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Motivation and main questions

® Extension of the Gross Laplacian:

X < H=L%R,dt) — X
l
Fo(N) — L*(X,8(X),p — #Fg(N)
T 1

NAe — Ay —  Dgy

© Joint with H. Rguigui 31st Conference on Quantum Probability and Related TopSASR, Bangalore, August 17, 201(p. 2/.



Motivation and main questions

® Extension of the Gross Laplacian:

X < H=L%R,dt) — X

l
Fo(N') — L*X,8(X),0) — 54 (N)
T 1
IAYe — A, — AQK
ou 1
® Heat equation: —- = 506U, U (0) =® e 74 (N)

- U = E]P)X(T_W(t)q))

© Joint with H. Rguigui 31st Conference on Quantum Probability and Related TopSASR, Bangalore, August 17, 201(p. 2/.



Motivation and main questions

® Extension of the Gross Laplacian:
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l
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1
® Poisson equation (Al — QAG,K)G =de 745 (N).
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81. Backgrounds

#® Let H be an infinite dimensional real separable Hilbert space
with inner product (-, -), norm | - |p and an ONB {en}_,. Let A
be an operator on H such that

Ae,=Ae,, n=012--- and ZA52<oo.
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n=0
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#® Let H be an infinite dimensional real separable Hilbert space
with inner product (-, -), norm | - |p and an ONB {en}_,. Let A
be an operator on H such that

Ae,=Ae,, n=012--- and ZA52<oo.

® Foreach p € R define

(00)

E2=Y (€A = |APES . EcH.
n=0

Then: X:=projimX, ¢ H C indlimX_p=:X".

p—>oo p_>°°

® Let A, Nand Np, pe€ R, be the complexifications of H, X, Xp.
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® Let O be a Young function. The conjugate function 8" of 0 is

6" (x) = sup(tx—06(t)), x>0.
t>0

® For each p& R and m> 0, define EXp(Np, 6, m) to be the
space of entire functions f on Np satisfying the condition:

8(mix|p)

[ fl6,p.m = sup|f(x)[e” < .

XeNp
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9

Let © be a Young function. The conjugate function 0* of 0 is

6" (x) = sup(tx—06(t)), x>0.
t>0

For each p € R and m > O, define Exp(Np, 8, m) to be the
space of entire functions f on Np satisfying the condition:

[ flle.p.m= sup]f(x)|e” M) < co.
XENp

Then, we obtain the three nuclear spaces

ﬂ EXp(N_p,G,m), Qe U EXp Npae m)
peN, m>0 peN, m>0

and the space of generalized functions on N’ : #5(N').
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81. Backgrounds

® For pe R. and m> 0, we define the Hilbert spaces
Fe,m(Np):{fp = (On)n_o:dn € N;?n, [d]lo.pm < oo}

Gom(N-p)={® = (@n)iig; Pn € NJ, | Bllo.—pm < o},

where 6, = Inf,~g ee(r)/r”, neN,

(00)

2 2 2
6 om= Z (N'Bp) m”\CDn\_p
n=0

I

(00)
2 —2 2 pre
8,p,m — zen m nM)n‘ ; HCD
n=0
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® For pe R. and m> 0, we define the Hilbert spaces
Fe,m(Np):{fp = (On)n_o:dn € Ng@n7 [d]lo.pm < oo}

Gom(N-p)={® = (@n)iig; Pn € NJ, | Bllo.—pm < o},

where 6, = Inf,~g ee(r)/r”, neN,

(00)

—pm= Y (n'8)?m"@p|2,
n=0

(00

Zzeﬁzm‘”\cbn\z, |®|3
n=0

® Put

Fo(N)= () Fem(Np) and Ge(N)= | Ggm(N
peN,m>0 peN,m>0
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81. Backgrounds

® Suppose that 0 satisfies lim;_, 1 0(r) /r% < 4-co.

X — H=L%R,dt) — X
l
Fo(N') — L*(X,8(X),0) — 74 (N)
LT L1 L L
FR(N) —  Ts(#) = Go(N) < Go(N)
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® Suppose that 0 satisfies lim,_, 1, 8(r) /r? < +oo.

X — H=L%R,dt) — X

)
Fo(N) — LX,8(X),W) — 74 (N)
| T L1 | £
Fo(N) — s(#H) —  Geo-(N) . Gg(N’)

s Gaussian measure on X: [,, €8 du(y) = e 1€lo/2,
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® Suppose that 0 satisfies lim,_, 1, 8(r) /r? < +oo.

X — H=L%R,dt) — X

!
Fo(N') — LAX,3(X),p) — 54N
| T L1 | £
Fe(N) s rs(?{) s ge*(N) C? Ge(N/)

s Gaussian measure on X: [;, ¥ d

=
=
|
CDI
™
ON
~—
N

s The Laplace transform : (£ ®)(E) = P(&) = (P, €)),

» The exponential function : € (2) = elz®) ze N
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® Suppose that 0 satisfies lim,_, 1, 8(r) /r? < +oo.

X — H=L%R,dt) — X

l

Fo(N') — LAX,3(X),0) — 7g(N')

\ T L1 L L

Fo(N) — [s(H) —  Go+(N) ? Gg(N)
s Gaussian measure on X: [,, €8 du(y) = e 186/2
» The Taylor map: 7: ¢ — (nl,(l)(”)(O))‘r’f:O.
s The Laplace transform : (L ®)(£) = ®(&) = (P, €)),
» The exponential function : € (2) = elz®) ze N
s The duality : (®,¢)) = (®,§)) = T on!(Pn, bn).
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82. Generalized Gross Laplacian
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82. Generalized Gross Laplacian

® ForneNand ¢(§) = ) (Pn,&7") in Go+(N), the holomorphic
n=0
derivative of ¢ at & € N in the direction n is defined by

(Dn)(®) = lim #EFAN

A—0

= 3 n(onnde ). @
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derivative of ¢ at & € N in the direction n is defined by

(Dn)(®) = lim #EFAN

A—0

= 3 n(onnEe " Y). @

® The convolution product on Fg«(N'): @+« W := £ YD LY).
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82. Generalized Gross Laplacian

(00)

® ForneNand ¢(§) = ) (Pn,&7") in Go+(N), the holomorphic
n=0
derivative of ¢ at & € N in the direction n is defined by

¢(E+An)

(Dn®)(€) := lim

A—0

= 3 n(onnEe " Y). @

® The convolution product on Fg«(N'): @+« W := £ YD LY).

Then (fe(Nl)v ) - (TG*(N/)a*) N (ge*(N), )

(Definition JLet @ € 74 (N). We define the white noise distributional
derivative of ® in the direction n € N by

On P := £ 1(Dy(£D)).
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82. Generalized Gross Laplacian

(Theorem JLet @ ~ (®n)n>0in F¢ (N'). Then, for any n € N, we have

On® ~ ((N+1)N@1Pn+1) 1-0- (6)

Moreover, there exist p > 0and m> Osuch thatforg > pand m’ <m

—
Handl

< ol [

97_p7m 97_q/7m/

where the constant p is given by

(00)

o7 = 8(riebiliuplhe) 3 (rymgzlialhe)

< S [em(eigslle) |

n=0
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82. Generalized Gross Laplacian

Let £ (N, N’) be the set of continuous linear operators from N to N’.
In view of the kernel theorem, there is an isomorphism

L(N,N) ~ N @N ~ (N®N).
If K and 1(K) € (N® N)’ are related under this isomorphism, we have

(1(K),&®n) =(K&,n), &neN.

Moreover, it is a fact that, for arbitrary orthonormal basis of H such

that {€; },.y C X, T(K) has the representation

ej X €;. (7)

;MS
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82. Generalized Gross Laplacian

(00)

For d(x) = (x®" bn) € Fo(N'), the K—Gross Laplacian
n=0
associated to K, (cf. Chung-Ji NMJ Vol. 147, 1997), is defined as

(00)

Ao (K)B(x) = fODK*enD% = S (0+2)(n+1) (N T(K)Eobni2).

n=0
. (8)
where the contraction &> is defined by
<X®n,T(K)<§>2¢n+2> = <X®n®T(K)7¢n+2>-
In particular, if K =1, T(l) = T is the usual trace and Ag(l) = Ag is

the standard Gross Laplacian.
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82. Generalized Gross Laplacian

» Our framework, suggests to consider the restriction
Kes(N,N)~N&N c (N®N)" ~ £(N,N).

Accordingly, we introduce an other Laplacian operator in white noise
distribution theory as an operator acting on generalized functions.
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82. Generalized Gross Laplacian

» Our framework, suggests to consider the restriction
Ke (N N)~N&N c (NoN) ~ £(N,N.

Accordingly, we introduce an other Laplacian operator in white noise
distribution theory as an operator acting on generalized functions.

[Definition ] We define the Generalized Gross Laplacian acting on
generalized functions by

n=0

© Recall that, for n € N, Dy, is a restriction of 0y, to the space
Fo(N’). Thus, from (8) and (9) we expect that the K—Gross
Laplacian Ag(K) is actually a restriction of the Generalized Gross
Laplacian A to the space Fg(N’).
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82. Generalized Gross Laplacian

(Theorem J For @ ~ (Py)2_in F4(N'), Ag P is represented by

Doy ® ~ {(N+2)(N+ DT(K)&2Pni2} .- (12)

Moreover, A, is a continuous linear operator from 5 (N') into itself.

In fact, there exists g > 0 and m" > 0 such that for any m’ > m> 0
and p >, we have

— —>
Boc®| <plt(K)|y|[@
7_p7m

9,—q/,m/
where
) . 42 | ne e P
0?=8(8)X(2lelligpllg) 3 (AVmeligpll) 3 (sl allg
n=0 n=0

(© Joint with H. Rguigui 31st Conference on Quantum Probability and Related TopMSASR, Bangalore, August 17, 201(. 13/



82. Generalized Gross Laplacian

[Proposition j Let @, W € 75 (N’), then the following equality holds
AG,K (PxWP)

=Ds i (P)x W+ DxA;, (W) +2 ZoaK*eJ ) % 0g; (V).
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82. Generalized Gross Laplacian

[Proposition j Let @, W € 75 (N’), then the following equality holds
AQK (PxWP)

=Ds i (P)x W+ DxA;, (W) +2 ZoaK*ej ) % 0g; (V).

® Let @ ~ (Pp)n>oin F4(N’). For K € £ (N’,N) we define a
generalized number operator N(K) € £ (75 (N"), 5 (N')) by

N(K)®P ~ {yn(K)Pn}pso; (14)

where yy(K) is given by yp(K) = 0 and

-1 |
Yn(K) = _Z}I@” QK@I12M-1=)  n>1,
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82. Generalized Gross Laplacian

[Theorem ]SWN-CCR

1.
: :AG,K]_ )

A (K1), Ag(K2)]

2
3.
4. [N(Ky),A., ] = —2A

o1

N(K1),A5(K2)]
A

—G,Kq?

6.

Let Ky, Ko € £ (N’,N). Then, the following commutation relations hold
N(K1),N(K2)]

A =0

G,Kz]

7 GKo

Ag(K2)]

G.Ky

Lie <A

= N([Ky, K2])

= 205 (K1K>2)
= AN(K3K1) 4 2(1(K2),T(K1))!.

—» We obtain an co—dimensional realization of the SWN Lie algebra

AL (Ka), N(Ks), I: Ky, Ko, Kz € L(N’,N)>.

=0

G,Ki’_< Ko

(© Joint with H. Rguigui
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83. Generalized Gross heat equation

We shall construct a group {?ik; t € R} with infinitesimal generator
%AG,K' Observe that symbolically Pik is given by

Aok

NI~

Pik = €

Thus, a formal computation suggests to define the heat operator Pik,
acting on generalized function, by

?tKCDN (Z

=0

(n+ 2t/
n!|12!

(K) B2 ®Pnia) . derg(N).

n>
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§3. Generalized Gross heat equation
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§3. Generalized Gross heat equation

(Theorem ] The family {P; t € R} is a strongly continuous group of
continuous linear operators from ¥4 (N’) into itself with infinitesimal
generator 2A
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83. Generalized Gross heat equation

(Theorem ) The family {2k; t € R} is a strongly continuous group of

continuous linear operators from ¥4 (N’) into itself with infinitesimal
generator 2A

For ® c 74 (N’), the generalized Gross heat equation

ouU 1

has a unique solution in #5°(N’) given by

Ui = P P.
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83. Generalized Gross heat equation

 We proceed in order to give a probabilistic representation of the
solution of the heat equation (15). First, for p > 0, we keep the
notation K for its restriction to Xy into X,. Moreover, we assume that

K is a symmetric, non-negative linear operator with finite trace. Let
(Q, F, (Tt)te[o,T],IP’) be a filtered probability space with a filtration

(Ft)telo,T]
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83. Generalized Gross heat equation

 We proceed in order to give a probabilistic representation of the
solution of the heat equation (15). First, for p > 0, we keep the
notation K for its restriction to Xy into X,. Moreover, we assume that

K is a symmetric, non-negative linear operator with finite trace. Let
(Q, F, (Tt)te[o,T],IP’) be a filtered probability space with a filtration
(Ft)telo,T]

© By a K-Wiener process W = (W(t) )icjo 7] We mean an Xg-valued
process on (Q, F ,IP) such that

o W(0) =0,

W has P — a.s. continuous trajectories,

the increments of W are independent,

the increments W(t) —W(s), 0 < s<t have the

L I I

Gaussian law: Po (W(t) —W(s)) "t =a( (0, (t—9)K).
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§3. Generalized Gross heat equation

© A K-Wiener process with respect to the filtration (Ft)icjo.1) IS @
K-Wiener process such that

o W(t) is #—adapted,

® W(t) —W(s) is independent of Fsforall 0 < s<t.
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83. Generalized Gross heat equation

© A K-Wiener process with respect to the filtration (Ft)icjo.1) IS @
K-Wiener process such that

o W(t)is Fi—adapted,

o W(t) —W(s) is independent of #sforall0 <s<t.

© Later on we need define stochastic integrals of #4 (N')—valued

process. We use the theory of stochastic integration in Hilbert space
developed in Da Prato-Zabczyk 1992 and Kallianpur-Xiong 1995.
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83. Generalized Gross heat equation

(Definition ) Let (®(t))o<t<T be a given £ (Xg, 75 (N'))—valued,
Ft—adapted continuous stochastic process. Assume that there exist
m> 0and q € Nsuchthat 7 o LP(t) € £ (Xy,Gpm(N_q)) and

IP’(/OTH(ToLCD Kl/ZH dt<oo):1. (18)

Then fort € |0, T] we define the generalized stochastic integral

/O ' (s)dW(S) € 74 (N)

oy 7 ( / D(S)AW(S) ) (8) ) / ((£®(3))(E))dW(s). (19)
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§3. Generalized Gross heat equation

® Forn € N, the translation operator t_ on Gg+(N) is defined by

(t_n®)(&) =¢(&+n), &<N.
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§3. Generalized Gross heat equation

® Forn € N, the translation operator t_ on Gg+(N) is defined by

(t-nd)(€) =d(€+n), €EN.

® Then, the translation operator T_, is defined on 75 (N’) by

T @ = (£t no)®
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83. Generalized Gross heat equation

® Forn € N, the translation operator t_p on Gg+(N) is defined by

(t-nd)(€) =d(€+n), €EN.

® Then, the translation operator T_, is defined on 75 (N’) by

T @ = (£t no)®

(Theorem | T_woy® is an  Fg(N)—valued continuous
Ft—semimartingale which has the following decomposition

o At
T—W(t) CD — T_W(O) CD ‘I‘ aej (T—W(S) cD)dW(S)
j=0”0

1 t
+ E/OAG,K(T—W(S)CD)dS‘
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§3. Generalized Gross heat equation

(Theorem ] The solution of the Cauchy problem

o 1
T~ _A p—
pr 5 cxY U0)=0ao
IS given by
Ut = Epx(T_wiy®), (20)

where (W(t) )ic[o.1] is @ K-Wiener process with probability law P* when

starting at W(0) = X € X;,. Epx denotes the expectation with respect
to P~
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84. Generalized Gross white noise potential
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84. Generalized Gross white noise potential

® For any A > 0, we define a functional Gk ® : Fg(N’) — C by

(Gc@,0)) = [ &M (Ep(Tw @) 00t (22
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84. Generalized Gross white noise potential

® For any A > 0, we define a functional Gk ® : Fg(N’) — C by

(Gc@,0)) = [ e (Ep(Tw@).0hdt. (23

® Fact: Gx® € 74 (N').
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84. Generalized Gross white noise potential

® For any A > 0, we define a functional Gk ® : Fg(N’) — C by

(Gc@,0)) = [ &M (Ep(Tw @), 00t (29

® Fact: Gx® € 74 (N').
(Theorem JLet K € £(N/,N) and ® € 75 (N'). Then,

G =Gy = / 6 M Epe (T @)t

IS a solution of the Poisson equation

1
(M = 2B, )G = @,
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84. Generalized Gross white noise potential

Outline of proof.
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84. Generalized Gross white noise potential

Outline of proof.
» By using the It0’s formula, we compute

0o t
e‘“T_W(t)CD = T_W(O)q)—l—Z/Oe_)\Saej (T—W(S)cb)dw(s)
=0

1t
+5 /O e D (T_w(gP)ds

{
b\ /O 6Ty Pds (27)
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84. Generalized Gross white noise potential

Outline of proof.
» By using the It0’s formula, we compute

0o t
e‘“T_W(t)CD = T_W(O)q)—l—Z/Oe_)\Saej (T_W(S)CD)dW(S)
=0

1t
+5 /O e D (T_w(gP)ds
t
—)\/O e_}\ST_W(S)CDdS (29)

» Hence, by taking expectations on both sides and the martingale
property, we get

t 1
e_)‘tpr (T_W(t)q)) =P+ pr/ e‘AS(éAG’K — Al )(T (S)CD)dS

O :
(30)
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84. Generalized Gross white noise potential

» After the derivation of (26) with respect to t, we use the
probabilistic representation of the solution of the Generalized Gross
heat equation and (20), then we get the identification

AG,KE]P’X (T—W(t)q)) — EIP’XAQK (T_W(t)CD).
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84. Generalized Gross white noise potential

» After the derivation of (26) with respect to t, we use the
probabilistic representation of the solution of the Generalized Gross
heat equation and (20), then we get the identification

AG,KE]P’X(T—W(t)CD) — E]P’XAQK (T_W(t)CD).

© Therefore, we obtain

1 t
e MEpx(T_w1)®) = @+ (éAG,K - )\l) /o e M Epx(T_yy (g P)ds
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84. Generalized Gross white noise potential

» After the derivation of (26) with respect to t, we use the
probabilistic representation of the solution of the Generalized Gross
heat equation and (20), then we get the identification

AG,KE]P’X(T—W(t)CD) — E]P’XAQK (T_W(t)CD).

© Therefore, we obtain

_ 1 t

» Finally, letting t tend to infinity, we get

1

0= c|>+(2 o

—}\I)GKCD
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