothing but the set of fixed points
{f ∈ L∞(D) | Pt(f) = f, ∀t > 0}.

The von Neumann algebra structure of L∞(∂D) can been seen from
the pair (L∞(D), {Pt}t≥0).

For f, g ∈ H∞(D),

“ lim
T→∞

1

T

∫ T

0

Pt(fg)dt”

gives the hidden product of f and g.
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The space of harmonic elements

.

Definition

.

.

.

. ..

.

.

A Markov operator P on a von Neumann algebra M is a unital
normal completely positive map from M to itself.
For a Markov operator P on M , set
H∞(M,P ) = {x ∈ M | P (x) = x}.

H∞(M,P ) is an operator system, i.e., it is a self-adjoint subspace of
M containing scalars, though it is not an algebra in general.

Choose ω ∈ βN \ N, and set

Eω(x) = w− lim
n→ω

1

N

n−1∑
n=0

P n(x), x ∈ M.

Eω : M → H∞(M,P ) is a completely positive projection.
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Choi-Effros product

.

Theorem (Choi-Effros 77)

.

.

.

. ..

.

.

Let M be a von Neumann algebra, and let X ⊂ M be a weakly
closed operator system.
If there exists a completely positive projection E : M → X, X is a
von Neumann algebra with respect to the product x ◦ y = E(xy).

H∞(M,P ) is a von Neumann algebra with the Choi-Effros product
x ◦ y = Eω(xy), which does not depend on ω ∈ βN \ N.

.

Definition

.

.

.

. ..

.

.

A concrete realization of the von Neumann algebra structure of
H∞(M,P ) is called the noncommutative Poisson boundary for
(M,P ).
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Example

Let S be the unilateral shift on ℓ2(Z+).
Let P (x) = S∗xS for x ∈ B(ℓ2(Z+)).
P is a Markov operator acting on B(ℓ2(Z+)).

Then
H∞(B(ℓ2(Z+)), P ) = {Tf | f ∈ L∞(T)},

where Tf is the Toeplitz operator with symbol f
(identify ℓ2(Z+) with the Hardy space H2(T)).

The noncommutative Poisson boundary for (B(ℓ2(Z+)), P ) is
L∞(T).
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Random walk on a group

Let Γ be a discrete group, and let µ be a probability measure on Γ
whose support generate Γ as a semigroup.
For f ∈ ℓ∞(Γ), set Pµ(f) = f ∗ µ.
Transition probability: p(g, h) = µ{g−1h}.

Since ℓ∞(Γ) is commutative, the Choi-Effros product on
H∞(Γ, µ) := H∞(ℓ∞(Γ), Pµ) is commutative too.
There exists a completely positive isometry θ from H∞(Γ, µ) onto an
abelian von Neumann algebra A satisfying θ(f ◦ g) = θ(f)θ(g).

If f ∈ H∞(Γ, µ) is non-negative and f(e) = 0, the mean-value
property of f implies f = 0.
A ∋ φ 7→ θ−1(φ)(e) ∈ C is a faithful normal state.
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There exists a probability space (Ω, ν) with A = L∞(Ω, ν) satisfying

f(e) =

∫
Ω

θ(f)(ω)dν(ω), ∀f ∈ H∞(Γ, µ).

For H∞(Γ, ν), we set αγf(σ) = f(γ−1σ).
Since αγ commutes with Pµ, αγ induces an automorphism α̃γ of
L∞(Ω, ν), and hence a Γ-action on (Ω, ν) by nonsingular
transformations.
θ(αγ(f))(ω) = θ(f)(γ−1 · ω).

(Ω, ν) is called the Poisson boundary for (Γ, µ).
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Poisson integral formula

For f ∈ H∞(Γ, µ),

f(γ) = αγ−1(f)(e)

=

∫
Ω

θ(αγ−1(f))(ω)dν(ω)

=

∫
Ω

θ(f)(γ · ω)dν(ω)

=

∫
Ω

dν(γ−1·)
dν

(ω)θ(f)(ω)dν(ω).

dν(γ−1·)
dν

(ω) is an analogue of the Poisson kernel.
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Noncommutative extension

Let ρ be the right regular representation of Γ.
For ℓ∞(Γ) ⊂ B(ℓ2(Γ)),

Pµ(f) =
∑
γ∈Γ

µ(γ)ρ(γ)fρ(γ)−1.

Set
Qµ(x) =

∑
γ∈Γ

µ(γ)ρ(γ)xρ(γ)−1, x ∈ B(ℓ2(Γ)).

What is the noncommutative Poisson boundary for (B(ℓ2(Γ)), Qµ) ?

Answer
The crossed product L∞(Ω, ν)o Γ,
(I. 2004, Jaworski-Neufang 2007).
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Random walk on compact group dual

Let R(G) be the group von Neumann algebra of a compact group G,
which is generated by the right regular representation (ρ, L2(G)), and

R(G) =
⊕
π∈Ĝ

R(G)π, R(G)π ∼= Mnπ(C),

R(G) has a coproduct
∆G : R(G) ∋ ρ(g) 7→ ρ(g)⊗ ρ(g) ∈ R(G)⊗R(G).
For a probability measure µ on Ĝ, we set

Pµ =
∑
π∈Ĝ

µ(π)(id⊗trπ) ◦∆G.

H∞(R(G), Pµ) = C.
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ITP action

Let (π,Hπ) be a finite dimensional unitary representation of a
compact group G.
The infinite tensor product (ITP)

(M, τ, αg) =
∞⊗
k=1

(B(Hπ), trπ,Adπ(g))

gives an action α on the hyperfinite II1 factor M .
α is minimal, i.e., M ∩Mα′ = C.

The ITP action makes sense for a compact quantum group G if trπ is
replace by the so-called quantum trace τπ.
But M ∩Mα′ is not trivial in general.

13 / 17



.

Theorem (I.2002)

.

.

.

. ..

.

.

Let (π,Hπ) be a finite dimensional unitary representation of a
compact quantum group G such that every irreducible representation
of G is contained in a tensor power of π.
Let α be the corresponding ITP action of G on M .
Then M ∩Mα′ is the noncommutative Poisson boundary for
(R(G), Pµ), where µ is a probability measure determined by (π,Hπ).

.

Corollary

.

.

.

. ..

.

.

Let the notation be as above.
If G is not a Kac algebra, the ITP action α is not minimal.

Denote H∞(Ĝ, µ) = H∞(R(G), Pµ).
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Outline of proof

Let Mn =
n⊗

k=1

B(Hπ).

Let En : M → Mn be the
∞⊗
k=1

τπ-preserving conditional expectation.

π induces a homomorphism π̃ : R(G) → B(Hπ),
and hence a homomorphism π̃⊗n : R(G) → Mn satisfying
En ◦ π̃⊗(n+1) = π̃⊗n ◦ Pµ.

For x ∈ H∞(Ĝ, µ), {π̃⊗n(x)}∞n=1 is a martingale, and

s− lim
n→∞

π̃⊗n(x) ∈ M ∩Mα′.
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Identification problem

I. 2002,
G = SUq(2), H

∞(Ĝ, µ) ∼= L∞(SUq(2)/T),

I.-Neshveyev-Tuset 2006,
G = SUq(N), H∞(Ĝ, µ) ∼= L∞(SUq(N)/TN−1).

Tomatsu 2007,
G = q-deformation of a classical group, H∞(Ĝ, µ) ∼= L∞(G/T ).

Vaes-Vander Vennet 2008,
G = Ao(F ).

Vaes-Vander Vennet 2010,
G = Au(F ).
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